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Here, we review the neural circuit bases of habits, compulsions, and addictions,
behaviors which are all characterized by relatively automatic action performance. We
discuss relevant studies, primarily from the rodent literature, and describe how major
headway has been made in identifying the brain regions and neural cell types whose
activity is modulated during the acquisition and performance of these automated
behaviors. The dorsal striatum and cortical inputs to this structure have emerged as
key players in the wider basal ganglia circuitry encoding behavioral automaticity, and
changes in the activity of different neuronal cell-types in these brain regions have
been shown to co-occur with the formation of automatic behaviors. We highlight how
disordered functioning of these neural circuits can result in neuropsychiatric disorders,
such as obsessive-compulsive disorder (OCD) and drug addiction. Finally, we discuss
how the next phase of research in the field may benefit from integration of approaches
for access to cells based on their genetic makeup, activity, connectivity and precise
anatomical location.
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BUNDLES OF HABITS

‘‘When we look at living creatures from an outward point of view, one of the first things that strike us
is that they are bundles of habits’’ (James, 1890). Behavioral automaticity, as eloquently expressed
in William James’ treatise ‘‘Habit,’’ is a fundamental aspect of our existence, and is essential
for freeing-up our cognitive capacities so they can be directed to engaging novel and complex
experiences, as further elaborated by James: ‘‘Themore of the details of our daily life we can hand over
to the effortless custody of automatism, the more our higher powers of mind will be set free for their
own proper work.’’ (James, 1890). However, James also was very clear that these very same attributes
of habits are also responsible for the most severe restrictions on our liberty. ‘‘Habit is thus the
enormous fly-wheel of society, its most precious conservative agent. It alone is what keeps us all within
the bounds of ordinance. . .’’ The topic of habit formation and its role in adaptive and maladaptive
behavior has been extensively reviewed, most comprehensively in a recent dedicated issue of
Current Opinion in Behavioral Science (Knowlton and Diedrichsen, 2018). Here, we provide a
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concise synthesis of the literature on the neural circuit basis of
habits and their more extreme counterparts, compulsions and
addictions, focusing on striatal circuits, which have primarily
been deciphered in rodents. We begin with an overview of the
common circuitry utilized by automatic behaviors, highlighting
the importance of the dorsal striatum and inputs to this structure.
We subsequently describe behavioral models used to study
habits, compulsions and addictions, and then examine the neural
circuit bases of these behaviors at increasingly higher resolution
of analysis. We illustrate the established roles of the dorsolateral
and dorsomedial subregions of the striatum in behavioral
automaticity, and then review the complex picture of the roles
of different striatal input structures, as well as specific cellular
and synaptic modifications. Finally, we propose a roadmap for
future investigations, integrating emerging molecular and circuit
analysis methodologies with increasingly detailed knowledge of
the multidimensional diversity of striatal cell-types, in order to
analyze the circuits underlying automatic behaviors.

WHAT ARE HABITS, COMPULSIONS, AND
ADDICTIONS AND HOW ARE THEY
RELATED?

We intuitively use the term habit to describe behaviors that
have become so ingrained that we perform them almost
automatically, autonomously of the outcome (James, 1890;
Dickinson, 1985; Graybiel, 2008; Robbins and Costa, 2017),
and which, in extreme form, can become a compulsion or
addiction. This is in contrast to goal-directed, purposeful
behavior, in which an action is explicitly performed with the
objective of obtaining a desired outcome (Valentin et al., 2007;
Graybiel, 2008; Gremel and Costa, 2013; Robbins and Costa,
2017; Nonomura et al., 2018; Figures 1A,B). Goal-directed and
habitual behaviors can be distinguished by their differential
sensitivity to reward devaluation (i.e., reducing the value of the
outcome; Figure 1C). Purposeful behavior will diminish if the
outcome is no longer desired, while habitual performance will
persist, since during the development of habitual behavior, the
action becomes dissociated from the outcome, and performance
is driven instead by antecedent stimuli and/or emotional
states. Habitual behavior is therefore associated with behavioral
automaticity, with diminished reliance on reinforcement. Thus,
habits are shaped by past experience, and are characterized
by computational efficiency and inflexibility, in contrast
to goal-directed behavior, which is characterized by active
deliberation of future consequences, high computational cost,
and an adaptive flexibility to changing environments (Daw
et al., 2005). Major benefits come from automaticity and
independence from reinforcement, which allows the brain to
free up rate-limiting attentional and decision-making resources.
However, automaticity can also be detrimental, underlying
the susceptibility to the development of maladaptive habits,
which in the extreme can result in compulsions and addictions
(Figures 1A,B). The central characteristic of compulsions and
addictions is the continued pursuit of a previously rewarding
stimulus, despite its clear current association with adverse

consequences (Lüscher andMalenka, 2011; Volkow andMorales,
2015). This hallmark of addiction, action performance in spite
of punishment, can be viewed as an extreme of habitual
behavior (Figures 1A–C).

The intimate relationship of habits, compulsions and
addictions is further made obvious by the coincident expression
of behaviors of these categories. For instance, patients with
obsessive-compulsive disorder (OCD) also demonstrate an
enhanced tendency for dominance of habitual behavior (Gillan
et al., 2011, 2016). Additionally, exposure to drugs of abuse, as
well as binge-eating of palatable foods, enhance habit formation
(Everitt and Robbins, 2016). Thus, cocaine addicts exhibit a
higher tendency to form habits (Ersche et al., 2016), and
alcohol exposure accelerates the emergence of habitual behavior
(Corbit et al., 2012; Hogarth et al., 2012). These pathological
states of behavioral automaticity have been shown to utilize
overlapping circuitry.

