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One fundamental feature of consciousness is that the contents of consciousness
depend on the state of consciousness. Here, we propose an answer to why this
is so: both the state and the contents of consciousness depend on the activity
of cortical layer 5 pyramidal (L5p) neurons. These neurons affect both cortical and
thalamic processing, hence coupling the cortico-cortical and thalamo-cortical loops
with each other. Functionally this coupling corresponds to the coupling between the
state and the contents of consciousness. Together the cortico-cortical and thalamo-
cortical loops form a thalamo-cortical broadcasting system, where the L5p cells are
the central elements. This perspective makes one quite specific prediction: cortical
processing that does not include L5p neurons will be unconscious. More generally, the
present perspective suggests that L5p neurons have a central role in the mechanisms
underlying consciousness.

Keywords: consciousness, thalamus, pyramidal neurons, dendrites, unconscious processing, state
of consciousness

INTRODUCTION

Each of us can be fully conscious, have a dream, be in deep sleep or be anesthetized. These are
typical states of consciousness. On the other hand, we can be conscious of a dog, a paper, coconut
taste, itch etc. These are examples of the contents of consciousness (from among a world of different
possibilities). Unfortunately for consciousness research, the state of consciousness is mostly studied
separately from the contents (Bachmann and Hudetz, 2014). The research done on the state of
consciousness mainly revolves around the thalamus and thalamocortical interactions (reviews:
Laureys, 2005; Alkire et al., 2008; Schiff, 2010). On the other hand, the search for the correlates
of the contents of consciousness is mostly focused on cortical processing (reviews: Rees et al., 2002;
Dehaene and Changeux, 2011; Koch et al., 2016).

However, one basic fact about consciousness is that the state of consciousness can never be
dissociated from the contents of consciousness. One cannot be conscious of the coconut taste while
being in an unconscious state. And the other way around: in typical healthy subjects, one cannot
be in a conscious state while not being conscious of anything at all1. In other words, contents
of consciousness and states of consciousness make up an integrated whole. Studying one while
disregarding the other can only provide half of an answer.

1Here one might want to suggest that during some forms of meditation people can be conscious without being conscious of
anything, but even if one agrees with this claim, the length of the necessary training demonstrates how hard it is to separate
the state and the contents of consciousness. Furthermore, it is possible to say that the ‘‘emptiness’’ of conscious experience
itself is a content (according to set theory, an empty set is a subset of all sets).
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The intertwinement of state and contents of consciousness is
a well-known issue in consciousness research (e.g., Hohwy, 2009;
Bachmann, 2012; Bachmann and Hudetz, 2014; Mashour and
Hudetz, 2017). However, it is currently unclear why contents and
state of consciousness have to be so tightly coupled in the first
place. In this work, we highlight a clear neurobiological correlate
for this intertwinement. Namely, cortical layer 5 pyramidal
(L5p) neurons participate in both the thalamo-cortical and
cortico-cortical loops and couple these two loops in a unique
way, hence functionally coupling the state and contents of
consciousness (Figure 1). This view reconciles the two traditions
of consciousness research: the tradition of studying the state of
consciousness with the focus on the thalamo-cortical system and
the tradition of investigating the contents of consciousness with
a particular emphasis on the cortico-cortical processing. We will
first very briefly review these two traditions and then explain how
L5p neurons couple the activity patterns of the thalamo-cortical
and cortico-cortical loops.

THALAMO-CORTICAL LOOP AND THE
STATE OF CONSCIOUSNESS

Conscious experience alternates between being present and not
being present, with intermediate states between full absence
of conscious mentation and full presence of clear, vivid and
temporally seamless subjective experience (e.g., sleep, vegetative
state, minimally conscious state, hypnagogic state, fully conscious
state—with varying levels of clarity or degree of experience across
different states of alertness).

The idea that thalamus plays a key role in controlling the
states of consciousness is not new. According to the prevailing
views of the mid-20th century thalamus is part of the reticulo-
thalamic system with two general types of thalamo-cortical
pathways: (1) the so-called specific pathways (SP) which function
as the carriers of afferent information to the cortex [the prime
example is the lateral geniculate nucleus (LGN) for vision];
and (2) the so-called non-specific pathways (NSP) that have no
direct role in transmitting information to cortex, but are capable
of modulating the state of the cortex (Figure 1; Moruzzi and
Magoun, 1949; Jung, 1958; Magoun, 1958; Riklan and Levita,
1969; Doty, 1970; Purpura, 1970; Somjen, 1972; Brooks and Jung,
1973; Brazier, 1977; Hassler, 1978; Smirnov et al., 1978; Singer,
1979; Livingstone and Hubel, 1980; Steriade, 1981a; Mesulam,
1985; Newman, 1995a). Historically, these two types of pathways
were first distinguished based on the identity of the thalamic
nucleus they originated from (LGN would be an example of SP
nuclei, the intralaminar thalamic nuclei are classic examples of
NSP nuclei). However, it later turned out that the projections are
more intermingled (e.g., Jones, 2012; Clascá et al., 2016), hence it
is too simplified to refer to SP and NSP nuclei. In this manuscript
when we refer to NSP thalamus we have in mind these thalamic
cells that project to the superficial and deep layers of the cortex
(see also Figure 1). Such thalamocortical cells mainly reside in
the classic NSP nuclei, but there is much diversity among them2.

