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Microglial cells, which are highly plastic, immediately respond to any change in
the microenvironment by becoming activated and shifting the phenotype toward
neurotoxicity or neuroprotection. The polarization of microglia/macrophages after spinal
cord injury (SCI) seems to be a dynamic process and can change depending on the
microenvironment, stage, course, and severity of the posttraumatic process. Effective
methods to modulate microglia toward a neuroprotective phenotype in order to stimulate
neuroregeneration are actively sought for. In this context, available approaches that
can selectively impact the polarization of microglia/macrophages regulate synthesis of
trophic factors and cytokines/chemokines in them, and their phagocytic function and
effects on the course and outcome of SCI are discussed in this review.
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INTRODUCTION

Spinal cord injury (SCI) is characterized by numerous pathologic reactions that involve every cell
type of the central nervous system (CNS). The activation of microglial cells, which are the first
to respond to nervous tissue damage, is one of the essential events of posttraumatic reactions
(Gensel and Zhang, 2015). Activated microglia can synthesize not only trophic biomolecules
such as neurotrophins, glutamate transporters, and antioxidants, but also effectors such as nitric
oxide (NO) and pro-inflammatory cytokines that can be potentially neurotoxic (Persson et al.,
2005; Lai and Todd, 2006; Hellwig et al., 2013). In addition to synthesis of many biomolecules,
a phagocytic function of microglia is critically important also due to its essential for the removal
of degenerating/lost neurons and neuroglial cells, and rearrangement or destruction of synaptic
connections (Chen and Trapp, 2016; Jin and Yamashita, 2016; Wolf et al., 2017). Previous studies
have shown that the activation of microglia is not a single phenomenon and that there are several
different “states of activation” when microglia can have a selective neurotoxic or neuroprotective
effect. Given the diversity of microglia functions, the M1/M2 paradigm is a simplified model
that reflects two opposite effects on inflammatory responses. However, one should take into
consideration that the microglia microenvironment in vivo is diverse and its phenotype may rarely
shift directly to the other state.
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MICROGLIA PHENOTYPES

To date, several states of microglia polarization have been
described: they are classic activation (M1), alternative activation
(M2a), alternative type II activation (M2b), and acquired
deactivation (M2c). A number of investigators question whether
microglia can acquire an M3 phenotype (Malyshev and Malyshev,
2015; Walker and Lue, 2015). A number of principal studies
have identified which markers are specific for classically
or alternatively activated microglia (Martinez et al., 2006;
Martinez et al., 2013).

M1 microglia are capable of producing active oxygen species
that promote a respiratory burst, as well as produce cytokines
such as tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-
12, thereby mediating inflammatory tissue damage (Liu et al.,
2018). M1 microglia are involved in secondary damage after
SCI, producing proinflammatory molecules and the formation
of a glial scar, which, in turn, creates an environment at the
site of injury that is adverse for neuroprotection. Therefore, this
phenotype is commonly referred to as neurotoxic (Shechter and
Schwartz, 2013; Fan et al., 2016). The phagocytic activity was
shown to be inhibited in M1 polarization (Durafourt et al., 2012);
at the same time, M1 microglia regulate synaptic pruning and
labeling synapses for phagocytosis (Schafer et al., 2012).

Alternative activation is subdivided into two subcategories:
M2a and M2b. M2à microglia are considered to respond to
IL-4 and IL-13; to have an increased phagocytic activity; to
produce an insulin-like growth factor-1, trophic polyamines,
and anti-inflammatory cytokines such as IL-10; and to express
G-CSF, GM-CSF, and CD209 (Martinez and Gordon, 2014;
Franco and Fernandez-Suarez, 2015; Peferoen et al., 2015). The
microglia of this type can eliminate cellular debris and stimulate
tissue regeneration. M2b microglia are induced by ligation
of immunoglobulin Fc-gamma-receptors that results in IL-12
expression, increased IL-10 secretion, and HLA-DR expression.
This phenotype is also characterized by active phagocytosis and
an increased expression of CD32 and CD64, which are detected
in the cerebral microglia in Alzheimer’s disease (Peress et al.,
1993). M2c (acquired deactivation) polarization can be caused
by the anti-inflammatory cytokine IL-10 or glucocorticoids,
an increased expression of transforming growth factor (TGF),
sphingosine kinase (SPHK1), and CD163, a membrane-
bound receptor for haptoglobin/hemoglobin complexes
(Wilcock, 2014). The polarization of microglia/macrophages
toward the M2 phenotype occurs to resolve inflammation and
degeneration as a whole; thus, this phenotype is characterized as
neuroprotective. It is worth noting, however, that although the
M2 phenotype of microglia/macrophages plays a positive role in
neuroregeneration processes, it has an absolutely opposite role in
the case of neoplastic processes in the CNS and has a pro-tumor
action (Wu and Watabe, 2017).

