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Top-down, feedback projections account for a large portion of all connections between
neurons in the thalamocortical system, yet their precise role remains the subject
of much discussion. A large number of studies has focused on investigating how
sensory information is transformed across hierarchically-distributed processing stages in
a feedforward fashion, and computational models have shown that purely feedforward
artificial neural networks can even outperform humans in pattern classification tasks.
What is then the functional role of feedback connections? Several key roles have
been identified, ranging from attentional modulation to, crucially, conscious perception.
Specifically, most of the major theories on consciousness postulate that feedback
connections would play an essential role in enabling sensory information to be
consciously perceived. Consequently, it follows that their efficacy in modulating target
regions should drastically decrease in nonconscious brain states [non-rapid eye
movement (REM) sleep, anesthesia] compared to conscious ones (wakefulness), and
also in instances when a given sensory stimulus is not perceived compared to when it is.
Until recently, however, this prediction could only be tested with correlative experiments,
due to the lack of techniques to selectively manipulate and measure the activity of
feedback pathways. In this article, we will review the most recent literature on the
functions of feedback connections across brain states and based on the presence or
absence of perception. We will focus on experiments studying mismatch negativity, a
phenomenon which has been hypothesized to rely on top-down modulation but which
persists during nonconscious states. While feedback modulation is generally dampened
in nonconscious states and enhanced when perception occurs, there are clear deviations
from this rule. As we will discuss, this may pose a challenge to most theories of
consciousness, and possibly require a change in how the level of consciousness in
supposedly nonconscious states is assessed.
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INTRODUCTION

Our brain is capable of sustaining all the functions necessary for
life, from the most basic ones (breathing, autonomic regulation)
to the most complex ones (language, social behavior). One
function which stands out for being at the same time extremely
complex to grasp, yet seamless in its presence, is consciousness.
Even defining consciousness is extremely difficult, and has been
a long-lasting subject of debate for philosophers and cognitive
scientists (Dennett, 1991, 2018; Chalmers, 1995; Crick and Koch,
2003; Tononi and Koch, 2015; Dehaene et al., 2017; Storm
et al., 2017; Lamme, 2018). In spite of this, in the last two
decades significant progress has been made in the scientific
study of consciousness, and in particular in the search of the
neural correlates of consciousness (NCC, see Table 1 for a
list of abbreviations): the neural signature of brain processes
underlying consciousness (Aru et al., 2012; Koch et al., 2016). For
scientists to be able to measure the NCC, however, an operational
definition of consciousness is necessary.

Chalmers (1995) famously proposed an ontology of cognitive
phenomena associated with consciousness—the easy problems of
consciousness: mechanisms controlling wakefulness and sleep,
the ability to report mental states, the control of behavior, etc.
These phenomena—termed easy because experiments to study
them may be technically challenging but pose no conceptual
difficulty—are inextricably associated with conscious processing,
but are not consciousness. What really defines consciousness
is the subjective experience that is inextricably associated with
all the cognitive phenomena mentioned above. This has been
defined by Chalmers as the hard problem of consciousness

TABLE 1 | List of abbreviations.

Abbreviation Definition

Cg1 Anterior Cingulate Cortex
DD Deviance Detection
ECoG Electrocorticogram
EEG Electroencephalography
ERP Evoked Response Potential
fMRI Functional Magnetic Resonance Imaging
GABA γ-Aminobutyric Acid
GNW Global Neural Workspace
IIT Integrated Information Theory
L1–6 Cortical layers 1–6
LFP Local Field Potential
MCS Minimally-conscious state
MMN Mismatch Negativity
MMNr Mismatch Negativity response
N1 Negative peak in visual ERPs occurring 100 ms after

stimulus onset and typically associated to the MMNr
NCC Neural Correlates of Consciousness
P300 Typical ERP elicited within a decision-making process and

during oddball paradigms, with a peak occurring about
300 ms after stimulus onset

P3b Subcomponent of the P300 ERP which has been linked to
aware processing

PC Predictive Coding
REM Rapid Eye Movement Sleep
SSA Stimulus-Specific Adaptation
V1-V4 Visual cortical areas 1, 4
VS Vegetative State

because of the so-called explanatory gap (Levine, 1983) between
neuron-level mechanisms and subjective experience.

The ontology first proposed by Chalmers has inspired the
development of theories of consciousness aimed at addressing
the nature of conscious experience, such as those proposed by
Crick and Koch (1990, 2003) and Tononi and Edelman (1998a,b),
and, more recently, the Integrated Information Theory (IIT;
Tononi, 2004; Tononi et al., 2016). Nevertheless, Chalmer’s
proposal remains highly controversial and is firmly rejected
by some philosophers, chief among them Daniel Dennett
(Dennett, 1991, 2018; Cohen and Dennett, 2011). According to
Dennett, there is no hard problem of consciousness, but rather
consciousness can be understood by studying the functions
associated with it. Dennett’s approach can be seen as a theoretical
foundation for another of the most influential theories of
consciousness, the Global Neural Workspace (GNW) theory
(Sergent and Dehaene, 2004; Baars, 2005; Dehaene et al.,
2017). GNW is a theory of conscious access (Lamme, 2018;
Naccache, 2018). What the theory aims to explain are the
neuronal mechanisms which allow the brain to access (and
subsequently report) information (Baars, 2002). This ultimately
corresponds to an attempt to understand consciousness via
addressing one of Chalmer’s easy problems, which in Dennett’s
framework is all that is needed to uncover the mystery
of consciousness.

The debate between these (and other) philosophical
frameworks to explain consciousness, and between the different
theoretical models to explain why the brain—and possibly
artificial systems—is conscious is lively and at times heated,
as attested by the vast recent literature on the topic (Boly
et al., 2017; Odegaard et al., 2017; Dennett, 2018; Lamme,
2018; Naccache, 2018; Olcese, 2018; Olcese et al., 2018b).
Nevertheless, in spite of the fundamental differences between
the various frameworks to study consciousness, most theories
aimed at explaining the neural mechanisms of consciousness
agree on a key ingredient which makes our brain conscious:
feedback connectivity. Feedforward processing consists in a
progressive processing and transmission of sensory information
from sensory organs up to higher-order cortical and motor
regions (Lamme and Roelfsema, 2000; Lamme, 2018). While
very complex forms of processing can be achieved by purely
feedforward networks, as exemplified by the performance of deep
artificial neural networks in the field of computer vision (LeCun
et al., 2015), this is commonly agreed to occur non-consciously
(Lamme, 2018). For example, both IIT and GNW concur
that feedforward processing is per se not conscious. In IIT
this can even be quantified, and purely feedforward networks
(such as deep artificial neural networks) achieve a 8 value
of 0 (Oizumi et al., 2014), where 8 quantifies the ‘‘level’’ of
consciousness in IIT. Recurrent processing is, conversely, seen
as a pre-requisite for consciousness by most if not all modern
theories of consciousness. In IIT, as previously said, only systems
with some level of integration (i.e., recursive connections)
possess 8 > 0, and therefore can be considered conscious
(Oizumi et al., 2014). In GNW, the feedback flow of information
from frontal to posterior brain regions gives rise to the so-called
global ignition which is seen as essential for consciousness
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(Sergent and Dehaene, 2004; Baars, 2005). Similarly, other
theories, such as the recurrent processing hypothesis (Lamme,
2006, 2018), and the Predictive Coding (PC) framework
(Pennartz, 2015) indicate feedback processing as a key ingredient
for consciousness.