COMMON LIMBIC CIRCUITRY
UNDERLYING REINFORCEMENT
LEARNING AND BEHAVIORAL
AUTOMATICITY

The neural circuits involved in instrumental learning and the
automation of behavior (habits, compulsions, and addictions)
include the striatum, midbrain dopaminergic nuclei, and regions
of cortex that project to the striatum. These circuits are the
primary focus of this review article, although it should be
noted that the amygdala, thalamus, pallidum, and other limbic
regions that are part of the broader basal ganglia circuitry are
also involved in these behaviors. It has long been known that
the striatum and its associated circuitry play a pivotal role
in reinforcement learning and the development of behavioral
automaticity found in habits, compulsions and addictions. The
circuit composed of the ventral tegmental area (VTA) midbrain
neurons projecting to the ventral striatum is considered to
be the main circuit mediating reward and reward prediction
error in the brain. Drugs of abuse target this circuit by either
directly (e.g., nicotine) or indirectly (e.g., opioids) increasing
midbrain dopamine neuron activity, and therefore enhancing
dopamine signaling at release sites in the ventral striatum,
or by directly inhibiting dopamine’s reuptake upon its release
(e.g., cocaine; Lüscher, 2016). Thus, many studies of drug
addiction have focused on neuroplastic changes that are induced
in the ventral striatum following consumption of drugs of
abuse (Lüscher and Malenka, 2011; Wolf, 2016). At the same
time, habit formation has mostly been studied in the context
of changes that occur in the dorsal striatum, which receives
dopaminergic input from the Substantia Nigra Pars Compacta
(SNc), while genetic mouse models of compulsion have focused
on abnormal corticostriatal circuitry, largely involving dorsal
striatum (Graybiel and Grafton, 2015; Smith and Graybiel, 2016).
Thus, there has historically been a divided focus within the
striatum, with ventral-striatal circuitry primarily investigated in
the context of drug addiction, and dorsal-striatal circuitry in
goal-directed and habitual reinforcement learning.
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FIGURE 1 | Characteristics of the shift from goal-directed to habitual behavior. (A) Left: Goal-directed and habitual behaviors are competitive processes that act in
balance. Goal-directed behavior is characterized by a high requirement for attention, is highly contingent on present reward value, and demonstrates flexibility of
responding. Habitual behavior is stimulus-driven, less dependent on present reward value, and governed by behavioral automaticity. Right: Addiction/compulsion
represents an extreme state of habit. (B) The transition from goal-directed behavior to habitual behavior and then into compulsion, or addiction is graded. Shift from
goal-directed to habitual behavior and then to compulsion/addiction corresponds to strengthened stimulus-response association and reduced action-outcome
contingency. These processes are bidirectional, i.e., a behavior can shift on the spectrum from goal-directed to habitual performance, and back again—though in the
extremes of addiction whether it is possible to return fully to habit/goal-directed states is less clear. (C) During instrumental training, rates of responding for a reward
increase. Post-training reward devaluation reduces response rates more quickly for goal-directed behaviors than it does for habitual behaviors, which take many
more extinction trials to fully dissipate. The extremes of addiction are characterized by compulsive responding that is resistant even to punishment. (D) The balance
between goal-directed and habitual behavioral states corresponds to relative levels of neural activity in the dorsomedial (DMS) vs. dorsolateral (DLS) striatum.
(E) Task-bracketing activity pattern emerges in the DLS as animals are over-trained on a rewarded behavioral sequence (e.g., running a T-maze for a tasty reward).
Spiny Projection Neurons (SPNs) exhibit high activity at the beginning of a learned motor sequence and again at the end as the animal approaches the reward.
Fast-spiking interneurons (FSIs) exhibit high activity during the middle stages of a behavioral sequence.

Over a decade ago, it was proposed that all of
these instrumental behaviors ranging from habits to
compulsions/addictions involve a shift in activity from the
ventral to the dorsal striatum as habit learning progresses,
and from the dorsomedial striatum to dorsolateral striatum
as behavioral automaticity becomes more ingrained (Everitt
and Robbins, 2005, 2013, 2016; Graybiel, 2008). The anatomy
of corticostriatal circuits is well-suited to support such a
mechanism, as the striatum is composed of spiraling loops
through dopaminergic-striatal circuitry, ascending from the
ventromedial to dorsolateral striatum (Haber et al., 2000; Haber,
2016). Here, we review the evidence that habits, compulsions
and addictions are linked not only by their phenotype of
behavioral automaticity but also by the underlying neural
circuitry and plasticity mechanisms that give rise to them. This
review article will focus on the essential role of dorsal-striatal
circuits in encoding behavioral automaticity in several of its
diverse manifestations.

EXPERIMENTAL PARADIGMS USED TO
MODEL HABITS, COMPULSIONS AND
ADDICTIONS

Two major experimental paradigms have dominated the rodent
literature on habits: (a) over-training (Jog et al., 1999; Graybiel,
2008; Smith and Graybiel, 2014); and (b) random interval (RI)
training (Dickinson, 1985; Hilário et al., 2007; Rossi and Yin,
2012; Robbins and Costa, 2017). In both paradigms, animals
are trained on an instrumental learning task, in which they
learn to perform an action in order to obtain a reward. In
over-training, an association between the stimulus and action
(i.e., response) is formed and strengthened over the course
of many more trials than are necessary for learning the task.
During this overtraining, the stimulus-response association
overwhelms the initially stronger relationship between the
rewarding outcome and the contingent action (Graybiel, 2008;
Smith and Graybiel, 2014). The strength of the stimulus-
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response association vs. that of the response-outcome is
measured as the persistence in learned action performance
during extinction trials following devaluation of the reward
(Dickinson, 1985; Rossi and Yin, 2012). Thus, the rate of action
performance following devaluation is used as a metric to assess
the degree to which animals have become habit-entrained.
Experimentally, such reward devaluation is often achieved by
satiating the subject on the reward or pairing the reward with an
aversive stimulus.

Though over-training is intuitive and advantageous in
the simplicity of the experimental paradigm and framework,
it is noteworthy that by definition, overtraining requires
experimental subjects to perform many more trials than control
subjects. This discrepancy in trial number forces an imbalance
in experience between subjects and controls that may complicate
analysis of the neural signatures of habit formation. An
alternative approach to experimentally weaken the contingency
between action and reward is RI training (Dickinson, 1985;
Rossi and Yin, 2012; Robbins and Costa, 2017). In RI training,
animals are trained to perform a specific action for a reward,
which becomes available when the animal first successfully
performs the required action after a random time interval has
elapsed since the presentation of the previous reward. This
paradigm promotes persistent, habitual behavior, as it is difficult
for the subject to develop a clear association between action
and outcome. A commonly used reference paradigm for RI
training is random ratio (RR) training (Rossi and Yin, 2012),
in which the contingency between the action and reward is
more direct. RR training largely promotes similar behavioral
output to RI training (similar rate of actions), while retaining
goal-directed behavior, sensitive to devaluation (Figure 1C).
In both overtraining and RI/RR paradigms, the contingency
between action and outcome, or reward, is impacted, producing
goal-directed behavior when response-outcome contingency is
high, or habitual behavior when response-outcome contingency
is low and stimulus-response contingency is high.