A similar pattern of polarization is involved in peripheral
macrophages that actively migrate after injury when the
blood–brain barrier is damaged. It should be noted that
most researchers do not distinguish between microglia and
macrophages, subsuming them into the same cell population
and using pan markers for their identification. This might be

due to the lack of highly specific markers for resident microglia
and macrophages migrating toward a site of injury (Franco and
Fernandez-Suarez, 2015; Martin et al., 2017).

BEHAVIOR OF
MICROGLIA/MACROPHAGES IN SPINAL
CORD INJURY

It has been previously shown that microglia are activated
within the first 24 h after SCI. In the acute period,
polarization shifts primarily toward M1 microglia, which
release proinflammatory cytokines and chemokines. This
results in progression of inflammatory processes after primary
mechanical injury (Lee et al., 2009; Nakajima et al., 2012). Shortly
thereafter (2–3 days post-injury, dpi), blood monocytes that
subsequently differentiate into macrophages phenotypically
and morphologically indistinguishable from activated microglia
migrate toward the site of injury (Donnelly and Popovich, 2008;
Beck et al., 2010). The appearance of M2 microglia/macrophages
and their secretion of anti-inflammatory cytokines and
chemokines results in inhibiting excessive inflammatory
reactions around the site of injury and stimulating regeneration
of damaged spinal cord tissues (Gratchev et al., 2008; Varnum
and Ikezu, 2012; Shechter and Schwartz, 2013; Weisser et al.,
2013). M2 microglia/macrophages are shown to possess an
increased phagocytic activity that promotes clearance of
posttraumatic debris, leading to accelerated demyelination
and resolution of the initial traumatic events (Redondo-
Castro et al., 2013; Lampron et al., 2015; Orihuela et al., 2016;
Akhmetzyanova et al., 2018).

The primary phase of microglia/macrophage activation peaks
on 7 dpi; microglia are reactivated after 14 dpi and then
peak on 60 dpi and remain for up to 180 dpi (Beck et al.,
2008; Conta and Stelzner, 2008; Kigerl et al., 2009; Bellver-
Landete et al., 2019). M1 and M2 microglia/macrophages co-
exist at the injury site within the 1st week after SCI, with M1
cells prevailing. However, other researchers have demonstrated
that there were no M2 cells and the population of M1 cells
significantly decreased after 28 dpi (Kigerl et al., 2009; Francos-
Quijorna et al., 2016). These results confirm data on the
population of ED1+ phagocytic macrophages/microglia, which
peak by day 7 after SCI, significantly decreasing by 28 dpi
and abruptly increasing again by 90 dpi (Beck et al., 2010).
At the same time, Bellver-Landete et al. (2019) showed that
activated, proliferating microglia play an important role in
the healing process, having a positive effect on tissue sparing
and functional recovery after SCI, and this effect persists for
5 weeks after SCI.

These phases of microglia/macrophage activation in SCI
can be paralleled with changes observed in the population
of macrophages when other tissues and organs are damaged.
For example, at the end of the remodeling phase when the
main healing processes are completed, macrophages are
deactivated, and inflammation resolves. The behavior of
microglia/macrophages whose number reduces significantly
though variably by 2–4 weeks after SCI is possibly the same.
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With effective healing, the level of macrophages in non-nervous
tissues returns to normal within several weeks after injury in
parallel with its healing. On the contrary, wounds that do not
heal within 3 months result in a stable activation of macrophages
that is a distinctive feature of chronicity (Sindrilaru et al., 2011).
In turn, we observed a similar picture during the second phase of
microglia/macrophage activation that seems to be triggered by
ongoing neurodegeneration in response to which re-activation
of these cells prevents a subsequent loss of function.