The neuroscientific evidence underlying the link between
recurrent processing and consciousness has been until
recently primarily limited to correlational studies done at
the mesoscopic level in human subjects, via techniques such
as electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI; van Gaal et al., 2011; Fahrenfort
et al., 2012). These techniques, albeit powerful, lack cell-level
resolution. Thus, while experiments done using EEG and fMRI
can provide evidence about a generalized increase or decrease in
patterns of neural activity which are compatible with modulation
in feedback/recurrent coupling, they cannot discriminate
what individual neurons and neuronal populations do. As
an example, EEG experiments have shown that, during brain
states characterized by the loss of consciousness [Non-rapid eye
movement (REM) sleep, anesthesia, coma], cortical effective
connectivity drops markedly (Massimini et al., 2005, 2012;
Ferrarelli et al., 2010; Casarotto et al., 2016). This was thought to
reflect a generalized drop in the communication between cortical
areas. Recently, however, studies performed at cellular resolution
in rats showed that specific forms of long-range connectivity
are preserved or even enhanced in Non-REM sleep compared
to wakefulness (Olcese et al., 2016, 2018a). Therefore, human
studies can only give limited insight into the role of recurrent
connections in conscious processing, as only average, area-level
dynamics can be assessed.

Our aim is to provide an overview of the existing evidence
on the role of feedback processing as a key constituent of
the NCC, as provided by studies with neuron-level resolution
performed in animal models. In particular, we will focus
on one of the easy problems of consciousness, as defined
by Chalmers (1995): the difference between wakefulness and
sleep/anesthesia. We will specifically address how top-down,
intra-cortical feedback varies between states of consciousness
(wakefulness vs. sleep and anesthesia) and thus investigate
whether the presence or absence of this form of neural dynamics
can be considered a valid NCC. This will allow us to dwell
into the vast literature on cortical processing in animal models,
and to focus on the neocortex, i.e., the brain region which is
thought to be crucial for consciousness (Koch et al., 2016).
By primarily centering on differences between conscious and
non-conscious brain states, we will be able to address to what
extent feedback communication decreases when consciousness
fades. In the first section of this manuscript, we will discuss the
circuit-level mechanisms of feedforward and feedback cortical
communication, and what has been reported in terms of
variation across behavioral states. Next, we will zoom in on
studies investigating the genesis of mismatch responses. This
strongly preserved phenomenon has been shown to occur during
both conscious and non-conscious states and is composed of two
different components: stimulus-specific adaptation (SSA) and
deviance detection (DD; Näätänen et al., 2007; Garrido et al.,
2009b; Hamm and Yuste, 2016; Harms et al., 2016). These two

components are, respectively, classically thought to represent
feedforward and feedback forms of processing. The analysis of
how these components vary across behavioral state will allow us
to assess if and how feedback processing is disrupted during loss
of consciousness.

THE ROLE OF FEEDBACK PROCESSING
ACROSS DIFFERENT BRAIN STATES

Brain state transitions can be described as the result of dynamic
changes in functional long-range neuronal networks across time.
Local and global connectivity greatly differ in their dynamics
during the establishment of different behavioral states. While
local connectivity is less affected by brain state transitions
(Townsend et al., 2015; Olcese et al., 2016, 2018b; Siclari and
Tononi, 2017), behavioral states exert great influences over
the modulation of long-range connections (Destexhe et al.,
1999; Massimini et al., 2005). In particular, a reduction in
long-range connectivity has been associated with the loss in
consciousness occurring in NREM sleep and anesthesia (Olcese
et al., 2016; Storm et al., 2017). During wakefulness, local activity
elicited within cortical microcircuits is usually broadcasted
towards different brain areas through large-scale networks
interconnected through feedforward and feedback projections,
enabling sustained activity. This recurrent activity—necessarily
supported by feedback, reentrant connections—is acknowledged
to be at the basis of the NCC by several theories of consciousness
(Koch et al., 2016; Lamme, 2018). In this section, we review the
contribution of large-scale feedback networks in the emergence
of conscious brain states, and how these networks influence the
local activity of cortical microcircuits across different states.

In contrast with the predominant role recurrent connectivity
plays in many of the aforementioned theories of consciousness,
classical theories about sensory processing have mostly relied
on the role of feedforward projections to explain how sensory
stimulation can be processed (Hubel and Wiesel, 1977). Under
this framework, simple stimulus features are encoded by
neurons located in early sensory areas. Subsequently, this
information is transferred via feedforward projections towards
hierarchically higher areas. In these higher areas, the cumulative
processing of incoming stimuli can be finally integrated into
one coherent perception (Riesenhuber and Poggio, 1999).
However, several cognitive processes, such as sensory perception,
attention and goal-oriented behavior, have been shown to
require feedback modulation—see e.g., Gazzaley and Nobre
(2012), Gilbert and Li (2013), Manita et al. (2015) and Kwon
et al. (2016). Furthermore, a pure feedforward approach falls
short to explain how percepts—processed in a hierarchical
feedforward fashion—can be accessible to conscious experience
(Lamme and Roelfsema, 2000). This has been extensively
investigated at the mesoscopic scale in humans (Fahrenfort
et al., 2007, 2008, 2012), but the underlying circuit-level
dynamics are less well understood. In a recent study investigating
the neuronal responses in V1, V4, and prefrontal cortex
of awake macaques during near-threshold stimulation, strong
stimuli—those invariably leading to a conscious report—elicited
a strong neuronal response progressing through all recorded
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areas, in a way compatible with the notion of inter-areal
feedforward propagation (van Vugt et al., 2018). However, in
case of weaker, near-threshold stimuli, signal propagation across
multiple areas was highly influenced by the global pre-stimulus
brain state of the animal. In detail, a computational modeling
approach was used by the authors of the study to show
that recurrent connectivity between hierarchically-organized
areas and feedback connectivity towards sensory cortices are
necessary to be able to predict neuronal responses occurring
in early processing stages when stimulus detection is reported
(van Vugt et al., 2018). These findings strongly suggest that
feedforward activity per se—albeit important for perceptual
processing—is not sufficient to elicit a conscious experience of
a perceived stimulus. Conversely, recurrent connectivity seems
to be required to support conscious responses—see also Boly
et al. (2011). Nevertheless, the precise contribution of this
feedback connectivity to the establishment of these networks and
the mechanisms underlying local cortical circuitry modulation
remains to be elucidated.

