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Graphene, a two-dimensional carbon crystal, has emerged as a promising material for
sensing and modulating neuronal activity in vitro and in vivo. In this review, we provide
a primer for how manufacturing processes to produce graphene and graphene oxide
result in materials properties that may be tailored for a variety of applications. We
further discuss how graphene may be composited with other bio-compatible materials of
interest to make novel hybrid complexes with desired characteristics for bio-interfacing.
We then highlight graphene’s ever-widen utility and unique properties that may in the
future be multiplexed for cross-modal modulation or interrogation of neuronal network.
As the biological effects of graphene are still an area of active investigation, we discuss
recent development, with special focus on how surface coatings and surface properties
of graphene are relevant to its biological effects. We discuss studies conducted in both
non-murine and murine systems, and emphasize the preclinical aspect of graphene’s
potential without undermining its tangible clinical implementation.
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INTRODUCTION

The promises of nanomedicine are extensive. Graphene (Gr), the first true two-dimensional
material to exist in isolation, is the type of new nanomaterial that results in interest for novel
biomedical applications. From Michael Chrichton’s tragic protagonist in The Terminal Man to
the recent growth in start-up companies seeking to transfer consciousness, the fictive present
and future call to mind visions of devices that enable neural interfacing and control. Although
these ideas may create questions as to ethics for neuroscience in the future, the current state-of-
the-art for implanted devices is far more limited in scope. Progress in brain-computer interfaces
holds great promise for patients following stroke (Ramos-Murguialday et al., 2013), to control
prosthetic limbs (Hochberg et al., 2006; Donoghue et al., 2007), with the motor degeneration
characteristic of Parkinson’s disease (Little et al., 2013), and for a variety of other disorders
and diseases (Chaudhary et al., 2016). Gr may be poised for incorporation into such devices.
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As the presence of Gr becomes more widespread and
commonplace across the biomedical sciences, the relatively larger
body of work detailing the biological effects of carbon nanotubes
may serve as a template guiding the utility of Gr for biological
applications (Kostarelos et al., 2009).

Gr-basedmaterials for interfacing with the peripheral nervous
system have been reviewed elsewhere (Domínguez-Bajo et al.,
2017; Bramini et al., 2018). We instead focus on new directions
for application to the central nervous system. This review is
limited to preclinical applications, although Gr and Gr-based
devices may someday advance to clinical implementation.
We begin with an overview of Gr manufacturing advances,
applications to hybrid materials systems as well as drug delivery
strategies. This is followed by an overview of work performed
with non-murine models. Finally, the interaction of Gr with
murine neural systems, both in vivo and in vitro is examined.
Despite a sizable body of work, to date, there remain many
unresolved questions as to cytotoxicity and the mechanisms
underlying the Gr-cellular interaction that must be addressed
moving forward.

MANUFACTURING PROCESSES

2D graphite was long believed to be relegated to the realm
of theoreticians and condensed matter physicists, as the
thermodynamic stability of such crystals was believed to be
prohibitive for their existence (Geim and Novoselov, 2007). 2D
graphite—or ‘‘graphene’’—was first isolated through mechanical
exfoliation (Novoselov et al., 2004, 2005). These small sheets
provided the ability to study transport in this new class of
material (Novoselov et al., 2004), but the small size of the
sheets (<10 µm) necessitated the development of alternative
approaches that would produce Gr in sizes large enough for
practical transistor-based applications. Of note, for high quality
single and few layer Gr sheets, mechanical exfoliation remains the
process of choice for transport measurements to date. However,
an array of production methods are now enabling production
of high-quality Gr in ever higher qualities and ever larger
areas (Figure 1).

The development of chemical-vapor deposition as a
manufacturing strategy (Li et al., 2009a; Reina et al., 2009)
allows the production of Gr with higher area coverage than
was previously possible with exfoliation-based methods. To
date, the majority of devices that demonstrate compatibility
for in vivo imaging use single or multi-layer Gr produced via
chemical vapor deposition (Kuzum et al., 2014; Park et al.,
2014, 2016, 2018; Du et al., 2015). Indeed, advances in CVD
technology have allowed the production of rectangular Gr
sheets with a cross-length as long as 30 inches (Bae et al., 2010).
Although these large size sheets should be of sufficient size for
any neural application, the solution transfer process often results
in alteration of the properties of the Gr sheet (Suk et al., 2011,
2013). Thus, continued research into scalable transfer of CVDGr
or alternative processes (Pang et al., 2017) should help generate
more reliably responsive devices. Additionally, ensuring that
devices are processed in such a way as to remain relatively sterile
is a necessary step to consider for long-term interfacing.

As an alternative to the large-scale growth of Gr, it is now
possible to produce large quantities of single-layer and multi-
layer Gr through bulk exfoliation (Hernandez et al., 2008; Li
et al., 2008; Lotya et al., 2009; Shih et al., 2011; Paton et al.,
2014). Graphite in a colloidal suspension can be sonicated
to yield thin Gr flakes, ranging from single to a few layers.
A variety of solvents are compatible with this approach—and
more recently it has been demonstrated that Gr and Gr oxide
(GO) can be exfoliated directly into biological media (Castagnola
et al., 2018). GO flakes produced by this method are more
largely monolayer than Gr flakes, however, oxidization comes
with costs, for example, reduced carrier mobility. Flakes of
Gr produced by exfoliation, while not matching the transport
properties of micromechanical isolation, can be considered Gr,
as no chemical functionalization is required. Thus, Gr flakes
may prove advantageous for applications where the electronic
properties are not of primary importance but where large
quantities of Gr are desirable. To be noted, long-term stability
of Gr flake suspension still requires coating with surfactant as the
hydrophobic surface of those flakes readily forcing them to form
aggregates (unpublished result).