The polarization of microglia/macrophages after SCI seems
to be a dynamic process and can be altered depending on the
microenvironment, the stage of the posttraumatic process, and
its severity (Kigerl et al., 2009; David and Kroner, 2011). This
phenomenon has been demonstrated in several studies and has
shown that the behavior of microglia/macrophages depended
on the factors of activation, in particular, the type of cells that
activated them and the specific activating molecule (Nakajima
and Kohsaka, 2002; Nakajima and Kohsaka, 2004; Stout and
Suttles, 2004; Shaked et al., 2005; Lai and Todd, 2006; Nakajima
et al., 2006; Menzies et al., 2010). An effective method to
modulate microglia toward a neuroprotective phenotype in order
to stimulate neuroregeneration is actively sought for in addition
to investigation into the factors of activation. For this purpose,
new approaches are being developed and different biomolecules
potentially possessing a selective effect on the polarization of
microglia/macrophages regulate their synthesis of trophic factors,
cytokines/chemokines, and a phagocytic function tested. The
latter can be achieved by affecting the signaling pathways that
control microglia activation and polarization, discussed in the
following section.

MICROGLIAL SIGNALING PATHWAYS

It is now increasingly evident that there are various ways of
activation for microglia that determine the generation of cells
with divergent abilities (Figure 1). Toll-like receptors (TLRs) are
a class of transmembrane receptors involved in the activation
of cell-mediated immune response. Out of more than 10 TLRs,
identified in both rodents and humans, microglia express at least
9 TLRs along with their adapter proteins (Laflamme et al., 2001;
Bsibsi et al., 2002; Dalpke et al., 2002; Olson and Miller, 2004;
Zhang et al., 2013). Previous studies have demonstrated TLR-
dependent microglia activation in neurodegenerative disorders
and different types of CNS injury (Heneka et al., 2005; Fernandez-
Lizarbe et al., 2009; Song et al., 2011; Yao et al., 2013).
A classical/canonical activation of the nuclear factor κB (NF-
κB) signaling, which is essential for both acute and chronic
inflammatory responses, is initiated by TLRs, as well as other
cell surface receptors, including those for IL-1 and TNF (Shih
et al., 2015; Noort et al., 2015). The activated NF-κB allows
translocation to the nucleus that results in production of anti-
inflammatory cytokines, release of reactive oxygen species (ROS),
and microglia modulation toward the M1 phenotype (Pan et al.,
2010; Taetzsch et al., 2015; Zhang et al., 2017). The activation of
NF-κB transcription factors also plays a key role in neurogenesis,
synaptic plasticity, and protection of neurons (O’Riordan et al.,

2006; Ahn et al., 2008; Koo et al., 2010). Therefore, NF-κB should
be selectively inhibited in microglia and possibly in astrocytes
in order to neutralize its neurotoxic role and maintain the
neuroprotective one (Brambilla et al., 2005; Crosio et al., 2011;
Frakes et al., 2014).

In the presence of inflammation, microglia are activated
by means of phosphorylation of p38 mitogen-activated protein
kinase (p38/MAPK) and extracellular signal–regulated kinases
(ERKs), thereby enhancing phagocytosis, chemotaxis, and the
expression of proinflammatory cytokines (Wang et al., 2011; Fan
et al., 2017). At the same time, the phosphorylation of p38/MAPK
inhibited ULK1 kinase activity and reduced autophagy, allowing
the full induction of the inflammatory process during microglia
activation (He et al., 2018). The activation of glial cells and
the p38/MAPK signaling pathway was demonstrated to be
involved in the development of a chronic neuropathic pain that
affects up to 80% of patients with SCI (Finnerup et al., 2001;
Crown et al., 2008; Detloff et al., 2008). Therefore, p38/MAPK
inhibitors are intensively used to reduce activation of the spinal
microglia, to prevent/reverse the neuropathic pain symptoms and
neuroinflammation in general (Rojewska et al., 2014; Cheng et al.,
2015; Kim et al., 2016; Taves et al., 2016).

A phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt)/mammalian target of rapamycin (mTOR) signaling
pathway that is involved in neuropathic pain progression, as well
as astrocyte and microglia activation, is known. Its inhibition
reduces the ability of microglial cells to migrate and their
number in the site of neurodegeneration (Guo et al., 2017).
PI3K/Akt/mTOR is triggered through the CD74 receptor, whose
activation is promoted by a macrophage migration inhibitory
factor (MIF). The use of MIF suppresses the microglia M1
activation and mitigates the severity of secondary injury around
the lesion site in the murine dorsal hemisection model of SCI
(Emmetsberger and Tsirka, 2012). At the same time, there is
quite contradictory evidence that this pathway affects the shift of
the microglia/macrophage phenotype toward M1 or M2 stages
(Wang G. et al., 2015; Wang et al., 2016). Therefore, the role
of the PI3K/Akt/mTOR pathway in microglia activation and
neuroregeneration as a whole following SCI is still controversial
(Kanno et al., 2012; Chen et al., 2016). Some researchers relate
this to the possibility of isoform-specific cross-talk between
PI3K, Akt, and mTORC (Vergadi et al., 2017).