Anatomical Organization of Recurrent
Neuronal Networks
To understand what precise feedback connectivity mechanisms
are contributing to consciousness, it is important to revisit
some anatomical principles that govern brain connectivity in
general. Different anatomical studies have estimated that a vast
majority of cortical connections are essentially local (Markov
et al., 2014a), organized in evolutionarily conservedmicrocircuits
(Bosman and Aboitiz, 2015). This local architecture represents a
basic organizational unit for cortical computations (Douglas and
Martin, 2004; Womelsdorf et al., 2014) and, as we discuss below,
the way distinct local circuits communicate with each other is
tightly linked to the emergence of different brain states.

Cortical microcircuits follow a columnar organization
spread across all cortical layers. The prototypical microcircuit
in sensory cortices features a central granular layer (L4),
receiving projections from the thalamus and other cortical
layers—but see Constantinople and Bruno (2013). Supragranular
layers 2 and 3 (L2/3) receive presynaptic inputs from L4,
while layer 1 (L1) displays cortico-cortical fibers connecting
neighborhood columns. Infragranular layers include layers
5 and 6 (L5 and L6). Neurons in these layers receive local
inputs from collateral projections of L2/3 neurons and provide
feedback and feedforward connectivity to different thalamic
structures (Hubel and Wiesel, 1977; Shepherd, 2011; Harris and
Shepherd, 2015). Both feedforward and feedback projections
have a strong preference for targeting areas that are close to
their origin (Markov et al., 2014b). Supporting this highly
redundant local connectivity, an estimated amount of 20%
of the total connectivity is organized through long-range
interareal connections (Markov et al., 2014a). These projections
follow a well-defined pattern of connectivity (Felleman and
Van Essen, 1991; Markov et al., 2014a,b). Feedforward
projections preferentially originate in supragranular layers
and target granular layers. Conversely, feedback connections
arise from infragranular layers and avoid targeting granular
layers (Felleman and Van Essen, 1991).

The quantification of this pattern of connectivity (Ercsey-
Ravasz et al., 2013; Markov et al., 2014b) has suggested an
important structural heterogeneity across brain areas, arranged
in what Kennedy and colleagues have denominated a Bow-Tie
organization (Markov et al., 2013b). Under such an organization,
a subset of association areas including frontal, parietal, and
temporal cortices appear to be heavily interconnected via
recurrent connections, forming a central core of brain areas
(Figure 1A). This highly interconnected core is characterized by
a high prevalence of long-distance connections departing from

FIGURE 1 | Functional architecture of cortical connectivity. (A) Brain topology as a Bow-Tie organization. This brain organization arises from the connectivity profile
obtained from retrograde tracer studies. It defines a heavily interconnected core of fronto-parietal areas and the ties based in feedforward (FF) and feedback (FB)
connections from the core. As expected, early sensory areas are located more at the extremes of the tie. Adapted with permission from Markov et al. (2013b).
(B) Representation of the directed oscillatory influences (measured by Granger causality) over the cortical column in area V1 of the monkey. Gamma (30–90 Hz)
oscillations are predominantly feedforward and they target granular and supragranular layers. Alpha/beta oscillations (roughly 8–30 Hz, combined) are predominantly
feedback. They originate at hierarchically higher areas and target predominantly infragranular layers. Adapted with permission from van Kerkoerle et al. (2014).
(C) Long and short-range connections implementing a Predictive Coding (PC) framework of sensory processing. Under such framework, a predictive model is
originated at prefrontal cortex and local areas and channeled towards early sensory areas by long and short-range connections respectively, using low frequency
(alpha and beta) oscillations. Error signals, originated from sensory areas are broadcasted towards hierarchically higher brain areas using high-frequency oscillations.
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this core to other brain regions (Markov et al., 2013a). At the
periphery, two different sets of regions are linked to the core
through feedback and feedforward connections: a first group
composed of primary and secondary sensory regions, and a
second group consisting of premotor areas. These two groups
are interconnected from the first to the second group via direct
feedforward connections, and from the second to the first one via
direct feedback connections (Ercsey-Ravasz et al., 2013).

This organizational principle encompasses several
advantages. It reduces brain wiring and volumetric surface,
yet increases the efficiency of information transfer and
computational speed (Markov et al., 2013b). It reveals the
importance of a fronto-parietal network, fundamentally
characterized by a high prevalence of long-range connections,
which some authors have suggested to be compatible with a
GNW organization (Ercsey-Ravasz et al., 2013; Markov et al.,
2013a), and provides an evolutionary advantage for long-range
communication and cortical coordination of brain dynamics
(Bosman and Aboitiz, 2015).

Functional Dynamics of Feedback and
Feedforward Connections: A Possible Role
of Brain Oscillations
A bow-tie brain topology strongly relies on the functionality of
long-range feedback connections to support sensory processing.
As stated before, classical (and mainly feedforward) theories
about perception are insufficient to explain sensory processing
under such organizational principles. Conversely, the PC
framework offers important insights into sensory perception
in a view that is compatible with the notion of neuronal
entrainment. PC is rooted in the tradition of inferential models
of brain perception (Friston, 2010; Clark, 2013). Under this
formulation, feedback projections transmit to hierarchically
lower areas a generative model of sensory perception. In
turn, feedforward projections transfer a signal error from the
model, derived from the comparison between the existing
model and the incoming sensory signals (Rao and Ballard,
1999; Bastos et al., 2012). Accordingly, recurrent (i.e., local)
interactions between models and error signals at the level of
cortical microcircuits are thought to improve the generation
of statistical inferences about sensory perception. It has been
argued that cortical microcircuit architectures can effectively
implement PC computations. Under such scenario, local
cortical microcircuits effectively integrate data and models
originated from long-range feedforward and feedback networks,
respectively (Bastos et al., 2012, 2015; Fontolan et al., 2014;
Chao et al., 2018). Nevertheless, it is important to note that
a PC framework can infer statistical regularities, but it cannot
specify why data from different types of sensors would be
consciously experienced (Pennartz, 2009). In other words, a
PC framework helps to explain the importance of feedback
connectivity but does not offer a solution to the hard problem
of consciousness.