Drug addiction is modeled in animals in two principal ways:
the first is non-contingent administration, where drugs are given
to animals without being dependent on the animal’s response.
The second is contingent drug self-administration, where the
drug is delivered in response to an operant behavior, such as
pressing a lever (Wolf, 2016). While non-contingent cocaine
administration is advantageous in the experimental control over
the parameters of cocaine exposure, self-administration more
closely approximates the human experience of drug seeking,
where individuals seek out drug-associated stimuli and perform
responses that previously led to drug consumption (Wolf, 2016).
Similar to habit learning, in drug self-administration, compulsive
drug seeking can be studied during extinction trials, which are
imposed after performance has passed a predefined criterion.
Furthermore, drug self-administration also enables investigation
of the impact of prolonged drug abstinence, during which it has
been found that the degree of craving for the drug increases, a
phenomenon termed ‘‘incubation of craving’’ (Wolf, 2016).

Rodent models of compulsive behaviors are largely based
on tracking the performance of repetitive, stereotyped and
seemingly purposeless behaviors, such as compulsive grooming

(Ahmari, 2016). Importantly, OCD-like behaviors can emerge
spontaneously, without a clear antecedent stimulus (Ahmari,
2016). These behaviors are primarily observed to develop
naturally in genetically mutant rodents, rather than be induced
by repeated instrumental learning.

THE DORSOLATERAL STRIATUM PLAYS A
KEY ROLE IN HABIT FORMATION AND
THE DEVELOPMENT OF
COMPULSIONS/ADDICTIONS

The dorsal striatum is classically segregated into a medial aspect,
the dorso-medial striatum (DMS), and a lateral aspect, the dorso-
lateral striatum (DLS), both of which receive substantial cortical
inputs. While the sensorimotor DLS receives major inputs from
somatosensory and motor-cortical regions, the associative DMS
receives major inputs from associative frontal cortical areas,
such as orbitofrontal cortex (OFC; Berendse et al., 1979, 1992;
Hintiryan et al., 2016; Hunnicutt et al., 2016). Classic studies
have shown that the DMS is associated with goal-directed
actions (Yin and Knowlton, 2004; Yin et al., 2005; Yin and
Knowlton, 2006), while the DLS is associated with habitual
actions (Balleine and Dickinson, 1998; Yin et al., 2004; Yin
and Knowlton, 2006; Graybiel, 2008; Amaya and Smith, 2018;
Figure 1D). Thus, goal-directed behavior is maintained after
lesions to DLS (Yin et al., 2004; Yin and Knowlton, 2004, 2006),
even following extended training, while lesions to DMS result
in an early emergence of habitual behavior (Yin et al., 2005;
Yin and Knowlton, 2006). The DLS has long been implicated
in the performance of action sequences (O’Hare et al., 2018),
both innate sequences such as grooming (Aldridge and Berridge,
1998), as well as acquired skills like learning to balance on an
accelerating rotarod (Yin et al., 2009). These lesion-based studies
provide the conceptual scaffold for our current understanding of
the roles of the DMS and DLS in regulating goal-directed and
habitual behavior.

Subsequently, a series of several influential studies on the
roles of DMS and DLS in habit formation used tetrodes to
track the activity patterns of neurons in the dorsal striatum
while rats over-trained on a specific learning task: running a
T-maze to obtain a food reward (Figure 1E). This led to the
observation of task-bracketing patterns of activity in the DLS,
which emerged concurrently with the acquisition of habitual
behavior. In task-bracketing activity, highly-active DLS neurons
have been reported to fire at the initiation and termination
of the behavioral routine, an activity pattern that becomes
strengthened with over-training (Jog et al., 1999; Barnes et al.,
2005; Thorn et al., 2010; Smith and Graybiel, 2013; Figure 1E).
Importantly, such task-bracketing, or action-sequence related
activity in the DLS has also been observed in rats (Martiros et al.,
2018) and mice (Jin and Costa, 2010; Jin et al., 2014) during
a sequential lever-pressing task. A contrasting phenomenon is
observed in the DMS, where neural activity is elevated more
consistently throughout the performance of a behavioral routine,
especially during the initial phases of acquisition of a novel
instrumental behavior (Yin et al., 2009; Thorn et al., 2010; Gremel
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and Costa, 2013). This DMS activity then subsides as animals
become over-trained (Yin et al., 2009; Gremel and Costa, 2013),
corresponding to the time frame when task-bracketing activity
emerges in the DLS. It should be noted that the task bracketing
activity in DLS was observed in a subset of the most highly
active neurons in this sub-region (Barnes et al., 2005; Martiros
et al., 2018). Indeed, the majority of neurons in the DLS exhibit
activity throughout the execution of the entire habit routine: in
mice that were well-trained to habitually accelerate running on
a treadmill to obtain a reward, neural activity was engaged in
the DLS throughout the routine, with different striatal neurons
encoding different sensorimotor features of the task (Rueda-
orozco and Robbe, 2015).

Notably, multiple sources of evidence suggest that DLS
control of habitual behavior and DMS control of goal-directed
behavior likely develop in parallel and can varyingly compete
or cooperate for control over actions (Daw et al., 2005;
Yin and Knowlton, 2006; Gremel and Costa, 2013; Smith
and Graybiel, 2014; Kupferschmidt et al., 2017; Robbins and
Costa, 2017). For instance, inactivation of the DLS after the
establishment of habitual behavior can restore goal-directed
responding (Yin and Knowlton, 2006). Furthermore, DLS lesions
or optogenetic silencing can expedite learning early in training
(Bradfield and Balleine, 2013; Bergstrom et al., 2018), possibly by
shifting control to goal-directed systems. Thus, a key transition
thought to occur during the formation of habits is the relative
quieting of activity in DMS, coincident with generally elevated
activity in DLS, including task-bracketing (Thorn et al., 2010;
Gremel and Costa, 2013).