The ease with which GO can be chemically modified remains
of interest for drug delivery and bio-scaffolding applications. A
number of different processes have been developed to produce
bulk quantities of GO flakes (Brodie, 1860; Hummers and
Offeman, 1958), although GO is traditionally produced through
the reduction of bulk graphite in the presence of both acids and
oxidants (Park and Ruoff, 2009). Reduction of GO yields Gr-like
sheets (rGO) with improved electrical conductivity (Stankovich
et al., 2007), but the electronic properties of rGO still lag
far behind those of pure Gr, even with the numerous efforts
that have been made via modifying annealing processes to
improve the figures of merit. The inherently lower electrical
conductivity and inability to greatly increase it has resulted in
less interest to date in the use of GO as an electrode material.
Indeed, even chemical reduction of GO to rGO yields room
temperature conductivity values three orders of magnitude below
that measured for pristine Gr (Gómez-Navarro et al., 2007).
Mobility values for GO produced via the Hummers method are
∼850 cm2/(V s), but other methods report a device mobility of
around ∼1–10 cm2/(V s) (Eda et al., 2008; Wang et al., 2008;
Su et al., 2009). Importantly, future device design may take into
account contact resistance in production, as use of all-carbon
transistors improve both electron and hole mobility relative to
using gold electrodes (Wang et al., 2010), which may prove a
more practical approach to improve device performance. Further
attempts to reduce GO to Gr-like sheets via chemical (Li et al.,
2009b; Moon et al., 2010) or thermal (Becerril et al., 2008;
Jung et al., 2009; Barroso-Bujans et al., 2010) processing have
improved the fraction of graphitic areas in the structure, but also
introduced nanoscale holes and defects that deleteriously affect
final performance. Ultimately, for practical application, if devices
are to be manufactured at a commercial scale, inconsistencies
introduced in such devices will have to be carefully characterized
to ensure that recorded signals are representative of neural
responses. rGO’s improved device characteristics also come
at the cost of a reduction in hydrophilicity (Rourke et al.,
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FIGURE 1 | Production of Graphene/Gr oxide (Gr/GO). (A) Gr production methods and (B) GO production and reduction methods. Modified with permission from
Bonaccorso et al. (2012).

2011), and surface properties remain an important consideration
for bio-interfacing applications. It was recently demonstrated
that solution-exfoliated GO flakes could be processed to
recover properties more resembling those of CVD-produced Gr.
Reduction of the concentration of in-plane oxygen via 1–2 s
microwave pulses produced 2D and G peaks closer to those of
Gr and greatly increased electron and hole carrier mobility to
∼1,000 cm2/(V s) in a FET (Voiry et al., 2016). Thus, the ability
to modify in-plane oxygen concentration to improve electronic
properties may open new doors to the use of GO and GO-based
materials for sensor applications.

Similar to applications for the photoluminescence of CNTs
(Welsher et al., 2008), the photoluminescence of GO may be
useful in for optical readout and/or in combination with drug
delivery. The photoluminescence of GO, which arises from
bond disorder throughout the structure, which induces energy
gaps (Cao et al., 2013), is to some extent a tunable property,
depending on the oxidization state (Luo et al., 2009). This stands
in contrast to the lack of photoluminescent emission observed
for defect-free Gr. GO luminescence is broadband in as-prepared
samples, with a wide peak across the visible spectrum (Luo et al.,
2009; Qian et al., 2012). PEGylated GO sheets exhibit intrinsic
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near-infrared red Hernandez et al., 2008 photoluminescence
(Sun et al., 2008), a property of great interest for in vivo
imaging applications due to the enhanced light penetration in
this wavelength range. It has been more recently demonstrated
that GO also exhibits photoluminescence under both two-photon
and three-photon excitation (Qian et al., 2012), in addition to
the broad photoluminescence in the visible range. By exploiting
the ability of GO to undergo a two-photon process, Qian et al.
(2012) imaged PEGylated-GO nanoparticles in a skull-removed
whole brain to a depth of 300 µm. Growth in the commercial
availability of three-photon sources may lead to studies at even
greater depths within the intact rodent brain. As new advances
in genetic engineering and microscopy enable deeper and faster
cellular resolution imaging in head fixed or freely moving
specimens, it is likely GO/Gr-based imaging will also move
toward applications compatible with this type of experiment.
Although the broadband nature of the emission from GO may
be somewhat of a limiting factor for multiplexing multiphoton
imaging processes, advances in hyperspectral detection and fast
fluorescence lifetime detection may help to make GO of greater
utility for in vivo brain imaging.

GRAPHENE/POLYMER COMPOSITE
MATERIALS AND APPLICATIONS

Polymer electronics remain of great interest to ultimately offer
an alternative to traditional materials to minimize mechanical
mismatch between cells/tissue and the recording probe (for
a more in-depth discussion see Rivnay et al., 2017). Elastic
modulus mismatch between brain tissue and recording device
leads to increased tissue damage both upon insertion and during
chronic interface (Polikov et al., 2005), as the elastic moduli of
brain tissue (∼150 kPa) and an implanted electrode (∼150 GPa
for silicon) differ by six orders of magnitude. Thus, much current
research has focused on the ability to better match the modulus
of electrodes to that of brain tissue (for a more in-depth review
on interfacing tissue with electrodes, see Fattahi et al., 2014).
Gr electrodes have been of interest for such designs, as it can
be incorporated into flexible electronics (Fiori et al., 2014); and
for applications in the brain, where techniques like optogenetics
and calcium imaging require optical access to brain regions of
interest, the large degree of optical transparency of single or
few-layer Gr (FLG) may be uniquely advantageous.

PEDOT

Poly-3, 4-ethylene dioxythiophene (PEDOT) is an
electroconductive polymer produced from 3, 4-ethylene
dioxythiophene monomers. Polymerization results in a
positively-charged backbone, whereby negatively charged
materials can then be incorporated to balance charge. Neurons
embedded in PEDOT matrices remain viable for around 1
week (Richardson-Burns et al., 2007) and neurons grown on
PEDOT-based substrates show unaltered electrophysiological
characteristics (membrane potential, membrane capacitance,
input resistance) after 21 DIV (Cellot et al., 2016). Although

the surface charge of Gr limits its utility in PEDOT-based
composites without further surface modification, the negative
surface charge of GOmay be better adaptable to such composites.
PEDOT/GO composites have been used as electrode coatings
to improve sensitivity and decrease the lower detection limit
of dopamine in fast-scan cyclic voltammetry (Taylor et al.,
2017), a widely-used technique for measuring dopamine
release in rodents in vivo (Robinson et al., 2003). Carbon
nanotube-PEDOT composites have also been demonstrated to
perform well in interfacing applications (Jan et al., 2009; Luo
et al., 2011). PEDOT-coated microelectrode arrays show good
performance characteristics and lowered impedance relative
to iridium oxide (IrOx), suggesting a potential for long-term
neural interfacing applications (Wilks et al., 2009). As both GO
and CNT incorporation into PEDOT-based composites has
improved overall performance, future work may seek to fabricate
composite polymer electrodes.