Experimentally, the study of neuronal dynamics underlying
cortical computations across areas requires the utilization of
techniques able to record several areas and spatial levels

simultaneously. From amyriad of emerging techniques (Adesnik
and Naka, 2018), ensemble recordings and surface local
field potentials (LFPs), recorded—respectively—by high-density
laminar probes and electrocorticograms (ECoGs), are considered
a primary choice due to their capacity to simultaneously record
multiple local neuronal assemblies through cortical layers (Lewis
et al., 2015; Pesaran et al., 2018). Laminar recordings in early
visual areas have shown that LFP oscillations—a prominent
feature of field recordings which has been associated with several
perceptual and cognitive functions (Bosman et al., 2014; Fries,
2015)—are compartmentalized across cortical layers (Figure 1B).
High-frequency oscillations (e.g., in the gamma frequency band,
between 30–90 Hz) are observed mostly in supragranular layers.
Conversely, lower frequency bands, such as alpha (8–12 Hz) and
beta (13–30 Hz), are observed mostly in infragranular layers (von
Stein et al., 2000; Buffalo et al., 2011; van Kerkoerle et al., 2014).

Brain rhythm compartmentalization appears to have a
functional role during inter-areal communication (Fries,
2015). Recent studies enabling simultaneous recordings across
multiple brain areas have demonstrated that directed long-range
interactions can be exerted across different frequency band
channels, a scenario compatible with the PC framework (Bastos
et al., 2012, 2015; Fontolan et al., 2014; Michalareas et al.,
2016; Chao et al., 2018). A study using high-density laminar
profile in V1 of awake monkeys has shown that, while gamma
band responses initiate in L4 and propagate through supra and
infragranular layers of higher visual areas, alpha oscillations
travel in the opposite direction (van Kerkoerle et al., 2014,
Figure 1B). These relationships between frequencies and cortical
layers are consistently observed through the cortical hierarchy.
Using ECoGs in awake monkeys, Bastos et al. (2015) showed
that, while feedforward directed influences (measured in terms
of Granger causality) are observed through gamma oscillations
across eight cortical regions recorded simultaneously, feedback
influences across the visual hierarchy are consistently carried
out by beta oscillations, and a similar functional connectivity
pattern has been observed in humans (Michalareas et al., 2016).
Furthermore, new studies have shown that feedback modulation
can be updated continuously using error signals broadcasted
from sensory areas to prefrontal cortex (Chao et al., 2018;
Figure 1C). Neurons located in prefrontal cortex have the
ability to integrate such error signals and continuously submit
updated versions of the model through feedback projections
to temporal areas (Chao et al., 2018). In early sensory cortices,
the efficiency of feedforward frequency coupling—measured
as an increment of gamma frequency band coherence between
V1 and V4—increases after augmented top-down beta frequency
band modulation (Richter et al., 2017). Importantly, optimized
feedforward efficiency improves conscious access of perceived
stimuli (Lamme and Roelfsema, 2000; Boly et al., 2011), and
behavioral responses during attentional tasks (Rohenkohl
et al., 2018), indicating that the extent of long-range feedback
modulation correlates with conscious accessibility and enhanced
behavioral performance.

Thus, simultaneous recordings across multiple areas
using LFP rhythmic fluctuations have consistently shown
that long-range feedback signals, possibly originating from
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highly interconnected hubs comprising anterior regions of
the brain, effectively modulate the activity of early sensory
regions. This feedback modulation ultimately facilitates
feedforward communication, behavioral performance and
conscious reporting of perceived stimuli. A PC architecture,
implemented across local-to-global anatomical connections and
dynamical LFP oscillatory phase relationships, may support this
organization (Olcese et al., 2018b).

However, while several studies have shown the importance
of PC architectures and their oscillatory dynamics during
stimulus processing, the exact contribution of these processes
during different brain states still needs to be elucidated (Olcese
et al., 2018b). The observation of local and global network
dynamics across wide-brain areas across different behavioral
states is a crucial step to understand what the mechanisms
underlying these behavioral and network transitions are.
Feedforward gamma connectivity globally decreases during
deep sleep states, as compared to awake states, in intracranial
recordings in epilepsy patients (Mikulan et al., 2018), but
there are no consistent reports about low-frequency (and
putatively feedback) phase relationships during sleep, in spite
of the reduced role of feedback during non-conscious states
(Boly et al., 2011). During anesthesia, a pharmacologically-
induced brain state, quantitative EEG studies have shown
that sedation with propofol is accompanied by a decreased
posterior alpha and increased frontal/central beta power
(Gugino et al., 2001; Akeju and Brown, 2017). This shift
has been extensively studied and is thought to emerge
from a disruption of prefrontal circuits created by a strong
low-frequency thalamocortical synchronization (Vijayan
et al., 2013; Flores et al., 2017). Yet, the detailed effects of
anesthesia on cortico-cortical synchronization remain elusive.
Finally, a promising line of research about the effects of
feedback connectivity in patients with consciousness disorders
has been developed in recent years. Feedback influences,
but not feedforward ones, seem to be compromised in
these patients (Boly et al., 2011), in agreement with the
notion that feedback connections are important to sustain
conscious activity. Intriguingly, a temporary recovery in
the consciousness state of a subgroup of patients has
been observed following the administration of the GABA
modulator Zolpidem (Hall et al., 2010; Williams et al., 2013).
Zolpidem administration reduces EEG power and coherence
at 6–10 Hz frequencies (Williams et al., 2013). Surprisingly,
however, Zolpidem seems to elevate beta frequency power
at anterior regions following its administration. These effects
seem to be mediated by thalamocortical interactions but
is not clear whether direct cortico-cortical communication
is also affected (Hall et al., 2010; Williams et al., 2013).
Future studies might help to unveil the exact nature of
these effects.