In compulsions, the dorsal striatum also plays a central
role, as several studies of genetic models of OCD, notably
the SAPAP3−/− model, have indicated that activity in striatal
circuits is disrupted coincident with the expression of compulsive
behavior. As will be subsequently discussed, these studies focused
on the striatal regions to which the orbitofrontal/secondary
motor cortical areas project, encompassing the ventromedial
(Ahmari et al., 2013), centromedial (Burguière et al., 2013), and
central subregions of the dorsal striatum (Corbit et al., 2019).
Additionally, there is evidence that the dorsolateral striatum
is functionally necessary for the sequencing of compulsive
grooming, as rats with lesions of the DLS express disruptions in
the stereotypy of grooming sequences (Cromwell and Berridge,
1996; Kalueff et al., 2016).

In contrast to studies on habit formation and compulsions,
centering mostly on the dorsal striatum, the majority of
studies on drug addiction have focused on the mesolimbic,
ventral striatal ‘‘reward’’ pathway (Lüscher and Malenka, 2011;
Volkow and Morales, 2015; Wolf, 2016; Francis et al., 2019).
Studies of the dorsal striatum that have addressed drug-seeking
behavior (primarily in the study of alcohol and cocaine)
have shown it to associate with a medial-lateral transition
in neural activity in this subregion (Corbit, 2018). Prolonged
cocaine self-administration in rats results in a persistence of
cocaine seeking, even in the presence of active punishment
(Vanderschuren and Everitt, 2004). During this cued cocaine
self-administration, dopamine release is detected in the dorsal
striatum (Ito et al., 2002), and inactivating the DLS blocks

punishment-resistant seeking of drug-predicting cues (Jonkman
et al., 2012). Indeed, while activity in ventral striatal circuits
is clearly essential for the development of compulsive cocaine
seeking, after prolonged administration, dorsal-striatal circuits
become increasingly engaged, to support drug seeking (Belin
and Everitt, 2008; Belin et al., 2009). Furthermore, once the
dorsal striatum is engaged, there is a further activity shift, from
DMS-centric to DLS-centric. Initially, drug seeking is goal-
directed, and depends on a network involving the DMS (Corbit
et al., 2012; Murray et al., 2014). However, after prolonged
exposure, drug seeking becomes habitual, depending on neural
activity and dopamine action in the DLS. Indeed, rats trained
to press a lever for cocaine reward will reduce their lever
pressing due to perfusion of dopamine receptor antagonists
in DMS early in training and in DLS following over-training
(Vanderschuren et al., 2005; Murray et al., 2012). This reduction
in drug seeking was also observed in rats as a consequence
of lidocaine-induced DLS inactivation (Zapata et al., 2010).
Additionally, alcohol exposure has been reported to disinhibit
Spiny Projection Neurons (SPNs) in the DLS, providing a
potential mechanism for the transition to automaticity (Wilcox
et al., 2014; Patton et al., 2016). In addition, the DLS has been
shown to be necessary in rats for the development of habitual
heroin seeking (Hodebourg et al., 2018). Furthermore, long-term
exposure to nicotine alters synaptic plasticity in the DLS of rats,
perturbing endocannabinoid-mediated long-term depression
(LTD; Adermark et al., 2019). Thus, the dorsal striatum, and
particularly the DLS, is implicated in the development of habitual
drug-seeking. However, it should be emphasized that the amount
of evidence on the role of the dorsal striatum in drug-addiction
still lags behind what is known for the ventral striatum. Further
research will help clarify the role of the dorsal striatum in
addictive behaviors.

CORTICOSTRIATAL CIRCUITRY AND
OTHER LIMBIC CIRCUITS UNDERLYING
BEHAVIORAL AUTOMATICITY

The striatum receives inputs from multiple cortical regions
(Webster, 1961; Beckstead, 1979; Hintiryan et al., 2016;
Hunnicutt et al., 2016), and prefrontal inputs to the striatum have
been shown to play significant roles in both goal-directed, as well
as habitual behavior (Gourley and Taylor, 2016; Smith and Laiks,
2017; Amaya and Smith, 2018). The major frontal structures that
have been implicated in instrumental and automatic behaviors
are the prelimbic cortex (PL) and infralimbic cortex (IL) Amaya
and Smith, 2018 in the medial prefrontal cortex (mPFC), as well
as the OFC located in the ventral part of the PFC.

Interestingly, the two substructures of the mPFC, the IL
and PL, seem to play opposing roles in balancing between
goal and habit, with the IL supporting habitual behavior, and
the PL supporting goal-directed behavior (Smith and Laiks,
2017; Amaya and Smith, 2018). The IL exhibits task-bracketing
activity, similar to the activity observed in the DLS during
habit learning (Smith and Graybiel, 2013). Furthermore,
chronic perturbation of the IL disrupts both habit acquisition
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and expression (Smith et al., 2012; Smith and Graybiel, 2013),
while its optogenetic inhibition disrupts habit expression
(Smith et al., 2012).

Meanwhile, lesions to the PL of rats reduced their ability
to act in a goal-directed manner, biasing the rats toward
habitual behavior (Balleine and Dickinson, 1998; Corbit and
Balleine, 2003; Killcross and Coutureau, 2003; Balleine and
O’Doherty, 2010). Indeed, recent studies in rats have shown
that PL inputs to the posterior DMS (pDMS) are necessary for
goal-directed learning: in rats lacking this PL-pDMS connection,
there is a failure to reduce instrumental responding after reward
devaluation (Hart et al., 2018a,b). Thus, reducing the strength
of the PL- input to the DMS might permit the development
of automaticity, mediated through sensorimotor corticostriatal
circuits converging on the DLS. Indeed, reduced activity of
PL neurons was observed in rats that underwent extended
training for cocaine self-administration; meanwhile, stimulating
PL neurons reduced the extent of compulsive cocaine seeking
in these compulsively self-administering rats (Chen et al., 2013).
Together, these data make a strong case that activity in the IL
is important for habitual behavior, while PL activity facilitates
goal-directed behavior.