Chitosan
Chitosan composites have been demonstrated both for GO
(Yang et al., 2010; Bao et al., 2011) and for rGO (Fang et al.,
2010). It can be produced in relatively abundant quantities
from the deacetylation of chitin. Like with many polymers,
applications may be limited by the low mechanical strength of
the material. GO as a nanofiller is one route to achieve enhanced
mechanical properties. Chitosan-GO nanocomposites can be
assembled in a manner of ways. pH-responsive functionality is
possible with chitosan (Yi et al., 2005); increased pH leads to
amine deprotonation, decharging of the polymer, and ultimately
insolubility. Interestingly, preparations of such suspensions
seem to be greatly affected by the preparation method: addition
of GO to chitosan yields a uniform suspension while addition
of chitosan to GO yields agglomerations (Fang et al., 2010).
This is due to the way that excess GO will create bridges
between sheets via multiple attachment points on the polymer
chains. Reducing GO allows chitosan attachment by zwitterionic
interactions and hydrogen bonding between the remaining
oxygen groups of the rGO and the amino and hydroxyl groups
of chitosan. The reversibility of the molecular chain interactions
with GO sheets between different pH values may provide
an opportunity to modulate Gr-based composite materials
within different cellular compartments. This could potentially
allow for pH-based assembly strategies in acidic intracellular
compartments (e.g., late endosomes, lysosomes), where
chitosan would stabilize GO composites relative to higher pH
extracellular spaces.

Hydrogels
The use of Gr for regenerative approaches has been reviewed
previously (Ding et al., 2015), however the pace of new
methodologies in neuroscience has opened new directions
for scaffolding technologies, with a particular resurgence in
hydrogel-based techniques for connectome applications (Chung
et al., 2013; Chen et al., 2015). Gr/GO and other nanomaterials
may be of interest for cleared or expanded tissue applications
where added structural stability is desirable. Composite scaffolds
for regenerative medicine remain and area of great interest.
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Hydrogels can be chemically tuned to impart different surface
properties, for example, tomodify surface charge or conductivity,
before functionalization to GO (Liu X. et al., 2017). Biomolecules
such as DNA can also be incorporated via stacking interactions
(Xu et al., 2010), enabling payload delivery within the hydrogel
matrix. This is one possible route to achieve more biologically
realistic synthetic minimal brain circuits, which to date have
largely been limited in structure to two-dimensional culture
systems or proteins or liposomes (Adamala et al., 2017). Overall
mechanical strength can be tailored by the degree to which
Gr/GO is incorporated, with mechanical strength being inversely
correlated to the amount of swelling in the composite. Local
delivery of polymerized materials may someday be a route to
a new form of tissue scaffolding in vivo. In such applications,
Gr and Gr-based materials may play a multifunctional role,
both as structural support and as part of a stimulation or
recording device.

Graphene in “Stretchable” Electronics
Applications
Advances in both computational and analytical models
have recently begun to enable the fabrication of nanoscale
semiconductor materials that will tolerate relatively large
amounts of strain (Su et al., 2017; Yu et al., 2017), advances in the
manufacturing of Gr may allow similar structures to be produced
(Wang et al., 2017). Although measurements of second-order
stiffness in graphene have yielded in-plane stiffness values of
∼340 N/m (Lee et al., 2008), crumpling from static wrinkling in
free-standing Gr at biologically relevant temperatures effectively
reduces this value (Nicholl et al., 2015). p-type doping of Gr may
be one way forward for flexible Gr electrodes, as it decreases
sheet resistance and increases the effective work function (Han
et al., 2016). Multilayer-based approaches using Gr may also
improve stretchability performance through strain relaxation
(Won et al., 2014). In fact, the addition of Gr ‘‘nanoscrolls’’
between layers in transparent transistors showed improved
performance under strain relative to monolayer Gr (Liu N. et al.,
2017); and multilayer composite or flexible devices must be
designed with consideration to the properties of Gr/GO that are
being utilized. For example, PEDOT electrodes with sufficient
recording capability where Gr may be incorporated to increase
overall mechanical strength may have different design criteria
from applications where Gr acts as an electrode material.

DRUG DELIVERY APPLICATIONS AND
CONJUGATION STRATEGIES

Chemical Modifications for
Drug Delivery Applications
Gr/GO have been most widely demonstrated for cancer-related
drug delivery applications (Liu et al., 2011; Liu C.-C. et al., 2017),
however, the chemical and surface modifications used to enable
loading and release may also be used to enable new applications
in the brain. The ability to harness hydrophobic interactions and
π—π stacking to deliver aromatic, hydrophobic compoundsmay
extend the utility of Gr for brain-specific drug delivery beyond

simply proof-of-concept. For example, polyethylene glycol
modification (PEGylation) of GO results in excellent solution
stability (Liu et al., 2008). Alternative strategies also include
Polyamidoamine (PAMAM) functionalization of both GO (Gu
et al., 2017) and Gr (Quintana et al., 2011) and hyperbranched
polyglycerol (hPG; Tu et al., 2017). Amide linkage between
GO and chitosan yields sheets that are relatively stable in cell
culture media for up to 48 h (Bao et al., 2011), an example of a
myriad of alternative approaches to stabilize Gr/GO in aqueous
solutions. Dextran can also be used to increase the hydrophilicity
of GO via amine modification and EDC coupling chemistry
(Zhang et al., 2011). GO functionalized with cyclodextrin
molecules, again via π—π adsorption, reduced to Gr sheets in
an ammonia solution also serves as an effective peptide carrier
(Dong et al., 2013). Thus, the versatility of π—π adsorption onto
Gr/GO surfaces allows for a wide scope of possible molecular
delivery types.

Chemical reaction methods can also be selected to control
the location of functional groups onto Gr sheets. 1,3-dipolar
cycloaddition results in conjugation within the large central area
of the sheets, whereas amide concentration reactions concentrate
conjugates to the edges of Gr sheets (Quintana et al., 2011).
Azide modified dopamine has been used for simultaneous
capping and reduction of GO (Kaminska et al., 2012), where the
aromatic structure of the dopamine molecule likely interacts via
π—π stacking on the surface. As many monoamines contain
aromatic groups, molecules such as serotonin, cathecholamine,
and epinephrine may find utility as stabilizers for GO while also
acting to alter neural function. Although click chemistry opens
new doors to functionalization strategies for Gr/GO, approaches
that utilize a copper catalyst elicit concern regarding toxicity to
living tissue (Baskin et al., 2007).

Interestingly, the overall surface charge of a GO sheet was
shown to play a role in the effectiveness of intracellular drug
delivery. Positively-charged aminolated surfaces were shown to
bemore effective at releasing Doxorubicin (DOX) in intracellular
compartments than negatively charged sulfonated surfaces (Tu
et al., 2017). Given the relative ease of modifying the surface
charge of GO, this may be a new avenue to site-specific
intracellular drug release. The different surface characteristics
across a Gr sheet may also be a useful strategy for orthogonal
delivery of different classes of compound: the negatively
charged surface regions may better adsorb positively charged
molecules while the outer edges, decorated with carboxyl groups,
can, for example, be modified with zwitterionic lipid vesicles
(Wang et al., 2013).