In conclusion, long-range feedback connections are an
essential component of conscious brain states and determine
how sensory information is processed at the local level
(via both feedforward and recurrent mechanisms). Yet,
the underlying circuit-level mechanisms remain poorly
understood. Several studies have outlined the organizational

principles—both anatomical and functional—of feedback
connections in the context of sensory processing. However,
contrasting results have been presented on how feedforward
and feedback functional connectivity vary as a function
of the state of consciousness. Oscillatory dynamics during
sensory processing may provide a framework to understand
the role of feedback projections, but these phenomena
involve a wide range of brain circuits, operating both at
feedforward and feedback level and both at local and global
scales. Consequently, one possible solution to understand
the role of feedback projections and the underlying
circuit mechanisms in conscious processing is to focus on
processes that are purely feedback in nature, and which
are thought to be exclusively dependent on long-range,
top-down mechanisms.

MISMATCH NEGATIVITY: PRESERVED
TOP-DOWN MODULATION DURING
NON-CONSCIOUS BRAIN STATES?

The mismatch negativity response (MMNr) is a well-studied
electrophysiological phenomenon that occurs in the human
brain after violation of a rule, which is established by a sequence
of repeated stimuli (Näätänen et al., 2007; Garrido et al., 2009b).
The MMNr reflects the brain’s capacity to automatically detect
unpredicted sensory changes in our environment, without the
need for attention (Tiitinen et al., 1994; Näätänen et al., 2001;
Stefanics et al., 2014), and is impaired in several psychological
afflictions such as schizophrenia, attention-deficit hyperactive
disorder and psychosis (Erickson et al., 2016; Näätänen et al.,
2016). In recent years the interest for the MMNr has grown
considerably, especially in relation to the hierarchical PC
framework, bringing a new plethora of insights from both human
and rodent experiments.

The MMNr is often studied using an oddball paradigm, in
which a particular stimulus (standard) is repeatedly presented to
a subject, but sometimes unpredictably changed to a different,
unexpected stimulus (deviant, see Figure 2A). The idea behind
this paradigm is that the repetition of a particular stimulus
or event leads to the formation of a prediction related to the
frequency or probability at which this event occurs. Stimuli
that deviate from the frequently presented one elicit a strong
mismatch response. Thus, the MMNr can be interpreted as a
prediction error to a stimulus that does not match the statistical
regularities of sensory stimuli being perceived, thus updating our
internal representation of the world (Friston, 2005; Garrido et al.,
2009b; Stefanics et al., 2014).

Different Components of the Mismatch
Negativity Response
The MMNr can be split into two functionally distinct
components (Hamm and Yuste, 2016; Harms et al., 2016).
The first component arises as an effect of stimulus repetition.
Repetition of a particular event leads to a decreased neuronal
response to that event, a phenomenon often referred to as
repetition suppression or SSA. SSA has been found in many
different neural systems and at various levels: from single
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FIGURE 2 | Mismatch negativity during different states of consciousness. (A) Cartoon showing the commonly used auditory oddball paradigm and the different
comparisons that can be used to differentiate between stimulus-specific adaptation (SSA) and deviance detection (DD). Three bar graphs (i—iii) show the
hypothetical cases in which classical MMN van be observed. In one case (i) MMN can be fully explained by SSA. Another example (ii) shows a pure deviance
detecting neuron, while the final example (iii) shows MMN as it is most likely found in awake subjects, with both SSA and DD. (B) Schematic showing how local DD
may be maintained during loss of consciousness, while global predictions are lost. Global, long-range feedback projections are reduced during loss of
consciousness, while local connectivity is maintained. This suggests that low-level predictions might arise from local connectivity (for example from deep to
superficial layers), while more complex, global prediction requires top-down modulation. These top-down projections mostly target interneurons in the most
superficial layer of the cortex, where they are in a prime position to modulate neurons from both the superficial and the deep layers of the cortex.

neurons in the cortex of primates (Miller and Desimone,
1994), cats (Ulanovsky et al., 2003) and rodents (Taaseh et al.,
2011), to field and imaging recordings in rodents (Chen et al.,
2015; Hamm and Yuste, 2016; Parras et al., 2017; Hamm
et al., 2018) and humans (Garrido et al., 2009a). While SSA
closely resembles the MMNr originally described in humans
(Ulanovsky et al., 2003; Nelken and Ulanovsky, 2007) it does
not inherently have the second crucial component of the
MMNr, true deviance detection (DD). For DD to occur the
increased response to the deviant compared to the standard
stimulus should not be fully explained by the decrease in
neuronal firing caused by SSA (i.e., it should not simply be
equal to the response elicited when the standard stimulus is
not presented in a sequence). Rather, the increase in this
response should have added value in detecting the occurrence
of a deviant or irregular event (Hamm and Yuste, 2016;
Harms et al., 2016). In this paragraph, we will discuss the
relationship between SSA and DD, and how they are related to
the MMNr.

Repetition of a particular stimulus leads to neuronal
adaptation in the response to this stimulus, which can be
characterized by the decrease of the neuronal response over
repetitions. There are several hypotheses on which neuronal
mechanisms could underlie this adaptation. Some models
suggest that relatively simple feedforward mechanisms, such
as neuronal fatigue, may fully explain the effects of stimulus
repetition (Grill-Spector et al., 2006). Indeed, it is possible that
SSA can be explained, at least in part, by purely feedforward
mechanisms (Garrido et al., 2009a; Farley et al., 2010; May
and Tiitinen, 2010), where (synapses of) neurons that are

responsive to the standard stimulus adapt over time, resulting
in responsive depression, while the neurons responding to
the deviant stimulus are ‘‘fresh’’ and are activated in full.
A more likely case, however, is that multiple mechanisms
contribute to repetition suppression under different conditions
(Grill-Spector et al., 2006).

Another possible view on SSA comes from the PC framework.
According to this framework, the decrease in neuronal activation
upon repeated stimulation reflects the brain’s ability to predict
that stimulus (Friston, 2005, 2008, 2010). This is achieved
by neuronal processes optimized to probabilistically represent
causes of sensory inputs. These processes can be seen as
the building of an internal model representing our external
environment. Keeping this model up-to-date requires a constant
interaction between top-down predictions and bottom-up
prediction errors (Bastos et al., 2012). An increased ability of
this generative model to predict sensory inputs is reflected
in a decrease of neuronal activity necessary to update the
model. In other words, SSA can be considered as a product of
perceptual learning where the predicted part of a sensory input is
‘‘explained away.’’

DD, on the other hand, is an increased neuronal response
to deviant stimuli, and can be considered a neural correlate of
error signaling or memory update, where the prediction does not
match the actual input and an adjustment of the generativemodel
is called for.