However, many reports complicate this simple IL = habit;
PL = goal-directed view. For instance, the PL is reported to be
involved in facilitating post-extinction reinstatement of drug-
seeking. This reinstatement of drug-responding can be elicited
by re-exposure to drug-associated cues, consumption of the drug
itself, or a stressful experience (McFarland and Kalivas, 2001;
McFarland et al., 2004; Gipson et al., 2013; Ma et al., 2014;
Moorman et al., 2015; Gourley and Taylor, 2016; McGlinchey
et al., 2016). At the same time, there is evidence supporting a role
for the IL in driving drug-cue extinction learning (Peters et al.,
2008; Ma et al., 2014; Moorman et al., 2015; Gourley and Taylor,
2016; Gutman et al., 2017), as opposed to habit-expression.
Together, these results suggest that the PL, in general, mediates a
‘‘go’’ signal, driving drug-seeking responses, particularly during
post-extinction reinstatement, whereas in contrast, the IL sends
a ‘‘no-go’’ signal, necessary for extinction in drug-reward
instrumental learning (Moorman et al., 2015; Gourley and
Taylor, 2016). These results are potentially conflicting with the
habit-literature, as IL promotes extinction of responding in the
drug-reward paradigm, and seems to facilitate responding in
habit learning paradigms, while PL also can play contrasting roles
in each paradigm. One possible explanation for this discrepancy
is that where specific projections from mPFC (PL and IL) to
striatum are examined in drug-seeking, they are those to the
ventral striatum (McFarland and Kalivas, 2001; Peters et al.,
2008; Ma et al., 2014; Gourley and Taylor, 2016). Conversely, in
habit formation, the projections from PL/IL to regions of dorsal
striatum have been given more attention (Smith and Laiks, 2017;
Hart et al., 2018a,b).

The OFC also plays an important role in instrumental
behaviors, with evidence appearing to support the idea of the
OFC promoting goal-directed behavior. However, the OFC is
a large cortical structure, with multiple subregions, and its
roles in instrumental behavior and economic choice appear to
be varied and complex (Stalnaker et al., 2015; Gremel et al.,

2016; Gardner et al., 2018; Panayi and Killcross, 2018; Zhou
et al., 2019). The OFC receives multisensory input (Gourley
and Taylor, 2016), projects to the anterior/intermediate DMS
and central region of the striatum, and has been shown to
exhibit activity that correlates with the reward assigned to a given
stimulus (Zhou et al., 2019). The OFC exhibits greater activity
during goal-directed behavior, and, similar to DMS neurons, is
particularly active during random-ratio lever-pressing training,
when action-reward contingency is high (Gremel and Costa,
2013; Gremel et al., 2016). OFC stimulation can increase the
degree to which mice are goal-directed, and reduce the degree
to which mice are habit-driven in lever-pressing (Gremel et al.,
2016). Furthermore, endocannabinoid-dependent (eCB)-LTD
of the OFC inputs to the DMS biases mice towards habitual
behavior, providing further evidence for a competition between
goal-directed and habitual behavior—such that if the activity of
the OFC-DMS pathway is decreased (e.g., through eCB-LTD),
then the DLS pathway prevails, promoting habitual behavior
(Gremel et al., 2016).

Interestingly, OFC-striatal circuits are also implicated in
compulsive behavioral automaticity. Abnormalities of the
structure, connectivity and activity of the caudate (the human
DMS) have been observed in OCD patients (Carmin et al.,
2002; Guehl et al., 2008; Sakai et al., 2011; Fan et al., 2012).
Furthermore, three genetic mouse models of OCD have been
characterized (D1CT-7; SAPAP3−/− and Slitrk5−/−), and in
each of them, the major circuit phenotype observed has been
disruption of cortico-striatal synaptic transmission, particularly
involving inputs fromOFC (Nordstrom and Burton, 2002;Welch
et al., 2007; Shmelkov et al., 2010; Burguière et al., 2013, 2015).
Indeed, chronic activation of the medial OFC leads to the
development of OCD-like grooming behavior inmice, and drives
sustained activity of ventromedial striatal SPNs (Ahmari et al.,
2013). In contrast, optogenetic stimulation of the lateral OFC
(lOFC) has been reported to reduce the occurrence of grooming
behaviors in genetically modified mice that compulsively
over-groom, while activating feed-forward inhibition within
the striatum (Burguière et al., 2013). Furthermore, a recent
report compared lateral OFC-striatal circuit activity to the
activity in projections from neighboring M2 cortex, in the
SAPAP3−/− mouse model of OCD. They found that in the
SAPAP3−/− mutant, lOFC input to striatal SPNs was reduced
in strength, while M2 input to both SPNs and fast-spiking
interneurons (FSIs) in striatum was increased 6-fold, suggesting
that it is M2, and not lOFC inputs, that drive compulsive
grooming (Corbit et al., 2019). Meanwhile, another study found
that compulsive consumption of ethanol resulted in reduced
OFC input to D1R-expressing DMS neurons during ethanol
withdrawal, reducing goal-directed behavior, and resulting in
habitual alcohol consumption (Renteria et al., 2018). Thus, many
of these recent results suggest that OFC hypoactivity corresponds
with automatic behavior and at least in some cases, activating
OFC projections can counteract this automaticity, rather than
drive it. However, in another recent article describing a mouse
model of addiction (based on self-stimulation of VTA-dopamine
neurons), potentiation of synapses from the lOFC to the central
part of dorsal striatum was observed (Pascoli et al., 2018). Thus,
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while there is significant literature documenting the involvement
of OFC projections to striatum in behavioral automaticity,
the OFC appears to play varied roles in either facilitating or
countering automaticity. Therefore, further research is required
in order to clarify the principles of OFC-striatal connections and
their role in driving and/or inhibiting automatic behavior.

As another main input source to the striatum, midbrain
dopamine neurons are an essential component of the reward
circuitry, and such neurons in both the VTA and SNc send
collaterals to the striatum, PFC, and other forebrain targets
(Volkow and Morales, 2015; Everitt and Robbins, 2016; Lüscher,
2016). Dopamine is a crucial modulator of striatal action
and the transition from goal-directed to habitual behavior
(Graybiel, 2008; Everitt and Robbins, 2016). It is well established
that the cellular activity of midbrain dopamine neurons is
increased upon exposure to rewarding drugs, in large part due
to the strengthening of synaptic inputs onto these dopamine
neurons (Ungless et al., 2001; Lammel et al., 2011; Creed
et al., 2016; Francis et al., 2019). Plasticity mechanisms are
also engaged within midbrain dopamine neurons during the
formation of a naturally rewarded (i.e., food-reward) habit,
as habitual responding after devaluation on a random-interval
lever-press habit depends on this population’s expression of
NMDA receptors (Wang et al., 2011).