There are natural (phosphatase and tensin homolog deleted on
chromosome 10, PTEN) and artificial (ZSTK474, NVP-BEZ235,
LY294002, PI828, etc.) inhibitors of the PI3K/Akt/mTOR
signaling pathway. PTEN is a lipid and protein phosphatase that
has dual substrate specificity and serves as the main negative
regulator of PI3K and the PI3K/Akt/mTOR signaling pathway
by converting phosphatidylinositol (3,4,5)-trisphosphate (PIP3)
into phosphatidylinositol (4,5)-biphosphate (P1P2). In a model of
chronic peripheral nerve injury, the PTEN gene overexpression
resulted from its delivery with an adenoviral vector (Ad5-
PTEN) in the spinal cord. It significantly reduced activation
of microglia and astrocytes and prevented a neuropathic pain
(Huang et al., 2015). At the same time, such microglia modulation
in neurotrauma therapy can negatively affect regeneration as
the PTEN expression has been shown to be able to attenuate
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FIGURE 1 | Microglial signaling pathways determining development of cells with divergent abilities. Classical activation of the NF-κB signaling is initiated by TLRs, as
well as other cell surface receptors, including specific IL-1 and TNF, and provides M1 polarization of microglia. PI3K/Akt/mTOR is triggered through the CD74
receptor, whose activation is promoted by MIF. There is quite contradictory evidence that this pathway affects the shift of the microglia/macrophage phenotype
toward M1 or M2. Anti-inflammatory cytokines IL-10 and IL-4 induce STAT3 and STAT6 phosphorylation, respectively, via JAK1, which promotes polarization toward
the M2 phenotype. The activation of STAT1, in turn, leads to polarization toward a neurotoxic M2 phenotype of microglia. Normally, there is a balance between the
activation of STAT1 and STAT3/STAT6 that strictly regulates the microglia polarization and activity.

neuroprotection and lead to an impairment of axonal growth
in particular (Zukor et al., 2013; Ohtake et al., 2014; Yin et al.,
2018). Thus, the system regulation at the level of this enzyme is a
quite dangerous process leading to disarrangement of oppositely
directed processes.

A Janus tyrosine kinase (JAK)/signal transducer and activator
of transcription (STAT) signaling pathway is one of the most
important cascades triggered in response to many modulators
of inflammation. Most studies focused on activation of the
JAK/STAT3 signaling pathway in the case of neoplastic activity
of microglia/macrophages (Zhang et al., 2009; Zhang et al.,
2011; Oliva et al., 2012; Koscsó et al., 2013; Popiolek-Barczyk
and Mika, 2016). As for microglia/macrophage modulation
after SCI, anti-inflammatory cytokines IL-10 and IL-4 induce
STAT3 and STAT6 phosphorylation, respectively, via JAK1,
and promote polarization toward the M2 phenotype (Koscsó
et al., 2013; Wang et al., 2014; Cianciulli et al., 2015; Popiolek-
Barczyk and Mika, 2016). Activation of STAT1 and NF-κB
transcription factors leads, in turn, to polarization toward
a neurotoxic phenotype of microglia/macrophages. There is
normally a balance between the activation of STAT1 and

STAT3/STAT6 that strictly regulates the microglia/macrophage
polarization and activity.

STAT3 is recognized as the main mediator of IL-6 and IL-17
functions (Camporeale and Poli, 2012). There are two main types
of IL6 signalization: pro-inflammatory and anti-inflammatory.
In microglia, the IL-6 pro-inflammatory signaling pathway
is carried out through gp-130, which acts as an antagonist
sequestering IL-6 (Hodes et al., 2016). Results obtained by Ma
et al. (2010) indicate that SOCS3 can function as a negative
regulator of NF-κB, p38 MAPK, and JNK signaling; moreover,
an important role for SOCS3 in the regulation of IL-17 and
IL-6/R-dependent induction of IL-6 was elucidated. Guerrero
et al. (2012) demonstrated that classical microglia activation
in mouse SCI could be inhibited by IL-6 blockade. Redondo-
Castro et al. (2013) used glibenclamide, an inhibitor of ATP-
sensitive potassium channels KATP to relieve a neuropathic
pain in rats with SCI. The inhibition of IL-17, as a mediator
of microglia activation, when injecting hyperforin enabled
microglia polarization toward the M2 phenotype (Ma et al.,
2018). Although studies to inhibit individual mediators of
microglia activation demonstrate certain positive changes in
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some neurodegenerative disorders, they cannot completely
neutralize the neurotoxic potential of these cells that is related
to their possible activation by means of a common regulator in a
signaling cascade.