Though SSA has been extensively studied in animal models,
until recently it remained unclear whether MMN and more
specifically DD could also be found in rodents (Taaseh
et al., 2011; Chen et al., 2015; Hamm and Yuste, 2016;
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Parras et al., 2017; Hamm et al., 2018). These studies, paving
the way for investigating the microcircuit-level mechanisms
of DD, not only found that true DD is present in the
rodent neocortex, but that SSA and DD can be observed
within different time-windows of the whole MMNr (Chen
et al., 2015; Hamm and Yuste, 2016). While SSA is mainly
found in earlier time components (40–80 ms after stimulus
onset), DD is predominantly visible in a later time window
(120–240 ms after stimulus onset). Furthermore, these separate
components possibly involve distinct cortical networks and
neuronal populations (Chen et al., 2015; Natan et al., 2015;
Hamm and Yuste, 2016; Parras et al., 2017; Hamm et al.,
2018). Though questions remain on how experimental results
regarding SSA and DD in animal models compare to MMNr in
human subjects, it can be assumed that they are all part of the
same PC process.

MMN and the Canonical Microcircuits
for Predictive Coding
The generation of the MMNr is a hierarchical process. While
forms of SSA can already be found in the early stages of sensory
processing such as the thalamus (Natan et al., 2015; Parras et al.,
2017; Hamm et al., 2018), DD seems to be absent in these early
processing steps and appears later in the hierarchy, starting from
(primary) cortical areas. Moreover, the proportion of neurons
showing true DD increases when going up in the cortical
hierarchy (Parras et al., 2017; Hamm et al., 2018). This has been
taken as an indication that, while SSA can arise from purely
feedforward processing streams, DD is more likely dependent
on recurrent or feedback processing. This notion fits very well
with the connectivity scheme proposed by the PC theory (Bastos
et al., 2012; Auksztulewicz and Friston, 2016)—see ‘‘The Role of
Feedback Processing Across Different Brain States’’ section.

In the PC framework, top-down predictions play an
important role in eliciting mismatch or error-signals.
Excitatory connections from (higher-order) cortical areas
send predictions to predominantly inhibitory neuronal
population in earlier sensory areas (Bastos et al., 2012).
These inhibitory neurons enable local pyramidal cells to
compare sensory inputs with these predictions, resulting in
processes such as SSA (Bastos et al., 2012; Auksztulewicz
and Friston, 2016; Yarden and Nelken, 2017). Indeed, it has
been shown that deactivating auditory cortex reduces SSA in
the superior colliculus of rats, though SSA is not completely
extinguished (Anderson and Malmierca, 2013). Furthermore,
inhibiting projections from the anterior cingulate cortex
(Cg1)—a high-order cortical area involved in modulating
visual responses (Zhang et al., 2014; Fiser et al., 2016)—to
the primary visual cortex (V1) abolishes DD at a population
level in V1 itself (Hamm et al., 2018). This would support
a primary role for long-range feedback projections—which
are also thought to be essential for conscious processing—in
enabling DD. It is important to note, however, that, when
splitting neuronal activity into populations that, are ‘‘adapting,’’
‘‘deviance detecting’’ or ‘‘non-modulated,’’ the activity of
‘‘deviance detecting’’ neurons in V1 remains intact (Hamm
et al., 2018). In other words, while DD seems to disappear

when looking at the gross activity of V1, it is preserved
at the single-neuron level. This raises the question of how
important long-range feedback connections are for facilitating
mismatch responses in early sensory cortices, and what their
exact role is. Is it possible for example that mismatches
caused by low-complexity stimulus features such as visual
orientation can be solved within the visual cortex through local
(recurrent) connectivity?

To answer this question, we should make a distinction
between local/low-level expectations that can operate
independently of active cognitive processing (the pre-attentive
part of the MMNr), and global/higher-order generalizations
that require cognitive or attentional modulation. One way
to make this dissociation is by using an adapted version of
the oddball paradigm. The local-global paradigm dissociates
between two types of predictions, based on local probabilities
vs. global rules (Figure 3A). It uses blocks of stimuli where
a sequence of for instance five stimuli (‘‘xxxxx’’) is presented
interspersed with infrequent blocks in which the final stimulus
is changed to a rare/deviant stimulus (‘‘xxxxY’’; Bekinschtein
et al., 2009; Wacongne et al., 2011). Importantly, in other
blocks, the frequent sequence is of the ‘‘xxxxY’’ type, while the
deviant sequence consists of five identical stimuli (‘‘xxxxx’’).
Evoked response potential (ERP) recordings reveal that the
fifth, locally deviant tone of the standard ‘‘xxxxY’’ type,
although fully predictable, still elicits a MMNr. However,
only the rare violation sequence (or global deviant), which
contains the five identical tones ‘‘xxxxx,’’ elicits a distinct
and later novelty response, the ‘‘late positive complex’’ or
P3b wave (Bekinschtein et al., 2009, Figure 3B). This P3b
component has been associated with consciousness through
processes such as attention and awareness—see Chennu and
Bekinschtein (2012) for an overview. In the next paragraph,
we will discuss how the MMNr and related ERP components,
such as the P3b wave, are influenced by different states of
awareness and how these changes are supported by (long-range)
feedback connections.

Mismatch Negativity in Relation to
Consciousness
The MMNr has been investigated extensively in relation to
different states of consciousness. It has been of interest in
cognitive research because of its robustness: MMN can be
observed in different states of consciousness, be it awake, asleep
or anesthetized (Atienza et al., 2002; Koelsch et al., 2006). This
has led to the belief that MMN is an automated response not
dependent on active, conscious processing (Näätänen et al., 2001;
Stefanics et al., 2014). However, ERP components related to the
MMNr, especially the P3b wave, can be altered by conscious
processes such as attention and awareness (Woldorff et al., 1998;
Näätänen et al., 2007). Consequently, it has been hypothesized
that, as the MMNr may be a key NCC, changes in its properties
can be used to track different states of awareness, such as sedation
or loss of consciousness. In a clinical setting, the estimation of a
patient’s level of consciousness may be of paramount importance
for the correct diagnosis of disorders of consciousness.
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FIGURE 3 | Local vs. global mismatch responses. (A) Cartoon showing the local-global oddball paradigm and the distinct stimulus trains that differentiate between
local and global deviants. Note that in the “xxxxxY” block the change of the final “Y” to an “x” stimulus induces a global deviant (“xxxxxx”), whereas it remains a
standard stimulus at the local level. (B) Schematic examples (not actual data—see e.g., Bekinschtein et al., 2009 or Strauss et al., 2015 for measured
electrophysiological traces) showing the typically observed field responses during a local-global mismatch paradigm. The left panel shows the classical Mismatch
negativity response (MMNr) where the N1 component is more negative for the deviant response compared to the standard response. The local MMNr also generally
show an early P3a response. Global deviants (middle panel) may not elicit a change in the N1 response, but induce a maintained sensory novelty or P3b response.
The right panel depicts the difference waves (deviant—standard) generally used to visualize the MMNr.