Payload Delivery
The delivery of various forms of genetic payload has been
demonstrated as a possible application for Gr/GO-based
materials, however, to date, low transduction efficiencies limit
the utility of Gr in comparison to traditional methods for genetic
delivery. For example, chitosan-stabilized GO sheets had a lower
transfection efficiency for luciferase transduction into HeLa cells
(Bao et al., 2011) compared to traditional methods. Polymer-
based assemblies are some of the most widely used nanomaterial
strategies for transduction, and relative to polymer-based
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approaches, GO used to attach plasmid DNA and PEI shows
improved transfection efficiency (Feng et al., 2011). Gr can also
bind ssDNA, although cannot bind dsDNA to the same extent.
This property has been exploited to deliver hairpin-shaped
DNA into cells, which will be unloaded upon interaction with
an mRNA target (Lu et al., 2010). GO has also been employed
as a delivery vehicle for aptamers, delivering an ATP-binding
aptamer (Wang et al., 2010) to cells. Gr/GO may ultimately be
most advantageous for applications where simultaneous delivery
of both genetic payloads and pharmacological compounds
is desirable. For example, PAMAM functionalized GO
was demonstrated as a vehicle for both DOX and shRNA
(Gu et al., 2017) delivery.

Photothermal Therapy
Reduced GO (rGO) has been exploited for its photothermal
properties for drug delivery. Chitosan/rGO composites were
shown to deliver drug payloads on a timescale of minutes;
addition of rGO to Chitosan acts to increase the photothermal
absorption of the composite with respect to chitosan alone
(Matteini et al., 2014). Here, DOX delivery to HeLa cells was
increased with short-pulse laser illumination. DOX has also been
loaded onto GO for photothermal delivery in a glioma-bearing
rat model (Liu et al., 2013; Dong et al., 2016). Laser irradiation
results in local surface heating, ultimately leading to drug release.
DOX release was also demonstrated to be effective on gliomas
when loaded on PEGylated silica-coated Gr sheets (Wang et al.,
2013). Carboxy-modified GOwas covalently linked to Thioflavin
S, which made it selectively attached to amyloid-β fibrils (Li et al.,
2012), a potential avenue toward the photothermal dissociation
of Aβ fibrils and demonstrating the potential of Gr/GO-based
materials for therapeutic application to Alzheimer’s disease.
Hydrazine reduction of GO at elevated temperatures increases
NIR absorbance by >6-fold relative to unreduced GO (Robinson
et al., 2011), a function of the restoration of π conjugation. In
the most widely used state, largely due to the relative ease of
production and low cost, Gr flakes exist as a semimetal with
zero bandgap. More recently, the discovery that a ‘‘nanomesh’’
structure can open up a bandgap in Gr (Akhavan, 2010; Bai et al.,
2010) can be used to tune photothermal absorption properties.
PEGylated rGO nanomesh suspension showed a much steeper
temperature increase over time for NIR irradiation heating than
PEGylated rGO (Akhavan and Ghaderi, 2013). Although CNTs
have been more widely used for photothermal therapy to date,
the superior response of Gr (Markovic et al., 2011) may lead to
increased focus in this direction.

Laser irradiation with NIR light enables a relatively high
degree of spatial precision. However, for in vivo applications,
the ability to control release will ultimately be limited by the
ability to deliver light within the brain. As such, NIR will be a
useful tool for fundamental studies, as differential effects between
even superficial sub-regions within the brain are still not well
understood. Alternative triggering methods may be better suited
to study where pharmaceutical effects are elicited in deep brain
regions. Electrical, magnetic, or even acoustic-based triggered
release would allow such control in deeper brain regions. Layer-
by-layer assembly approaches utilize protein adsorption onto

substrates and subsequent capping with modified GO in either
a sheet (Hong et al., 2012) or a capsule (Kurapati and Raichur,
2012) format. Additional layers can be stacked together to control
overall release time (Hong et al., 2012). Passive release may
be sufficient for the delivery of certain drug classes, but active
release allows more precise control of treatment dose received.
PAE (Choi et al., 2015) or PPy (Weaver et al., 2014) films
can incorporate GO, resulting in a more conductive polymer
matrix, whereby electrical stimulation is applied and elicits
drug release. Modification of the number of GO layers and
the overall areal size of the GO sheets also alters the total
drug loading capability (Weaver et al., 2014); smaller and fewer
layered sheets have increased surface area for adsorption relative
to more multilayered stacks. Photothermal irradiation has also
been utilized to target delivery to cytosolic locations. Although
Gr/GO sheets can insert into membranes directly, small sized
and few-layered sheets will also be taken up into the cell
through endocytic processes. Ultimately these sheets will then be
trafficked to endosomal compartments. rGO sheets have been
used to help payload escape this fate by application of NIR
irradiation to induce endosomal disruption (Kim et al., 2013).

Magnetic Applications
The ability to modify the properties of Gr/GO, to confer
magnetic sensitivity for example, will extend the utility of
its applications. The presence of fluorine in the GO basal
plane can induce paramagnetic centers, making fluorinated-GO
compatible with MRI applications (Romero-Aburto et al., 2013).
Magnetic nanoparticles such as iron oxide (Fe3O4) can also
be loaded on the surface of GO, conferring sufficient contrast
enhancement to enable MRI (Yang et al., 2013). This does not
disrupt the ability of Gr/GO to act as a drug delivery vehicle,
further extending its utility.

TOXICITY IN MURINE SYSTEMS

The extent to which Gr/GO become practically applicable to
neuroscience will in part be determined following a systematic
understanding of long-term toxicity. As many paths toward
clinical application begin with pre-clinical testing in murine
models, understanding the biological tolerance of rats and
mice to Gr/GO represents an important first step. Here,
we focus on toxicity specifically relevant to neuronal and
brain-wide function, for discussion of overall, environmental,
or antimicrobial toxicity, which have been widely reviewed, see
elsewhere (Seabra et al., 2014).

Various studies have also focused on the interaction between
Gr and the cell membrane in either in vitro culture systems
(Kitko et al., 2018) or lipid bilayer preparations. Using a
two-dimensional Langmuir-Blodgett approach, it has been
suggested that the hydrophobic tail of lipids does not play a
role in any bilayer interactions, but a positively charged head
group would favor interactions with the carboxy-containing
regions of GO (Li et al., 2013) and minimal interactions would
occur between neutrally or negatively charged lipids. The size
of the Gr/GO flakes is also a determining factor in the bilayer
response. Flakes of GO that are large relative to the size of
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an artificial liposome cause rupture of the bilayer attached
to a substrate surface (Frost et al., 2012). Addition of GO
to supported lipid bilayers (SLBs) composed of DPPC/DOPC
causes detachment of bilayer regions (Lei et al., 2014), but as
this was a function of relatively high levels of calcium used in
SLB preparation, may not be viewed as representative of in vivo
membrane damage.