DIFFERENT APPROACHES TO
MODULATION OF
MICROGLIA/MACROPHAGES

Supplementary Table 1 contains published data available on the
different approaches to modulation of microglia/macrophages
in vitro and in vivo.

Receptor-Mediated Modulation
Peroxisome proliferator-activated receptor (PPARγ) is a key
regulator of the microglia/macrophage M2 phenotype. It is a
nuclear receptor capable of modulating inflammatory processes
and controlling lipid and lipoprotein metabolism as well as
glucose homeostasis (Chinetti et al., 2003; McTigue, 2008).
PPARγ was shown to be immediately induced in monocyte
differentiation into macrophages (Chinetti et al., 1998). In
addition, activation of PPARγ signaling can suppress an
inflammatory response by inhibiting NF-κB (Zolezzi et al., 2017).
Therefore, PPARγ is described as the main anti-inflammatory
regulator of macrophages (Ahmadian et al., 2013). Han et al.
(2017) demonstrated that 6-Shogaol, a pungent constituent
extracted from Zingiber officinale Roscoe can enhance PPARγ

expression. Also, the addition of 6-Shogaol to an in vitro
microglia culture could reduce the lipopolysaccharide-induced
(LPS) expression of proinflammatory factors TNF-α, IL1β, IL6,
and PGE2 as measured using ELISA. The use of a PPARγ

agonist, rosiglitazone, was shown in vitro with PCR and flow
cytometry to lead to monocyte modulation toward the M2
phenotype (Bouhlel et al., 2007). Additionally, in a murine brain
injury model intravenously injected PPARγ activator, malibatol
A, an anti-oxidant extracted from Hopea hainanensis, could shift
the microglia phenotype toward M2 (Pan et al., 2015). Wen
et al. (2018) compared the effects of intraperitoneal injections
of the PPARγ agonist, rosiglitazone, and the PPARγ antagonist,
GW9662, in a lateral fluid percussion injury model in mice. Using
ELISA, real-time PCR and immunohistochemistry, they observed
that 72 h after injury, expression levels of proinflammatory
cytokines TNF-α, IL-1β, and IL-6 were significantly higher and
that of anti-inflammatory IL-10 was lower in the group treated
with GW9662. Further in vitro experiments in a primary culture
of mouse microglia were conducted and results demonstrated
that rosiglitazone increased the expression of M2 markers
(CD206 and YM-1) and decreased that of M1 markers (TNF-α,
IL-6, IL-1β, and IL-10). Interesting results were obtained by Park
et al. (2007) using pioglitazone in a rat model of SCI. They showed
that intraperitoneal injection of pioglitazone causes a decrease
in the number of reactive macrophages, attenuates myelin loss,
and improves functional recovery from SCI. The results of
this study were confirmed by McTigue et al. (2007), where
the rat electromagnetic SCI model again showed pioglitazone’s

ability to reduce the number of activated phagocytic microglia
by 7 dpi.

Neuropeptides Y (NPY), Y1 receptor activators, suppress
the innate immune response by reducing the release of
interleukin-1β and NO, migration, and phagocytosis of activated
microglial cells (Farzi et al., 2015). NPY were demonstrated
to significantly restrain the microglia activation by inhibiting
LPS-induced Fc-receptor-mediated phagocytosis (Ferreira et al.,
2012). Macrophage antigen complex-1 receptor (MAC1R), a
molecule mediating the macrophage activation in response to
various stimuli, plays an important role in phagocytosis (Le
Cabec et al., 2002). In fact, MAC1R is a key receptor for
both toxins and classic acute-phase reactants such as fibrinogen,
which activate microglia/macrophages manifesting in enhanced
phagocytic activity and a release of ROS (Adams et al., 2007; Pei
et al., 2007). The investigation of the role that NPY and MAC1R
play in regulation of phagocytic activity of microglial cells is
promising and requires further research.