In cognitive electrophysiology, the P3b wave is a part of
the most widely studied P300 ERP component. It has been
proposed as a marker of conscious perception of salient events
or stimuli (Sutton et al., 1965) and more specifically as a
sign of the ‘‘top-down’’ deployment of selective attention to
task-relevant stimuli. While the P3b response, similarly to the
MMNr, is often studied using a form of the oddball paradigm,
the processes underlying the two responses may be very different.
For example, the processing of statistical irregularities that
elicits the MMNr is distinct from, and may not necessarily
result in, conscious awareness of a stimulus (Chennu and
Bekinschtein, 2012). Furthermore, the MMNr has been reported
in humans over various states of consciousness (Atienza et al.,
2002; Koelsch et al., 2006; Bekinschtein et al., 2009), whereas
the P3b component seems dependent on aware processing
of the stimulus (Sergent et al., 2005) and is diminished in
states of impaired consciousness (Boly et al., 2011; Strauss
et al., 2015; Nourski et al., 2018). Nevertheless, although the
P3b response is usually considered an event separate from
the MMNr, the two are often temporally overlapping. For
example, recent studies in mice assess oddball and mismatch
responses in temporal windows up to 400 ms after the onset
of sensory stimuli (Chen et al., 2015; Hamm and Yuste,

2016), beyond the typical N1 response which peaks 100 ms
after stimulus onsets and is associated with the MMNr in
human EEG studies. Here, we will consider the P3b as an
ERP component related to the MMNr. Future experiment
will need to assess whether the P3b can be considered as a
long-latency DD component of the MMNr or rather a separate
neuronal event.

Upon loss of consciousness, detection of local deviants
remains, at least partially, present in the human brain (Strauss
et al., 2015; Nourski et al., 2018). Detection of global deviants
is, on the other hand, absent during states of unconsciousness
and deep sleep (Strauss et al., 2015; Nourski et al., 2018). Thus,
global MMNr and the related P3b component are dependent
on cognitive processes that are unavailable during loss of
consciousness, whereas local DD remains partially present.
While both the local DD component of the MMNr and the
P3b response have been hypothesized to be dependent on
temporal/frontal feedback connections (Friston, 2005, 2010;
Garrido et al., 2009b; Buschman and Kastner, 2015), these
differences indicate that distinct forms of feedback projections
may be involved in the detection of local vs. global deviants.

As mentioned before (local) MMN has been reported under
different states of awareness in both human and animal
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experiments (Atienza et al., 2002; Koelsch et al., 2006; Parras
et al., 2017). However, questions have been raised on whether
these reports truly reflect the whole MMN process, including
its deviance detecting component, or whether MMN under low
conscious conditions can be fully explained by SSA. In a recent
study, Strauss et al. (2015) showed disruption of the local MMNr
at intermediate time components during non-REM sleep. These
mid-range components have previously been associated with
the error-signaling or deviance detecting processes underlying
the MMNr (Wacongne et al., 2012). These results indicate that
the feedback modulation that is necessary to support not only
global but also local DD might be missing during non-conscious
brain states. Indeed, another study showed that patients in a
vegetative state (VS) display reductions in feedback connectivity,
while feedforward connections are maintained (Boly et al.,
2011)—but see King et al. (2011). Moreover, intermediate (DD-
related) components of the MMNr are not present in these
patients, whereas they are still reported in patients in a minimally
conscious state (MCS). Thus, the main difference between
MCS and VS patients seems to be the reduction of feedback
connectivity in VS patients, leading to a disruption in DD.
Finally, a recent animal study that supports the previous findings
showed that inactivation of feedback connections from frontal
cortex to visual cortex disrupts local DD processes in the latter
(Hamm et al., 2018).

Altogether, the studies mentioned in the previous paragraphs
indicate that: (1) feedback connections are necessary to maintain
the (local) DD component of MMN, and (2) feedback
connectivity is strongly reduced during non-conscious brain
states. Interestingly, however, the same study showed that,
while DD disappears upon inhibiting feedback projections when
looking at the population level (i.e., in terms of multi-unit
activity), at the single-neuron level DD is unchanged (Hamm
et al., 2018). Moreover, other studies have reported both MMNr
and (local) DD at the single-neuron level in anesthetized
animals (Taaseh et al., 2011; Parras et al., 2017). Thus, while
DD seems to disappear in population-level recordings during
non-conscious states or when prefrontal cortex is inhibited
(Boly et al., 2011; Strauss et al., 2015; Hamm et al., 2018),
it is preserved in the cortex when looking at the single-
neuron level (Parras et al., 2017; Hamm et al., 2018). These
discrepancies highlight some of the knowledge gaps in our
current understanding of the role of feedback projections
in MMN generation and, potentially, their involvement in
conscious responses.

Several distinct mechanisms may explain the aforementioned
discrepancies. First, local DD might primarily depend—as
classically hypothesized and similarly to global DD—on
long-range feedback projections. During anesthesia/loss of
consciousness such feedback is reduced (but not completely
eliminated), and this dampens the extent of local DD in such
a way that it is no longer visible at the population level. A
second possibility is that, at least for local mismatches, DD is
primarily due to feedforward or local (recurrent) mechanisms
(Figure 2B). Feedback projections, in a manner similar to
top-down attention, amplify and synchronize DD across
neurons. This makes DD visible at the population level and

allows the ‘‘error’’ signal to be more effectively transmitted
to higher-order areas. Current experimental evidence does
not allow us to disambiguate between these two scenarios.
In fact, no experiment has yet been able to either monitor
or abolish (or even identify) all sources of feedback that
might play a role in the generation of the local DD response.
Consequently, only hypotheses can be made on its genesis.
Addressing this problem is essential not only to provide an
understanding of the mechanisms underlying MMN (which is
clinically relevant for the diagnosis of several neuropsychiatric
disorders), but also to better understand the neural basis
of consciousness.

DISCUSSION: ARE FEEDBACK
CONNECTIONS ESSENTIAL FOR
CONSCIOUSNESS?