The results based on computational modeling generally agree
that once inside of a lipid bilayer, either via endocytic uptake or
by direct membrane penetration, Gr will stably reside between
phospholipid tails (Titov et al., 2010; Guo et al., 2013). It is
generally agreed that membrane penetration would favor an
‘‘edge-in’’ rather than a ‘‘face-in’’ initial contact.

Although computational models are powerful tools to
provide fundamental insights into the forces governing Gr/GO
nanomaterial-cellular interactions, these studies are often
performed under conditions necessitated by restrictions on the
ability to model different membrane components, for example,
protein coronas and extracellular-matrix components secreted
by neurons are largely not included in such models. It is
furthermore prohibitive to model the membrane bilayer with
the full complexity of proteins, lipids, and other molecules
within a neuronal bilayer. In addition, it is computationally
prohibitive to model Gr/GO flakes on the same size scales that
are produced for experimental studies. A ‘‘large Gr/GO flake’’
in a computational study may be on the length scale of 5 nm
(Li et al., 2013)—whereas for experimental studies the smallest
reported average dimensions are on a length scale of >200 nm
(Rauti et al., 2016; Castagnola et al., 2018). Thus, it may be
difficult to draw direct parallels between toxicity claims from
simulations and toxicity claims from experimental results. Study
of lipid-membrane specific effects is more efficiently enabled
by allowing Gr to penetrate a membrane after addition to
biological media. However, many studies, even using small flakes
of Gr/GO, deposit the material onto a glass substrate for chronic
cellular interface. The membrane interactions here would be very
different from Gr/GO located within the lipid bilayer, further
complicating arguments as to the membrane effects of Gr/GO;
and same caution should be paid to the bare or surfactant-
coated Gr as the former will aggregate and result in different
physicochemical properties.

GO was demonstrated to be toxic to gram-negative bacteria
(Akhavan and Ghaderi, 2010; Tu et al., 2013), yet bacteria
containing more complex outer membranes are more resistant
to damage. Reduction of GO (rGO) increases susceptibility
to membrane damage (Akhavan and Ghaderi, 2010). Akhavan
(2010) fabricated nanowalls of GO, which were designed such
that there would be a maximal amount of direct contact
between bacteria and the sharp edges of the nanomaterial. This
represents a condition that would induce mechanical stress on
the membrane and indeed can result in membrane damage. Tu
et al. (2013) later extended this work both through molecular
dynamics simulations and experiments using E. Coli. Course-
grained molecular dynamic simulations of relatively large FLG
sheets suggest that the most hydrophobic edge of Gr near a
lipid bilayer will penetrate orthogonal to a bilayer, and then fully
embed in a membrane, driven by an attraction between the Gr

and lipids within the core (Li et al., 2013). Interestingly, this
spontaneous process does not result in membrane destruction,
suggesting that the degree of mechanical stress on the membrane
plays a role in membrane damage when exposed to Gr or
GO. That spontaneous membrane incorporation does cause
membrane destruction is in agreement with experimental
observations using cultured PC-12 cells, where 24-h exposure
to FLG sheets did not increase lactate dehydrogenase activity
or increase reactive oxygen species below 100 µg/mL treatment
concentrations (Zhang et al., 2010).

Of note, these configurations, where membrane stress is likely
a factor in the toxicity of Gr/GO, are different than most studies
to date using neuronal cultures, where Gr/GO is more commonly
used as a culture substrate. Three different mammalian cell
types cultured on rGO, but not GO, for up to 5 days
proliferated normally and exhibited less cytotoxicity and more
outgrowth than on CNT films (Agarwal et al., 2010). HT-29 cells
also displayed increased attachment on GO-coated substrates
within 6 h compared to bare glass substrates (Ruiz et al.,
2011). Thus, future studies aimed at addressing nanotoxicity
would benefit from drawing a distinction between scenarios
where mechanical stress may be an additional factor and
scenarios where spontaneous membrane incorporation alone is
being studied.

Simulations also suggest that the hydrophobicity of Gr/GO
plays a role in its interaction with the bilayer and that
the surface energy can be modified by the formation of a
protein corona on the surface. For example, computational
models demonstrate that the presence of a protein corona
surrounding the flakes would modify the membrane response
to Gr, in which case Gr would orient in parallel to and
attach to the outer layer of the lipid bilayer (Li et al., 2013).
Experimental studies of protein adsorption on Gr/GO alone
have shown that nanoflakes can adsorb 1.6–2× their weight
in BSA, largely on the timescale of minutes (Hu et al., 2011;
Chong et al., 2015). A recent development, where Gr is
exfoliated directly into a serum containing media, has given
some insight into the composition of the biological corona
formed. Proteomic analysis of these media-exfoliated Gr flakes
reveals a variety of proteins and other cellular materials that
make up the protein corona formed on Gr (Castagnola et al.,
2018): serum albumin, apolipoproteins, and vitronectin are all
found on Gr nanoflakes in relatively large abundances. Although
the physicochemical interactions, kinetics, and thermodynamic
processes that govern the formation and evolution of the corona
that forms around nanomaterial surfaces when interfaced with a
biological system is still not fully understood, general frameworks
have been established as to the governing forces underlying
nano-bio interactions. Because the individual environment
Gr/GO encounter will vary widely depending upon desired
neural application, the exact composition of the corona formed
cannot necessarily be described a priori or results extended
from one biological system to the next. Indeed, the chemical
concentration, surface functionalization, degree of crystallinity,
and surface roughness, among many properties, all play a role in
the composition and evolution of biomaterials that adsorb on a
nanomaterial surface (Nel et al., 2009).
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The formation of a protein corona on Gr/GO surfaces
also differs between bacterial cultures and what would be
observed in murine models in vivo due to differences between
media compositions in cell culture or fluid composition in the
extracellular space. Previous studies demonstrating membrane
destruction in bacteria have suspended Gr flakes with E.Coli
(Tu et al., 2013) or suspended in agar/water and dropped onto
a substrate surface and later recovered (Akhavan and Ghaderi,
2010). However, the presence of a protein corona (Cedervall
et al., 2007) likely plays a role in mitigating these effects. Using
A549 cells, multiple reports have demonstrated that the presence
of FBS in normal culture media (Hu et al., 2011; Duan et al.,
2015) or the addition of BSA (Li et al., 2014; Duan et al., 2015)
result in lower cytotoxicity of GO flakes relative to serum-free
media. Using a DPPC model membrane, molecular dynamics
simulations revealed that BSA-coating of Gr reduces the total
amount of lipid removal relative to bare Gr. The coating of Gr
by proteins is governed by hydrophobic interactions, van der
Waals forces, and π—π interactions (Chong et al., 2015). The
composition of the protein corona may vary depending upon
the method of introduction to the brain and the presence of
any surface modifications to increase biocompatibility; this may
also serve to explain the variation in effects seemingly exerted
by Gr (Radic et al., 2013). As the adsorption of proteins to GO
is strong and long-lasting, this may serve as one route for the
low-cost modification of GO for drug delivery application or to
achieve loss or gain of function cellular control in some manner
(Belling et al., 2016).