Rapamycin, an inhibitor of the mTOR receptor in mammals, is
involved in numerous cellular processes such as neuroprotection
in neurodegenerative disorders (Ravikumar et al., 2004;
Malagelada et al., 2010) and neuroregeneration after cerebral
injury and SCI (Erlich et al., 2007; Kanno et al., 2012).
Rapamycin inhibits the mTOR pathway by preventing the
activation of p70S6K protein kinase (Schmelzle and Hall, 2000).
Rapamycin neuroprotective properties are due to its ability
to stimulate autophagy (Ravikumar et al., 2004; Malagelada
et al., 2010). It is also involved in suppression of microglia
activation and reduction of inflammation in the CNS by selective
inhibition of the mTORC1 complex (Russo et al., 2009). In vivo
studies using rat SCI model showed the ability of rapamycin to
attenuate microglial activation and neuroinflammation processes
by reducing the number of M1 cells and, as a result, TNF-α
production (Chen et al., 2013; Song et al., 2015). However,
Eldahan et al. (2018) caution against the use of rapamycin as
a therapeutic intervention for SCI due to its toxic effects and
exacerbation of cardiovascular dysfunction.

FTY720 is an agonist of the S1P receptor and a derivative
of ISP-1 (myriocin), a metabolite of the Chinese fungus Iscaria
sinclairii, as well as a sphingosine structural analog. This
is a novel immunomodulator that promotes transplantability
in numerous models by inhibiting lymphocytes. FTY720
plays the role of a switch in the polarization of microglia
from M1 to M2 through the STAT3 protein activation that
has been established in a white matter ischemic injury
model (Qin et al., 2017). The results obtained also provide
evidence that FTY720 has a protective effect against structural
damage to the nodes of Ranvier and demyelination after
hypoperfusion. It should be noted that, in some cases,
FTY720 was effective in treating SCI but did not affect the
activation of microglia/macrophages (Norimatsu et al., 2012;
Wang J. et al., 2015).

Cytokines/Chemokines
Cytokines play an important role in posttraumatic processes; in
particular, microglia cells can influence healing by controlling
levels of some of them. Activating and blocking agents to
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modulate inflammatory processes for most of these cytokines
are under development. For example, IL-4 is considered the
strongest polarizing cytokine for M2a microglia response. In
the IL-4R-deficient mice SCI model, there was a decrease in
the production of anti-inflammatory cytokines such as arginase,
IL-1, and CCL2, which indicates the predominance of M1
microglia (Fenn et al., 2014). A single intraspinal injection of
IL-4 48 h after SCI was shown to be sufficient to switch the
microglia phenotype toward M2 and, what is more important,
it was associated with improved functional recovery in mice
with an SCI (Francos-Quijorna et al., 2016). Interestingly, in
response to exposure, IL-4 can modulate the morphology of
microglia in vitro from amoeboid (activated) to a more ramified
(quiescent) one associated with a more activated phenotype; at
the same time, IFN-γ and GM-CSF have the opposite effect
(Rostam et al., 2017).

IL-6 is a key factor triggering inflammation after SCI; it
also promotes microglia M1 activation (Bethea and Dietrich,
2002). An IL-6 blocking agent—monoclonal anti-mouse receptor
antibody IL-6 (MR16-1)—administered into the site of SCI in
mice promoted alternative M2 microglia activation and resulted
in improved tissue integrity as well as an increased number of
myelinated fibers (Guerrero et al., 2012). Moreover, inhibition
of the EGFR/MAPK pathway that suppresses microglia
activation and associated cytokine production decreases
neuroinflammation-related secondary damage and thereby
provides neuroprotection in rats after SCI (Qu et al., 2012). It
is thought that EGFR can be a therapeutic target and inhibitors
C225 and AG1478 have the potential to be used in the treatment
of SCI (Qu et al., 2012). Chemokine CCL21 neutralization was
also shown to reduce microglia M1 activation and to cause
neuronal hyperexcitability of lateral posterior thalamic nuclei
(Zhao et al., 2007).

IL-6 is a key cytokine accelerating the IL-17 production
(Camporeale and Poli, 2012). IL-17 is a well-known
proinflammatory cytokine associated with M1 activation of
microglia (Kim and Moalem-Taylor, 2011; Zong et al., 2014).
The inhibition of IL-17 as a mediator of microglia activation after
hyperforin injection promoted microglia polarization toward
the M2 phenotype in a murine acute cerebral mechanic trauma
model (Ma et al., 2018). TGF-β1 is a polypeptide component of a
transforming cytokine factor. It was shown in an in vivo murine
stroke model that cerebro-ventricular injections of TGF-β1
promoted microglia M2 activation as well as improvement of
functional recovery in mice (Taylor et al., 2017).