Long-range feedback projections have been hypothesized to
play an essential role in the generation of consciousness,
yet conclusive evidence for this is lacking. First (‘‘The
Role of Feedback Processing Across Different Brain States’’
section), while it has been shown that long-range feedback is
dampened in non-conscious brain states (Boly et al., 2011),
some studies found exceptions to this general trend (Chennu
et al., 2014), even for cortico-cortical top-down projections.
Other studies even showed that, during Non-REM sleep, some
forms of inter-areal communication may even be enhanced
compared to wakefulness (Olcese et al., 2018a). One possible
solution to this discrepancy between theoretical frameworks
and experimental evidence may be that not all long-range,
cortico-cortical feedback projections are equally important in
the generation of consciousness. Identifying which feedback
pathways support conscious processing is crucial to develop
better markers for the level of consciousness. State-of-the-
art diagnostic tools for linking brain dynamics to the level
of consciousness, such as the perturbational complexity index
(Casali et al., 2013), are able to characterize inter-areal
communication in general but lack the specificity to probe
specific connections. Second (‘‘Mismatch Negativity: Preserved
Top-Down Modulation During Non-conscious Brain States?’’
section), the role of feedback is being questioned even for
fundamental brain mechanisms which have long been held
to depend on it and to be hallmarks of conscious states,
such as the DD component of the MMNr. Not only may the
DD component still be present in non-conscious states, but
also it may not be fully dependent on feedback projections
(Hamm et al., 2018). In particular, a key question is whether
feedback projections contribute to the generation of the DD
response, or only facilitate it via synchronizing neuronal
activity. In other words, is the DD response an error signal
computed in higher-order areas (as the PC framework suggests),
or is it generated locally and top-down modulation only
amplifies it? And, if the latter proves to be the case, what
are the local/recurrent mechanisms underlying DD, and is
this consciously perceived? Finally, it remains to be addressed
whether the feedback functional dynamics responsible for the
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DD component of the MMNr are merely a correlate of
consciousness (NCC) or rather represent a key mechanism
underlying the emergence of consciousness. Addressing these
questions is crucial for us to understand the neural bases
of consciousness, yet remains challenging and requires an
interdisciplinary approach.

First, an experimental paradigm in which DD responses are
preserved in non-conscious states at the single-neuron—but
not population—level needs to be developed for both humans
and animals. Correlational human experiments involving intra-
cranial recordings are needed to investigate whether single-
neuron DD is consciously perceived even in the absence of
long-range feedback and population-level signals. This can
be done via retrospective reports (Koch et al., 2016; Siclari
et al., 2017), and will allow us to understand if feedback
projections are involved in generating conscious percepts, or
rather enable to report those. The answer to this question
is critical to reveal which cortical regions are involved in
the genesis of conscious perception (Koch et al., 2016;
Boly et al., 2017; Lamme, 2018). Second, causal explanations
provided by animal experiments are subsequently crucial
to go beyond the correlational level and reveal what the
exact role of feedback projections is in the generation of
DD responses. By leveraging and integrating techniques such
as high-channel count electrophysiology, two-photon calcium
imaging and optogenetics, it will be possible to uncover
whether (and which) feedback projections play a role in the
computation of the DD response, or whether they only have
a modulatory nature. One additional intriguing outcome of
such experiments (which can be only achieved by combining
human and animal experiments) would also be to finally
reveal the differential role of top-down projection from
frontal to posterior cortices, or within the posterior cortex
(parietal, temporal and occipital regions), and address the
debate on which cortical regions support conscious processing
(Koch et al., 2016; Boly et al., 2017; Odegaard et al., 2017;
Lamme, 2018).

CONCLUSIONS

How does the brain transform sensory stimuli into perceptual
experiences? And how does it generate an internal model of the
world? These are questions that have puzzled philosophers since
the dawn of civilization. Neuroscientists have in the past decades
started to formulate theories on how the brain might generate
consciousness, yet all theories are lacking in terms of specific,
circuit-level mechanisms. Theories focused on addressing the
hard problem of consciousness (e.g., IIT) provide a foundational
framework of the properties a conscious system needs to possess,
but do not specify how this is reflected in terms of neuron-
level (micro)circuits. The same is true for neurophysiology-
based theories (recurrent processing, GNW, PC framework).
General, mesoscopic-scale principles have been outlined, yet
very limited insight is provided about the corresponding
single-neuron correlates. Irrespective of one’s philosophical
or theoretical stance (see the debate between Chalmers and
Dennett), this is a key question which was until recently not

addressable, but that developments in neurotechnology make
within reach.

While functional long-range feedback projections are
generally agreed to be closely associated to the presence of
consciousness, recent studies have begun to indicate that not
all feedback (not even within the cortex) may play the same
role. The precise function of feedback has proven to be elusive
even for phenomena (such as DD) that have historically been
considered dependent on feedback. In order to eventually
understand consciousness, therefore, two questions must be
addressed: which forms of feedback support consciousness—and
are not just a correlate of it? And how do they operate, at the
microcircuit level?

Answering these questions will make it possible to
eventually test the mechanistic role of feedback connections
in generating consciousness. Is proper feedback sufficient
to generate consciousness, or only necessary, provided that
other conditions are met? If proper feedback were sufficient
to generate consciousness in information processing systems,
any biological or artificial device would have the potential for
being conscious (although so far only brains may have achieved
the right form of feedback). Although certain configurations
of feedback projections are most likely essential to achieve
functions normally associated with consciousness—Chalmer’s
easy problems, but see also Dehaene et al. (2017)—we concur
with Tononi and Koch (2015) that merely reproducing a
function does not imply possessing consciousness (Tononi
and Koch, 2015; Tononi et al., 2016). Thus, while a computer
simulation with a proper, yet virtual, form of feedback would
likely be able to match conscious systems from a functional
point of view, we surmise that a proper physical substrate is a
pre-requisite to achieve real consciousness, i.e., experience—see
Tononi and Koch (2015) for an in-depth discussion on
the topic. Rather, we support the hypothesis that proper
feedback projections are necessary to achieve consciousness
in computational systems (neuron-based, artificial, etc.),
but only if these possess an appropriate physical substrate
(Tononi and Koch, 2015; Tononi et al., 2016). Nevertheless,
these fascinating questions can only be achieved after a
deeper understanding of the role of feedback projections in
conscious processing. This will finally allow, we believe, to
unveil the mystery which the mechanisms of consciousness
still represent.
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