Although many studies that attempt to evaluate the effects of
Gr may lessen the extent to which a protein corona is involved by
incubation in serum free-media (Zhang et al., 2010; Pampaloni
et al., 2018), the relatively long exposure times used may
still result in the coating of nanomaterial surfaces by excreted
proteins in cell culture. Indeed, proposed mechanisms for the
effects underlying chronic culture on graphene have suggested
that Gr still plays a large and direct mediatory role, rather than an
indirect through a protein corona (Kitko et al., 2018; Pampaloni
et al., 2018). Understanding the role of cell secretion inmediating
the toxicity of Gr-based materials remains an important line of
future investigation.

Surface functionalization has also been shown to play an
important role in the toxicity of Gr/GO. For example, PEGylation
decreases the overall cytotoxicity of GO (Li et al., 2014).
And bilayer Gr functionalized with carboxyl groups showed
improved viability in kidney cells relative to pristine bilayer
Gr at concentrations above ∼5 mg/L (Sasidharan et al., 2011).
Tu et al. (2013) modified GO with -OCH3, -NH2, or -PABS
via PEGylated chains and cultured hippocampal neurons to
7 DIV to determine the effect of surface charge on neuronal
viability and outgrowth. PEG-amine modified GO exhibited the
most positive surface charge and the most neuronal outgrowth
relative to other surface treatments or the native—COOH group
(Tu et al., 2014), suggesting the importance of the surface in
determining neuronal responses to GO. This is in line with
what was observed for mouse hippocampal neurons on CVD-Gr
substrates, where pristine Gr was shown to improve viability and
connectivity up to 5 DIV, whereas disordered noncrystalline Gr

did not result in any neuronal attachment (Veliev et al., 2016).
Thus, the crystallinity of Gr is also an important consideration in
evaluating neuronal responses. Given the overall inconsistency
among assessments of nanotoxicity for Gr/GO, it is likely that
surface charge plays a role. Given the number of fabrication
methods, transfer processes, and application methods for these
materials, comprehensive studies of toxicity should include
measurement and reporting of relevant surface characteristics
(Faria et al., 2018).

DISTRIBUTION AND TRAFFICKING OF
Gr/GO IN VIVO

Mass spectrometry is a common approach to determine the
bio-distribution of nanomaterials. For Gr/GO, most distribution
studies to date have focused on overall distribution following tail
vein injection, with results indicating that very little trafficking
to the brain will happen via this route. MALDI-TOF was used
to determine that tail vein injection of GO results in very little
accumulation in the brain after 24 h (Chen et al., 2015), in
good agreement with what was observed using radiolabeled
GO for similar time periods (Zhang et al., 2011). Tail vein
studies performed using rGO indicate uptake in the brain within
15 min for tail vein injection, peaking around 3 h and decreasing
by 7 days, which was corroborated by confocal microscopy
(Mendonça et al., 2015). This is somewhat surprising given the
relatively large-sized flakes used (∼340 nm), suggesting that rGO
may be able to cross the blood brain barrier and may be cleared
through some as yet not well-understood mechanism.

For in vivo applications, further study is needed to
characterize any potential brain region or cell-type specific
effects. To date, most studies, such as detailed above, are
performed in vitro. However, a few studies have characterized
some of the effects of Gr/GO in vivo. Defteralí et al. (2016b)
studied the effects of thermally reduced Gr on viability via
stereotaxic injection into the mouse olfactory bulb. After 7 or
21 days, thermally reduced Gr had minimal effects on cell
viability or number, and no significant increase in microglia
number compared to injection only controls (Defteralí et al.,
2016b). Tail vein injection of >250 mg/kg dextran-modified Gr
did not lead to brain toxicity after 30 days (Kanakia et al., 2014).
However, this is not the route by which Gr would encounter
the brain in most intended applications, thus requiring further
toxicity study in vivo via direct Gr/GO injection to brain regions
of interest. Although this has not been characterized for Gr/GO-
based materials, LDH activity has been shown to be differentially
affected in a brain region-specific manner in multi-walled carbon
nanotubes (MWNTs; Bussy et al., 2015). Thus, further study is
warranted to determine if the toxicity is cell-type specific, as has
been both suggested (Agarwal et al., 2010) and argued against
(Ruiz et al., 2011).

GRAPHENE AND NEURONS IN VITRO

To date, even for in vitro systems, where there have been an
array of studies using Gr/GO, questions remain as to toxicity.
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It is increasingly widely accepted that as a substrate for in vitro
growth, Gr is a permissive surface both with and without
the addition of extracellular matrix coatings (Table 1). Gr
Flakes applied in culture have resulted in somewhat conflicting
outcomes, but results generally support the idea that either or
both high enough treatment dose or a long enough incubation
time will result in cellular toxicity. Below these dosage or time
thresholds, Gr flakes also have been studied for their ability
to exert biological effects. Here, we move beyond toxicity to
a discussion of hypotheses as to the causal underpinnings of
biological changes reported on Gr/GO.

Most early studies using Gr/GO substrates were conducted
using a protein layer sandwiched between the substrate and
neurons. For example, neural stem cells were grown on laminin-
coated tissue culture polystyrene and soaked in tissue culture
media overnight (Tang et al., 2013). Chronic culture resulted
in increases in: Ca2+ transient frequency, both spontaneous
EPSC amplitude and frequency, and miniature EPSC frequency.
These cellular changes occurred without altering overall stem
cell morphology. Later versions of similar studies using neural
stems cells did not observe changes in firing frequency, although
were in overall agreement with increased cell signaling, here
realized as increases in the percentage of cells firing action
potentials during both proliferation and differentiation stages
(Guo et al., 2016) and an increase in the density of neurites.
Longer-term culture of stem cells on Gr also acts in a supportive
manner by increasing overall cell count on Gr after 1 month
(Park et al., 2011). Again, surface properties of Gr/GO play
an important role in stem cell proliferation and differentiation.
For example, Defteralí et al. (2016a) used stem cells from
adult mouse olfactory bulbs to test the effect of thermally
reduced Gr and poly-vinylidene fluoride PVDF membranes
loaded with multi-walled CNTs. Indeed, those nanomaterials
significantly affect neurite branching and synapses during
stem cell differentiation to neurons (Defteralí et al., 2016a,b).
Similarly, changes during the differentiation of human induced
pluripotent stem cells into multiple somatic cell lineages have
been shown in graphene-treated samples (Yoo et al., 2014; Hu
et al., 2015; Choi et al., 2016; Lee et al., 2016; Rodriguez-
Losada et al., 2017; Wang et al., 2017; Nguyen et al., 2018;
Sánchez-González et al., 2018; Saburi et al., 2019). The specific
effects of Gr/GO seem to be variable even within stem cell type,
but overall results collectively suggest that Gr holds promise
as a scaffold material for regenerative medicine and stem
cell-based technologies.