2We note that even this division is a simplification, as there also exist thalamo-
cortical projections that have the specific projection pattern (i.e., To layer 4) in one

There are several types of evidence demonstrating that especially
the NSP thalamus is directly involved in controlling the state
of consciousness.

First, alternation of sleep and wakefulness depends on NSP;
for example, intralaminar thalamocortical neurons increase
their firing rate about 10 s before EEG desynchronization in
natural transitions from slow-wave sleep to waking or active
sleep (Steriade, 1981b). At sleep onset thalamic deactivation is
observed first, followed by cortical changes (Magnin et al., 2010).
Recently, Honjoh et al. (2018) showed that stimulation of the
NSP ventromedial (VM) thalamic nucleus awoke mice from
NREM sleep and anesthesia and caused EEG activation in the
high-frequency band.

In addition, virtually all general anesthetics, despite their
differences in neurobiological effects elsewhere, have common
target in the NSP thalamus (Alkire et al., 2000, 2008). If
the NSP thalamus of the anesthetized experimental animals is
electrically stimulated, desynchronization of EEG occurs with
activity patterns typical to the awake brain (Bremer, 1935;
Moruzzi and Magoun, 1949; Brazier, 1977; Munk et al., 1996).
These results are corroborated by the fact that injuries and
tumors localized in the NSP thalamus often cause absence
of consciousness in patients despite the fact that the SP
system has remained relatively intact (e.g., Riklan and Levita,
1969; Penfield, 1975; Kinney et al., 1994; Bogen, 1995a,b;
Newman, 1995b). Taken together, these findings show that
thalamus is in an optimal position to modulate and control
the state and level of consciousness (but see Alkire et al.,
2008; Hudetz, 2012; Mashour, 2014; for counter-arguments
suggesting that the effects in thalamus are only secondary to those
in cortex).

Based on this evidence, thalamo-cortical theories of
consciousness were introduced (e.g., Purpura, 1970; Hassler,
1978; Bachmann, 1984, 1989, 1999; Bogen, 1995a,b; Newman,
1995a; Llinás, 1996; LaBerge, 1997; Purpura and Schiff, 1997;
Tononi and Edelman, 1998; Ward, 2011). As the name suggests, a
thalamocortical theory of consciousness proposes that conscious
experience is based on the interactions between thalamic nuclei
and areas of cortex. According to these theories, there is no
specific area of the cortex that is related to consciousness: it is
the interplay with the thalamus that matters.

CORTICO-CORTICAL LOOP AND THE
CONTENTS OF CONSCIOUSNESS

Since the turn of the century, many leading theories of
consciousness have emphasized the relationship between
consciousness and cortical processing. For example, although
the neural global workspace theory (Dehaene and Naccache,
2001; Dehaene and Changeux, 2011) includes thalamocortical
processing, it has a minor role compared to the cortical
frontoparietal broadcasting system (Dehaene and Changeux,
2011). In addition, the theory that consciousness is related

cortical target area, while having a non-specific projection pattern (i.e., To layers
1 and 5/6) in another (the so-called multi-specific thalamocortical projection cells,
see Clascá et al., 2016).
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FIGURE 1 | Cortical layer 5 pyramidal (L5p) neurons (the black-colored neurons on the image) play a central role in both cortico-cortical and thalamo-cortical loops.
By being central to both loops, they effectively couple them, functionally coupling the state and contents of consciousness. Two types of thalamic projections are
highlighted: specific (SP) and nonspecific (NSP) types of projections that have different cortical projection patterns. The grids on the thalami are illustrative of the fact
that thalamocortical neurons with NSP types of projections can be found in different parts of the thalamus.

to cortical recurrent processing is purely cortico-centric
(Lamme, 2003, 2010). As a final example, the higher order
thought theory of consciousness claims that consciousness is
tightly linked to computations that crucially depend on the
prefrontal cortex (PFC; Lau and Rosenthal, 2011).