MicroRNA
Lately, special emphasis is being given to the role that miRNA
plays in the pathogenesis of many diseases including diseases
of the CNS. It has been shown that miRNA administration
can be an effective therapeutic approach to the management of
neurodegenerative processes. MiRNAs regulate the expression
of a great number of genes by stimulating RNA interference
pathway degradation or by preventing the translation of
target genes. High miR-124 levels were reported in resident
cerebral and spinal microglia, as well as their activation
in vitro and in vivo to promote a decreased miR-124

expression (Ponomarev et al., 2011). miR-124 is considered
to regulate the activity of microglia/macrophages by down-
regulating the expression of CCAAT-enhancer-binding protein-
α, a transcription factor regulating the differentiation of myeloid
cells. Therefore, high miR-124 levels are thought to be required
to maintain microglia in a quiescent state. Willemen et al. (2012)
demonstrated that intrathecally injected miR-124 promoted
the maintenance of microglia in this quiescent state and
alleviated chronic posttraumatic processes in the spinal cord
of rats with hyperalgesia. Im et al. (2012) reported similar
results when injecting miR-23b intrathecally to mice in a
neuropathic pain model. Based on their results, a return
of miR-23b to normal levels decreased the expression of
inflammatory proteins, reduced the number of Iba1+ cells
in the spinal cord tissue, and alleviated a neuropathic pain
resulting from SCI.

Cell Cycle Modulation
It was found that exposure on a cell cycle course can also
modulate cell phenotype. There were changes in cell cycle
course following SCI and effects of systemic administration
of delayed (24 h) flavopiridol, an inhibitor of major cyclin-
dependent kinases, on functional recovery and histopathology
in a rat SCI model (Wu et al., 2012). The treatment with
flavopiridol attenuated the number of Iba-1+-microglia in the
intact tissue and, as a result, increased the myelinated area of the
white matter. Moreover, flavopiridol attenuated the expression
of Iba-1 and glactin-3, associated with microglia M1 activation
and astrocyte reactivity by reducing the GFAP, NG2, and
CHL1 expression.

Neurotrophic Factors
Although there are numerous approaches to modulate microglia
in the CNS, the search for new approaches to effective
polarization strictly toward a neuroprotective phenotype and
introduction of results into clinical practice is still relevant.
Neurotrophic factors are molecules that increase the potential
of nervous system cells to proliferate, survive, migrate, and
differentiate. For instance, a ciliary neurotrophic factor (CNTF)
exerts a positive effect on reactive M1 microglia, promoting their
survival and activation after intracerebral injection to mice in vivo
(Kahn et al., 1995). However, Rocha et al. (2012) demonstrated
that, on the contrary, a glial cell line-derived neurotrophic factor
(GDNF) inhibited the activation of reactive M1 microglia in vitro
(Rocha et al., 2012).

Selective modulation of microglia with recombinant
adenoviruses carrying the GDNF gene in vivo seems
promising. Zhuravleva et al. (2016) demonstrated that
microglia transduction with an adenovirus encoding for
GDNF (Ad5-GDNF) promoted a reduced phagocytic activity
of these cells. We have conducted a study to evaluate
effects of Ad5-GDNF transduction on the morphology
and phenotype of microglial cells as well as effects of
transplanting these cells on posttraumatic processes in the
rat spinal cord. It was shown that microglia transduction
with Ad5-GDNF down-regulated expression of CD45, but
their transplantation into the site of a rat SCI did not
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increase the area of intact tissue as compared to similar
transplantation of Ad5-EGFP microglia with fair phagocytic
activity (Akhmetzyanova et al., 2018).

Physical Methods
Repetitive transcranial magnetic stimulation of the motor cortex
was shown to reduce microglia M1 activation after SCI and
alleviated symptoms of neuropathic pain and allodynia (Kim
et al., 2013). A method of physical exposure to alleviate
SCI consequences is promising as it is non-invasive and has
few side effects. However, this approach to treatment is just
gaining ground and is not yet fully understood. Therefore a
comprehensive assessment of modulation mechanisms triggered
by a physical exposure is required.