Finally, an additional striatum-associated structure that
has been implicated in habitual and addictive behavior is
the amygdala (Lingawi and Balleine, 2012). Conceptually, the
amygdalar connection is intriguing, as habit formation is
exacerbated by stress (Dias-Ferreira et al., 2009), in a process that
may be mediated by amygdalar-striatal circuits. One recent study
demonstrated that both the basolateral and central amygdala
(BLA and CeA) exert control over habitual behavior in rats;
the BLA was found to be involved in habitual responding early
in training, with the CeA playing a crucial role in generating
habitual responding later in extended training (Murray et al.,
2015). These amygdalar circuits, and the BLA in particular, play
a key role in assigning valence, and have been shown to play a
role in appetitive behaviors (Kim et al., 2017) while the CeA has
been shown to play a role in alcohol addiction (de Guglielmo
et al., 2019). Neither nucleus has direct connections to the DLS
(Murray et al., 2015; Hunnicutt et al., 2016), and therefore
the amygdala likely influences the DLS through multisynaptic
connections. Given the direct projection of BLA neurons to the
ventral striatum, these amygdalar circuits could influence dorsal
striatal circuitry via ventral striatum (Murray et al., 2015).

Overall, we have focused on the brain regions that represent
key nodes in the circuitry of habitual and compulsive behavior.
Eventually however, continued and disordered performance
of instrumental behaviors, particularly as occurs in chronic
drug use, leads to alterations in reward and attentional
related networks that likely involve changes to additional brain
structures, such as the ventral hippocampus, and insular cortex
(Everitt and Robbins, 2016). Other key structures involved in
broader basal ganglia circuits also likely play important roles in
encoding behavioral automaticity. For instance, thalamus sends
a significant projection to striatum (Hunnicutt et al., 2016),
and specific projections from thalamic nuclei to the DMS are

necessary for goal-oriented behavioral flexibility (Bradfield et al.,
2013; Díaz-Hernández et al., 2018).

STRIATAL CELL-TYPES, MICROCIRCUITS,
AND THEIR SPECIFIC CONTRIBUTIONS
TO HABITS AND COMPULSIONS

Within the striatum the vast majority of neurons (>90%)
are SPNs, which are roughly evenly split between Dopamine
D1 receptor (Drd1)-expressing direct pathway SPNs (dSPNs;
projecting directly to the midbrain nucleus, Substantia Nigra
reticulata, or SNr, as well as Globus Pallidus internus, or GPi) and
Drd2-expressing indirect pathway SPNs (iSPNs; projecting to the
Globus Pallidus externus, or GPe; Kreitzer and Malenka, 2008;
Burke et al., 2017). The striatum also contains populations of
interneurons, including Cholinergic (ChAT) and Parvalbumin-
expressing Fast-Spiking Interneurons (PV+ FSIs) (Kreitzer and
Malenka, 2008; Burke et al., 2017).

Over the past decade, progress has been made in deciphering
the roles of dSPNs vs. iSPNs in motor behavior, action initiation,
and reinforcement learning, all of which are combined to
produce habitual and compulsive behaviors. A decade ago,
a seminal study confirmed the prevalent assumption in the
field that dSPNs in the direct pathway serve to promote
actions/behaviors, while iSPNs in the indirect pathway inhibited
behaviors (Kravitz et al., 2010; Bariselli et al., 2019). However, it
is now apparent that dSPNs and iSPNs are concurrently activated
during the initiation of actions (Cui et al., 2013; Tecuapetla
et al., 2014, 2016), and thus the role of iSPNs seems to be more
complex than simple broad behavioral inhibition (Tecuapetla
et al., 2016; Vicente et al., 2016; Parker et al., 2018; Bariselli
et al., 2019).Moreover, patterns of activity in locally concentrated
clusters of both dSPNs and iSPNs have been recently observed to
correspond to specific actions, like turning left or right (Barbera
et al., 2016; Klaus et al., 2017; Markowitz et al., 2018; Parker et al.,
2018). Still, several studies have found that dSPNs are activated
with shorter latency than iSPNs during action initiation (Sippy
et al., 2015; O’Hare et al., 2016). Meanwhile, other studies have
demonstrated that dSPN activation reinforces the performance
of specific action patterns (Sippy et al., 2015; Vicente et al.,
2016), while iSPN activationmight weakly reinforce actionsmore
generally (Vicente et al., 2016) in some contexts, and inhibit
action performance in others (Kravitz et al., 2010; Sippy et al.,
2015). Thus, both dSPNs and iSPNs are likely to be engaged
in both the learning and the execution of a habit, with dSPN
activity likely to promote action performance, and iSPN activity
likely to play an action-specific inhibitory and/or permissive role
(Zalocusky et al., 2016; Parker et al., 2018; Bariselli et al., 2019).
How exactly these SPN pathways coordinate and are modified
during instrumental learning is currently still a topic of active
research (Bariselli et al., 2019).

In addition to SPNs, recent studies in rodents have also
implicated FSIs in the development of habits (Thorn and
Graybiel, 2014; O’Hare et al., 2017; Martiros et al., 2018). For
instance, FSIs are active during the middle phase of a lever-
pressing motor sequence pattern, when the activity of task-
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bracketing SPNs is reduced (Martiros et al., 2018). In the
context of compulsive behavior, in one of the OCD mouse
models (SAPAP3−/−), a reduction in the number of striatal PV
neurons was observed, leading to a reduction in feed-forward
inhibition, potentially reducing inhibition of cortico-striatal
inputs (Burguière et al., 2013). A reduction in striatal PV
neurons has also been reported in patients suffering from
Tourette’s syndrome (Kalanithi et al., 2005), a syndrome of
ritualized, repetitive actions. Furthermore, selective ablation of
striatal PV interneurons in mice has been reported to lead to
increased stereotypic grooming, a measure of OCD-like behavior
in rodents (Kalueff et al., 2016). In all of these examples, reduced
activity of FSI interneurons leads to increased SPN activity,
potentially leading to the promotion of automatic behaviors. In
addition, striatal cholinergic interneurons also play a significant
role in modulating SPN plasticity (Augustin et al., 2018), and
are thought to mediate thalamic influence on striatal circuits
involved in goal-directed behaviors (Bradfield et al., 2013;
Peak et al., 2019).