Observations regarding the formation of synaptic
connections, a fundamental unit of neuronal signaling, largely
indicate that Gr is both permissive and to some extent may also
enhance synaptic transmission. E18 cortical (Keshavan et al.,
2018) or E18 hippocampal (Lorenzoni et al., 2013) neurons
cultured on poly-d-lysine coated Gr ‘‘stripes’’ have been used to
investigate synaptogenesis, with results indicating that functional
synaptic connections are formed on Gr substrates covered with
an adhesion coating. P0-P1 rat (He et al., 2016) or mouse
hippocampal neurons grown on Gr coated with poly-lysine and
pre-incubated in culture media demonstrated longer and more
branched dendrites after 7 DIV and increased synapse number
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after 21 DIV (He et al., 2016), suggesting that the enhancements
observed on Gr may be the result of some sort of conserved
mechanism. This collection of studies has used pre-incubation in
media overnight in addition to ECM coating, as it was elsewhere
demonstrated to mitigate the cytotoxicity of GO (Hu et al.,
2011). The observed decrease in cytotoxicity after overnight
media incubation calls raises questions regarding the complex
interactions between nanomaterial surfaces, the adhesion
layer, and growth factors, lipids, etcetera, that are contained in
fetal serums.

Increasing numbers of studies are interfacing directly to
Gr/GO, omitting the intermediate protein-coating layer. This
omits confounding factors both of additional surface charges
due to the complex nature of such coatings and the physical
gap created between the biological material of interest and the
substrate. For example, differences in surface charge been shown
to alter neurite outgrowth on GO (Tu et al., 2014), with positively
charged surfaces overall exhibiting increased neurite outgrowth
at 7 DIV. More broadly, coatings like polylysine are polycationic
polymers, increasing cell attachment and outgrowth—but it is
unclear whether there would be coupling between the coating
and Gr/GO, masking direct biological effects. And recent
studies have begun to systematically investigate the different
biological effects observed even between different classes of
ECM substrate (Fischer et al., 2018), suggesting that a single
underlying mechanistic explanation of the biological effects of
Gr must fully account for the composition of the substrate.
The biological compatibility of Gr/GO substrates also does not
appear to be cell-type specific, as retinal ganglion cells (Bendali
et al., 2013; Fischer et al., 2018), cortical neurons (Rauti et al.,
2016), hippocampal neurons (Veliev et al., 2016; Kitko et al.,
2018; Pampaloni et al., 2018), and recently dorsal root ganglion
neurons (Convertino et al., 2018) have all been cultured on bare
Gr. However, neurite outgrowth and total number were reduced
in comparison to a bare glass control for retinal ganglion cells
(Bendali et al., 2013). Interestingly, this same study shows no
significant enhancement on coated Gr compared to coated glass
in these same properties, in contrast to much of the published
literature that utilizes a protein coating layer; and later studies
havemade somewhat different observations, where neurons were
not viable on bare glass controls but formed synaptic connections
on uncoated Gr (Veliev et al., 2016). This also included
comparisons to protein-coated Gr, where enhancements in
neuronal surface area relative to bare Gr were observed over the
duration of the study (up to 5 DIV). Although this and other
studies have suggested that synaptic connections are formed on
Gr, later studies were left to determine synaptic function; and the
effect of extracellular matrix addition on the ability to utilize the
properties of Gr for neural recordings, for example, remains to be
well-characterized.

The functional effects of Gr substrates have become an
increasingly important area of study for neural interfacing
applications. Multiple studies have now collectively suggested
both that the frequency of neuronal firing is increased on bare
Gr (Kitko et al., 2018; Pampaloni et al., 2018) and that synaptic
strength is also increased (Rauti et al., 2016; Kitko et al., 2018),
whereas high enough concentration treatment of neurons with

GO flakes reduces EPSC frequency (Rauti et al., 2016). However,
there are somewhat conflicting explanations for the mechanisms
underlying this synaptic enhancement. It has been hypothesized
(Kitko et al., 2018) that chronic growth on Gr results in increased
neuronal membrane cholesterol. This increase in cholesterol,
possibly through the extraction of cholesterol from a serum-
containing media during the formation of a protein corona, is
sufficient to explain the functional changes were observe on Gr.
Specifically, Gr substrates result in an enlarged pool of synaptic
vesicles and a higher vesicle release probability in neurons
and potentiated Ca2+ release in 3T3 cells. More recently, an
alternative explanation has been proposed for the increased firing
frequency on graphene (Pampaloni et al., 2018). Pampaloni et al.
(2018) hypothesize that K+ ions are depleted on bare graphene
in the cleft between neurons and the substrate. This depletion
of K+ ions alters neuronal signaling, increasing EPSC frequency
and altering adapting vs. tonic firing phenotypes. Computational
models support this hypothesis, with the caveat that protein
deposition during chronic culture is not included.

Although optical technologies hold great promise for
pre-clinical application, to date, electrodes remain the most
widely used and sought-after new technology for neural
interfacing for clinical applications (Figure 2). Traditionally,
electrodes are designed based upon a silicon manufacturing
workflow, allowing for larger scale production that is currently
available for Gr- and any carbon-based nanomaterials. Advances
based upon this technology that may hold promise for a path
to clinical applicability were recently demonstrated (Park et al.,
2018). Gr electrodes with over 90% transmittance have been
fabricated on parylene-C or polyethylene terephthalate (PET)
substrates, permitting simultaneous optogenetic stimulation
(Park et al., 2014; Liu et al., 2018), optical coherence tomography
(Park et al., 2014), deep vasculature (Thunemann et al., 2018) or
Ca2+ imaging (Park et al., 2018; Thunemann et al., 2018) in areas
where the surface would normally be blocked by the opacity of
traditional recording materials.