Perhaps this change of perspective from thalamus to
cortex was driven by methodological advances: by combining
appropriate experimental approaches with microelectrode
recordings and functional magnetic resonance imaging (fMRI)
much evidence could be gathered about the role of cortical
areas in consciousness. For example, it was shown that during
binocular rivalry the firing of cells in primary visual cortex
was not modulated by conscious experience of the monkey
(Leopold and Logothetis, 1996). In contrast, the firing of
neurons in inferior temporal cortex was stronger when the
preferred stimulus was consciously perceived (Sheinberg and
Logothetis, 1997). This result was celebrated as paving the
way for understanding the neural correlates of the contents of
consciousness. For instance, in the enthusiastic commentary
accompanying the first of the above-mentioned articles, Francis

Crick wrote about the problem of consciousness that ‘‘with a
little luck, we may glimpse the outline of the solution before the
end of the century’’ (Crick, 1996).

In 1998, as one of the first seminal studies about the
neural markers of the contents of consciousness with human
neuroimaging, Lumer et al. (1998) used binocular rivalry and
fMRI to demonstrate that the activity of the frontoparietal
networks is involved in the changes of the content of
consciousness (i.e., the dominating image in rivalry). In a later
study using visual masking (Dehaene et al., 2001) it was revealed
with fMRI that visible words elicited a strong activation of
the frontoparietal network that was not observed when the
same words were made invisible through masking. Based on
these findings the neural global workspace theory (Dehaene and
Naccache, 2001; Dehaene and Changeux, 2011) was established
and became one of the most influential theories of consciousness.

Hence, the experimental techniques combined with
psychophysical paradigms had opened up new a venues for
studying the contents of consciousness. Consciousness research
became dominated by studies done on healthy humans and the
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contents of consciousness. This research has generated many
interesting findings (reviewed in Rees et al., 2002; Dehaene and
Changeux, 2011; Koch et al., 2016) and many controversies
(Aru et al., 2012; De Graaf et al., 2012, for a recent debate see
for example Boly et al., 2017; Odegaard et al., 2017). However,
this focus on the contents of consciousness in humans has left
unanswered the question why these contents of consciousness
are dependent on the state of consciousness. We would like to
demonstrate next how thinking about this issue might also lead
us closer to understanding the neurobiological mechanisms of
consciousness in general.

STATE AND CONTENT OF
CONSCIOUSNESS INTERACT IN LAYER
5 PYRAMIDAL NEURONS

Why are the contents of consciousness dependent on the state
of consciousness? In a nutshell, we claim that thalamo-cortical
and cortico-cortical processes mechanistically interact at the
level of cortical L5p cells, functionally corresponding to the
intertwinement of the state and contents of consciousness. Our
view, thus, has the potential to reconcile the thalamo-cortical and
cortico-cortical theories of consciousness.

From the inspection of the thalamocortical system, it becomes
evident that thalamo-cortical and cortico-cortical loops uniquely
intersect at the level of L5p neurons (Figure 1). L5p cells
participate in both loops by receiving input from and sending
output to both thalamus and cortex (Sherman and Guillery,
2001; Jones, 2012; Harris and Shepherd, 2015). There are at least
two subpopulations of L5p cells and it might be that some of
them (L5A neurons, in upper layer 5) are mainly involved in
cortico-cortical loops whereas others (L5B neurons, in deeper
layer 5) mainly participate in the loop with the NSP thalamic
nuclei (Larsen et al., 2008; Kawaguchi, 2017; Takahashi et al.,
under revision). Thus, as a population, L5p neurons affect both
thalamo-cortical and cortico-cortical processing. It has long
been suspected that these cells also have a central role in the
neural mechanisms underlying consciousness (Crick and Koch,
1992; Angel, 1993; Llinás and Ribary, 2001; LaBerge, 2006;
Meyer, 2015).

Cortical L5p neurons have two functionally distinct sites
of integration, one in the soma (somatic compartment) and
one near the top of their apical trunk (apical compartment;
e.g., Larkum, 2013). This segregation is interesting as the
input to the basal dendrites and the apical tuft are known to
be both functionally and anatomically quite distinct (Larkum,
2013). In particular, the apical tuft receives diverse input from
higher cortical areas and NSP thalamic nuclei whereas the basal
dendrites receive more specific feedforward information from
lower cortical areas (and, in sensory cortex, from thalamic relay
nuclei; Llinás and Ribary, 2001; Jones, 2012; Larkum, 2013).