SYNAPTIC AND MOLECULAR CHANGES
IN LIMBIC CIRCUITS FOR BEHAVIORAL
AUTOMATICITY

In the context of addiction, significant progress has been made
in determining how drugs of abuse affect synaptic plasticity
in the mesolimbic ventral-striatal reward system, involving the
VTA and ventral striatum, or Nucleus Accumbens (NAc). These
mechanisms are extensively summarized elsewhere (Citri and
Malenka, 2008; Lüscher and Malenka, 2011; Lüscher, 2016;
Wolf, 2016; Francis et al., 2019). Yet, in the context of this
review, there are several important principles to emerge that
are worth mentioning. First, synaptic plasticity mechanisms in
both the VTA andNAc involve dopamine andNMDAR-receptor
dependent long-term plasticity (Ungless et al., 2001; Saal et al.,
2003; Conrad et al., 2008; Lüscher and Malenka, 2011; Wolf,
2016). Second, these changes are input-specific, occurring at
particular synaptic inputs onto VTA or NAc neurons (Lammel
et al., 2011; Ma et al., 2014; MacAskill et al., 2014; Pascoli
et al., 2014; Wolf, 2016; Barrientos et al., 2018). Finally, plasticity
following exposure to drugs of abuse is dynamically regulated
(Thomas et al., 2001; Kourrich et al., 2007; Lüscher andMalenka,
2011; Wolf, 2016). These rules of cellular and synaptic plasticity
in the VTA-NAc circuit could provide a useful template for how
mechanisms of plasticity in DLS circuitry might proceed.

Focusing on the dorsal striatum and natural reward habits,
synaptic modulation has been observed in accordance with
behavioral automaticity, principally at corticostriatal synapses.
Indeed, the acquisition of goal-directed actions has been
associated with synaptic plasticity at corticostriatal synapses
within the DMS, enhancing transmission onto dSPNs, while
weakening inputs onto iSPNs (Shan et al., 2014). Meanwhile,
in mouse brain slices of habit-entrained mice, it was observed
that inputs onto both dSPNs and iSPNs in dorsal striatum
were strengthened, though inputs to dSPNs were activated with
a shorter latency and moreover, habit suppression correlated

with reduced activity of only dSPNs (O’Hare et al., 2016).
Furthermore, glutamatergic synapses from secondary motor
cortex onto DLS dSPNs (and not iSPNs) were observed to
be strengthened with learning of simple sequences (Rothwell
et al., 2015). All these studies suggest a selective modification
of corticostriatal-dSPN synapses. However, during the learning
of a rotorod-balancing skill, it was found that synaptic strength
onto iSPNs in the DLS strengthened with training andwas crucial
for acquisition of skilled balancing (Yin et al., 2009), and so
corticostriatal-iSPN synapses are likely important as well. In the
studies mentioned thus far, synaptic changes recorded were post-
synaptic. Yet, one elegant study, also examining striatal inputs in
mice during rotorod balancing, found learning-induced activity
differences in somata vs. pre-synaptic terminals from mPFC
and M1 corticostriatal neurons, suggesting neuroplastic changes
that were specific to pre-synaptic terminals during learning
(Kupferschmidt et al., 2017). In the context of compulsions,
in the Sapap3 mutant mice, which exhibit increased grooming,
reduced synaptic transmission of corticostriatal synapses onto
dSPNs (but not iSPNs) was observed, as measured by mESPC
frequency (Wan et al., 2013). This finding is consistent with
much of the learned skill/habit literature. To summarize, synaptic
changes have been observed to occur in dorsal striatum during
the learning of both goal-directed and habitual behaviors,
mostly strengthening inputs onto DMS and DLS neurons,
respectively. Clearly though, much more research remains
to be done to decipher how habits and compulsions result
from the modification of cell-type specific synapses within
striatum, e.g., inputs to dSPNs, iSPNs, and local interneurons
in striatum.

FACING FORWARD

In this review article, we have summarized the overlapping
dorsal-striatal-centric circuitry responsible for learning habits,
addictions, and compulsions, highlighting the transition from
DMS to DLS as behaviors become more automatic. With this
overarching framework in mind, we examine future directions
concerning the mechanisms of behavioral automaticity and
propose how our current understanding of different features
of striatal circuit organization can be combined with novel
molecular tools to provide insight into the central questions
in the field. One crucial question is how dispersed is the
representation of a given automatic behavior within the dorsal
striatum? If the shift to automaticity involves the transition from
DMS- to DLS-centric circuits, then is the same S-R behavior
encoded simultaneously in medial and lateral locations, and
furthermore what particular cells and synapses correspond to the
storage of a given association?

A compelling hypothesis is that the long-range input/output
connectivity (and local circuit structure) of a cluster of striatal
neurons defines its recruitment to encoding a given S-R
behavioral association (e.g., associating an auditory cue with
a lever press response). Recently, it has been appreciated
that unique patterns of dSPN and iSPN activity in locally
concentrated clusters of SPNs correlate with the performance
of specific actions (Barbera et al., 2016; Klaus et al., 2017;
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Markowitz et al., 2018), and that individual DLS neurons
exhibit sensorimotor-relevant activity during habit performance
(Rueda-orozco and Robbe, 2015). It is already known that
different subregions of striatum are organized in overlapping
topographic domains according to cortical input (Beckstead,
1979; Berendse et al., 1979; Hintiryan et al., 2016; Hunnicutt et al.,
2016). Thus, there are multiple different dimensions along which
striatal cells can be classified (depicted as dimensions, layers or
‘‘masks,’’ in Figure 2). One can define a striatal cell by its spatial
location (Figure 2A), its neurotransmitter/cell-type identity
(Figure 2B), its connectivity (Figure 2C) or its behavioral
association (Figure 2D). The intersection of these dimensions is
expected to define striatal ensembles encoding specific actions.
Thus, a putative requirement for creating and strengthening a
given behavioral S-R association might be the strengthening of
specific connections between cortical neurons responsible for
the representation of specific sensory inputs, and action-relevant
cells in the striatum. The somatosensory organization of the
striatum, which has recently been highlighted (Robbe, 2018),
suggests that different actions utilize topographically dispersed
ensembles of striatal neurons. Yet, these different ensembles
very likely use common rules of local circuit organization and
plasticity (Bamford et al., 2018; Bariselli et al., 2019) as dictated
by the relatively uniform cell-type composition of the striatum.