An ongoing area of research will be to improve the electronic
properties of Gr to better improve recording quality while,
at the same time, maintaining transparency and flexibility,
important for in vivo imaging applications. Recent data have
suggested that nanoparticle doping may be an approach
to meet all of these requirements. For example, platinum
nanoparticles electrodeposited onto CVD Gr overcome the
quantum capacitance limits of Gr electrodes alone and enable
improved signal quality ECoG and EEG signals (Lu et al., 2018).
These signals can be simultaneously acquired with signals from
genetically encoded indicators such as GCaMP at depths up to
250 microns using two-photon excitation.

BEYOND THE MURINE MODEL: THE USE
OF GRAPHENE IN OTHER MODEL
SYSTEMS IN NEUROSCIENCE

To date, most current understanding of the uses for and effects
of Gr result from studies in murine models. Many of these
studies are based on in vitro culture systems using neurons; future
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FIGURE 2 | Integration of transparent electrodes with complementary optical techniques in vivo. (A) Gr-based electrodes implanted on a mouse cerebral cortex. An
optical fiber is also shown and used to deliver optogenetic stimulation. Modified with permission from Park et al. (2014). (B) Gr-based electrodes implanted on a
mouse cerebral cortex (left) or traditional platinum electrodes Howe et al. (2013) and peak calcium responses from the same regions (C). Panels (B,C) are from Park
et al. (2018). Copyright ACS Publication. (D) Two-photon calcium imaging to a depth of 300 µm through Gr-based electrodes and intravascular imaging (E) to a
depth of 1,200 µm. Modified with permission from Thunemann et al. (2018).

directions should include mechanistic characterization of the
biological effects of Gr/GO in vivo. The large array of transgenic
modifications possible in mice and increasingly rats have enabled
the study of ever more complex behaviors in a cell-type specific
manner. These new techniques have resulted in a concurrent rise
in the number of studies using other model systems, which have
provided fundamental insights into the function of molecules,
cells, circuits, and brain regions. Drosophila Melanogaster, for
example, is a widely used system for the study of synapses and
synaptic proteins (Keshishian et al., 1996). And historically, the
sea slug Aplysia provided some of the earliest causal insight into
themechanisms of plasticity in the brain (Kandel, 2009).We here
provide a general introduction to model systems where Gr/GO
have been used to date.

The worm C. elegans is a soil nematode with 302 neurons
in its nervous system, whose connectome, a map of all neural
connections, has been characterized (Varshney et al., 2011;
Jarrell et al., 2012), leading to ongoing efforts to develop causal
rules governing structure and function relationships during
behavior. It lacks a blood-brain barrier, enabling screening of
molecules by delivery routes not available to traditional murine
models. Although Gr-based device interfaces have yet to be
demonstrated in C. elegans, Li et al. (2017) have demonstrated

that chronic exposure to Gr elicits toxicity effects that are
dosage-dependent, cell-type specific, and dependent upon the
type of Gr. Nematodes typically have a lifetime of ∼2 weeks,
and underwent a 6-day chronic exposure that resulted in Gr
being distributed throughout the digestive system. 100 mg/L
Gr flakes did not significantly alter the overall survival rate
after 6 days, but the same concentration of GO flakes was
largely lethal. Interestingly, >10 mg/L GO nanoparticles
were shown to decrease expression levels of dat-1 and
eat-4p, fluorescent genes encoding dopaminergic and
glutamatergic neurons respectively, without significant
downregulation of unc-47, which encodes GABAergic neurons.
This is in contrast to the behavior of graphite nanoplatelets,
where no acute in vivo toxicity was observed at concentrations
up to 250 mg/L (Zanni et al., 2012). This could be due in part
to differences in surface energy between GO and graphite
nanoplatelets, for example, hydrophilic vs. hydrophobic
wettability properties, but further investigation is warranted
with more standardized concentrations between materials.
As computational models and subsequent experiments have
suggested that similar concentrations of Gr flakes should be
destructive to the membrane, regardless of cell type (Luan et al.,
2017), it would thus be helpful for future studies interested in
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assessing toxicity to take into account the concentrations used in
previous studies for better cross-comparison.

Zebrafish represent another interesting possibility for
demonstrating the utility of G/GO to the study of the brain.
A developed zebrafish has ∼100,000 neurons, fewer than any
murine model, while still preserving many basic electrical and
chemical signaling processes. This, combined with optical
transparency, confers many advantages for single-cell resolution
studies involving a whole population of neurons rather than
the subsets that are optically accessible by even the most recent
imaging approaches, for example, light field microscopy in freely
moving rodents (Skocek et al., 2018). The availability of detailed
genomic information and the relatively high degree of homology
to the human genome (∼70%; Howe et al., 2013) confer distinct
advantages to their use as a model system. The relative ease of
breeding and maintaining zebrafish and their short lifespan are
also advantageous relative to rodents or non-human primates
for reducing cost in larger scale toxicology screens (Fako and
Furgeson, 2009). Although a concentration of>120 mg/L single-
walled carbon nanotubes (SWNTs) was shown to delay hatching
in zebrafish (Cheng et al., 2007), primary sensory neurons were
not developmentally affected. Further studies using Gr/GO to
assess toxicology in zebrafish are necessary for comparison to
the effects observed using SWNTs.

The use of Gr has largely been limited in non-human
primate models, due in part to lingering questions as to toxicity.
However, organizations such as the European Graphene Flagship
have issued calls for the production of Gr electrode arrays for
recording in both non-human primates and humans. This will
necessitate further study of the biological effects of Gr and
Gr-based devices. As new strategies are developed to handle
and integrate the vast and wide-ranging data streams becoming
more prevalent in modern neuroscience, non-traditional model
systems will continue to play a role in helping to elucidate the
brain. Thus, future research on the compatibility of Gr with
other model organisms will help to clarify the utility of Gr to
these systems.

PROSPECTS

The ultimate utility of Gr will be determined in part by its ability
to be used in conjunction with the large array and wide variety
of optical, chemical, and electrical tools commonly utilized in
modern neuroscience. The ability to combine fast optical control
that is tuned via real-time device-based feedback is another
promising direction (Kim et al., 2017).

Gr was quickly recognized as a ‘‘wonder material’’ after
its isolation, including recognition as the 2010 Nobel Prize in
physics. The number of publications referencing graphene has
jumped to several thousand per year, a quick rise from several
hundred only 10 years ago. Spurred on by several large initiatives,
including the NIH’s BRAIN and European Graphene Flagship,
which represents the European Union’s largest single research
initiative, new applications for Gr to broad areas of brain research
should continue to be developed at a rapid pace. Yet there are
still challenges remaining, including addressing the widespread
utility of many Gr applications. The promises of nanomedicine
are extensive; what remains to be seen is the extent to which new
applications for nanomaterials deliver on the great promise so
often espoused.
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