Other Approaches
Lipopolysaccharide is an essential molecular component of the
outer membrane of gram-negative bacteria and is recognized
by an immune system as an invasion marker of bacterial
pathogens. LPS is more often used to induce a potent
immunological response and activate microglia/macrophages.
It was found that pre-conditioning of microglia with LPS
48 h prior to transplantation enabled M2 polarization in
mouse SCI (Hayakawa et al., 2014). The results obtained were
evaluated by measuring the expression of mRNA markers
of M1 (iNOS, CD86, and CD16) and M2 (arginase1 and
CD206) microglia.

Histone deacetylases (HDACs) are proteins targeted to
remove acetyl groups from lysine residues of target proteins.
HDAC3 is most commonly found in the brain and is a
regulator of inflammatory processes (Broide et al., 2007).
HDAC3-deficient macrophages have a reduced ability to
activate the expression of inflammatory genes in response to
LPS stimulation (Chen et al., 2012). At the same time, it was
found that HDAC3 is an epigenomic brake in macrophage
alternative (M2) activation (Mullican et al., 2011). Malvaez et al.
(2013) used protein mass spectrometry in the study in vitro to
detect global molecular changes in resident microglia exposed
to RGFP966, a selective HDAC3 inhibitor, by investigating
a signaling pathway through which RGFP966 regulated an
inflammation. They observed that RGFP966 could inhibit
TLR and STAT3/5 signaling pathways of microglia M1
activation and that this resulted in an anti-inflammatory
microglia response manifesting as a reduced expression of
proinflammatory cytokines such as IL-6 and TNF-α (Xia
et al., 2017). This is confirmed by another in vitro study,
where it was shown in a primary culture that treatment with
HDAC inhibitors promoted suppression of the innate immune
activation of microglia (Kannan et al., 2013). A similar study
demonstrated that HDAC3 arrest with the same selective
inhibitor RGFP966 facilitated the shift toward an anti-
inflammatory microglia response that resulted in gaining
a neuroprotective phenotype by these cells and improved
functional recovery in an SCI model in vivo (Kuboyama et al.,
2017). Bromodomain and extraterminal (BET) proteins are
readers of histone acetylation labels, thereby affecting the
transcription of genes and thus playing an important role

in regulation the expression of pro-inflammatory cytokine
expression (Belkina et al., 2013). Sánchez-Ventura et al. (2019)
investigated the influence of BET inhibitor JQ1 in polarizing
microglia on bone-marrow-derived macrophage in vitro
and in vivo in SCI mice and showed that JQ1 promotes
polarization of microglia toward the M2 phenotype, reducing
the expression of pro-inflammatory cytokines IL-6, IL-1β, and
TNF-α and increasing the expression of anti-inflammatory
cytokines Arg1 and CD206.

It was shown that an early administration of minocycline, a
known anti-inflammatory agent, inhibiting poly (ADP-ribose)
polymerase-1 (PARP-1), which both promotes cell death and
inhibits microglia activation and an inflammation in general,
can reduce a degree of neuronal hyperexcitability for up to
4 weeks after SCI (Alano et al., 2006; Tan, 2009). In addition,
minocycline-loaded polymeric nanoparticles (NPs) injected into
the site of an SCI can selectively target activated microglial cells
and modulate their phenotypes toward the anti-inflammatory
one by inhibiting PARP-1 and matrix metalloproteinases 2 and
9, which improves the course of secondary traumatic processes
in a murine SCI model. The treatment with minocycline-
loaded NPs resulted in a reduced activation and decreased
proliferation of microglia around the site of injury. As a result,
the decreased number of cells with a phagocytic phenotype
switched toward quiescent microglia with a low CD68 staining
level. The treatment with these particles appeared effective
for 15 post-injury days and was related to a prolonged anti-
inflammatory stimulus associated with microglia activation (Papa
et al., 2013). Another study demonstrated that the administration
of minocycline-loaded NPs in an acute period following trauma
in a murine SCI model could effectively modulate resident
microglial cells from M1 to M2 phenotype, which reduced a
proinflammatory response, restored the nervous tissue integrity,
and improved behavior test scores for up to 63 post-injury days
(Papa et al., 2016).

CONCLUSION

Although there are many studies aimed at elucidating
mechanisms of microglia/macrophage modulation, their
phenotype, and role in various pathologies, currently, no effective
methods to modulate microglia toward a neuroprotective
phenotype in order to stimulate neuroregeneration are employed
in clinical practice. In addition, there is an urgent need to develop
a highly specific panel of markers for resident microglia and
macrophages migrating to a site of pathology, as well as complete
elucidation of every external (specifically activating molecules
secreted by surrounding cells) and internal factor (signaling
pathways) affecting the modulation of their phenotype.
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