To comprehensively map the exact circuits encoding a
given specific S-R association, implementation of large-scale
mapping of immediate-early gene (IEG) expression (using
FISH and single-cell RNA-seq) will be invaluable. To date,
many studies have examined neural activity in single brain
regions, using tetrode recordings or calcium imaging, where
at most hundreds of cells can be monitored. The unbiased
identification of neuronal activity in basal-ganglia relevant
neuronal populations and their genetic identity will be
accelerated with scRNAseq, smFISH, and similar molecular
techniques, followed by approaches using targeted recording of
neuronal activity in defined neuronal populations (Jun et al.,
2017). Such experiments will facilitate progress in localizing
a specific behavior within basal ganglia circuitry. It would be
especially exciting to find a specific serial path of connectivity:
i.e., from a distinct cortical input through the relevant subset
of striatal cells and finally to a unique output in downstream
brain areas.

This achievement will enable investigators to ask crucial
questions about cellular and synaptic plasticity in behavioral
automaticity. Since the striatum is composed of repeating
microcircuit elements, common rules are likely to prevail for
the encoding of diverse actions within the striatum. Some major
questions are: during the encoding of a habit, compulsion, or
addiction, is the activity of dSPNs or iSPNs modulated to a
greater degree? Do dSPNs and iSPNs representing the same
behavior sit adjacent, in the same locally concentrated cluster? If
so, do they vie for control over the same behavior, or do iSPNs
primarily function to inhibit competing behaviors (Tecuapetla
et al., 2016; Vicente et al., 2016; Bariselli et al., 2019)?

Once the ensemble representation of a defined S-R trace has
been clearly demarcated, it will accelerate the investigation into
the rules governing microcircuit organization and plasticity, as

FIGURE 2 | Functional definitions of striatal neurons. (A–D) Different
dimensions/layers/’masks’ describing striatal neurons. (A) Striatal subregion.
(B) Molecular/genetic: principal striatal cell types include Drd1+ SPNs,
Drd2+ SPNs, PV+ FSIs, ChAT+ cholinergic interneurons, and several other
important subtypes of interneuron populations. (C) Homuncular: striatal cells
preferentially receive inputs from different regions of cortex. Sensorimotor
inputs corresponding to specific body parts map to specific regions of the
striatum adapted from Robbe (2018). (D) Task-specific recruitment:
segregated clusters of neurons recruited by specific behavioral sequences
(Behavior A vs. Behavior B) are shown.

has been partially achieved recently by isolating the trace of a
particular auditory stimulus within the striatum (Xiong et al.,
2015; Chen et al., 2019). With some notable exceptions (e.g.,
Gremel and Costa, 2013), most studies have primarily examined
differences in circuit properties between animals that are habit-
trained vs. control animals. Ideally, one would be able to target,
record and manipulate specific subsets of behaviorally relevant
(Figure 2D; Markowitz et al., 2018; Bariselli et al., 2019) striatal
cells according to their anatomical/‘‘humuncular’’ projection
patterns (Figures 2A,B; Hintiryan et al., 2016; Hunnicutt et al.,
2016) and compare them to adjacent (task-irrelevant) neurons in
the same animal.

In order to realize this goal, one can gain genetic access to
cells participating in a given S-R association, by utilizing activity-
dependent, cell-specific targeting approaches such as TRAPmice
(Guenthner et al., 2013; Luo et al., 2018; Figure 2D). Similarly,
connectivity-based cellular targeting (Schwarz et al., 2015; Luo
et al., 2018), will enable genetic access to striatal neurons
that exhibit specific input/output architecture (Figure 2C).
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Intersectional genetic techniques will then allow the targeting
of the overlap of these two dimensions, with sub-region and
cell-type resolution. Adoption of these genetic techniques will
permit investigators to identify cell-specific intrinsic and synaptic
plasticity within the striatum induced by a particular S-R.

Next, it will be important to test the necessity of activity
patterns in genetically targeted neurons for the encoding and
actuating of particular behaviors. For instance, during the
development of habitual cued lever-pressing, how necessary are
the striatal cells active during lever-pressing for expression of
this behavior? Using optogenetic and chemogenetic approaches
in combination with cell-specific targeting tools, it can be tested
whether the activity of a particular ensemble or synapse-type
is indispensable for a given automatic behavior and whether
activation of the ensemble can induce it.

Finally, a rapidly increasing body of evidence acquired
from humans with genetic mutations (Hancock et al., 2018)
and adverse life experiences (Corbit, 2018; Wirz et al.,
2018) that are predisposing to compulsive and addictive
disorders provide further opportunities for understanding
the mechanisms underlying behavioral automaticity. Here,
the use of CRISPR to simulate human disease in model
organisms could facilitate substantial progress in modeling
and potentially reversing the pathological disorders of habitual
behavior. We anticipate that increased neural circuit insight
into automatic behaviors will advance treatments for human
disease. Recent progress in the study of drug addiction can
serve as a guiding light in this regard, as recent therapeutic
approaches have been developed based on the circuit-level
understanding of the plasticity induced by exposure to
drugs of abuse (Creed et al., 2015; Lüscher et al., 2015;
Terraneo et al., 2016).

Habit formation, expression, and related disorders are
among the most fundamental topics in behavioral neuroscience,
and significant progress has been made in this field. We
anticipate that the next decade of research into the roles
of cortico-basal ganglia circuits in supporting behavioral
automaticity will involve integrating innovative molecular
techniques and overlaying the different anatomical and
functional representations of striatal organization. Such
combined high-resolution approaches will be instrumental in
pinpointing specific circuits and synapses, as well as defining
basic rules of microcircuit function within the vast cortico-basal
ganglia circuitry driving the development and expression of
habits, compulsions, and addictions.
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