If basal and apical compartments are depolarized at around
the same time, the probability that the neuron fires a burst of
action potentials is greatly increased (e.g., Larkum et al., 1999;
Larkum, 2013). These bursts have a profound effect on both
cortical and thalamic processing, as a burst makes it more likely

that the spiking of a neuron contributes to learning (Lisman,
1997) and behavior (Takahashi et al., 2016). The NSP thalamic
nuclei have diffuse projection patterns across the entire cortex,
hence a burst firing of a few cortical columns could reach the
whole thalamo-cortical system. For example, it is known that
the secondary somatosensory cortex (S2) can be activated by
L5p neurons in S1 through the NSP thalamus (Theyel et al.,
2010). After chemically deactivating the respective thalamic
nucleus, the activation of S2 was eliminated, suggesting that this
trans-thalamic pathway is a key component for cortical activity
propagation (Theyel et al., 2010). Similarly, there is a circuit from
L5p cells of S1 through the NSP thalamus to the primary motor
cortex (M1; Mo and Sherman, 2019). Thus, the NSP thalamus is
the basis for a thalamo-cortical broadcasting system and L5p cells
are the central elements of it.

The direct relationship between L5p cell activity and the state
of consciousness has been described in Murayama and Larkum
(2009). These authors performed fiberoptic Ca2+ imaging of
the apical dendrites in L5p cells. They compared the effect of
different states of consciousness on the activity of the apical
compartment while delivering brief air-puffs to the hindlimb
of the animal. The apical dendritic response to hindlimb
stimulation was 4-fold stronger in the quiet awake state than
in the anesthetized state. However, when the animal moved its
hindlimb in response to the air-puff, the apical dendritic response
was an astonishing 14-fold stronger than under anesthesia. This
increase in the Ca2+ activity mostly stemmed from a prolonged
duration of the response: when the animal moved its hindlimb,
the apical dendritic response lasted for several seconds. This
result shows that the awake state has an enormous impact on the
activity of L5p apical dendrites (Phillips et al., 2018). Moreover,
while the authors did not interpret their findings in this fashion,
it is also possible to see the interaction between the state and
contents of consciousness in these results. Namely, one way to
interpret the behavior of the animals is that when they reacted to
the air-puff with a movement, they perceived it, whereas when
they did not move in reaction to the air-puff then they did not.
Under this scenario, the massive increase in the duration of
the activity of L5p apical dendrites is reflecting the interaction
between the state and the contents of consciousness.

There is more evidence showing that L5p neurons are
tightly linked to the contents of perception. Takahashi et al.
(2016) found that manipulation of apical dendritic activity
of L5p cells affects the behavioral report of the animal. In
this experiment awake behaving mice learned to detect weak
whisker stimuli of different magnitudes i.e., sometimes at,
sometimes below, sometimes above the detection threshold. This
allowed the researchers to delineate psychometric curves for
whisker stimulation detection and to correlate these curves with
neurometric curves. To monitor the activity of the apical tuft
dendrites the authors performed fast-scanning two-photon Ca2+

imaging. They observed that the Ca2+ signal of apical dendrites
of L5p cells was well correlated with the behavior of the animal.
In addition to aligning with the psychometric curves, the apical
dendritic signals could predict the behavioral hits and misses
of threshold stimuli. Most importantly, directly modulating
the dendritic activity through pharmacological intervention
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or optogenetics had a measurable influence on the detection
behavior of the animal by shifting the psychometric curve.
Optogenetic enhancement of apical dendritic activity also led to
false alarms. In other words, activating the apical compartment
caused the animal to lick as if a whisker stimulus would have
been present. A bold but highly plausible interpretation would be
that the animal experienced an illusory stimulus, just like humans
have been shown to do when expecting a stimulus given some
context (Aru and Bachmann, 2017; Aru et al., 2018).

Interestingly, in the follow-up experiments, it was learned that
the positive relationship between dendritic activity and animal
behavior is largely constrained to the pyramidal cells in layer
5B that project to subcortical regions including non-specific
thalamic nuclei (Takahashi et al., under revision). On the other
hand, layer 5A cells with denser corticocortical projections were
not so tightly correlated with the perceptual report of the animal
(Takahashi et al., under revision). Hence, these findings support
the conclusion that L5p cells, especially those projecting to the
thalamus, are vital for conscious perception.

NON-CONSCIOUS CONTENTS IN A
CONSCIOUS STATE

A framework that proposes how the state and content of
consciousness interact in the brain has to give answers to two
questions. First, why are state and content so tightly bound in
the brain? This question was answered in the first part of this
work: we claim that the intertwinement of state and contents of
consciousness arises at the level of single L5p neurons because
they hold a central position in both thalamo-cortical and cortico-
cortical loops. Second, the theory has to explain the existence
of unconscious processing of contents: if state and content are
bound in the brain, then how can some processing of the contents
be unconscious? This is the question we turn to next.

Mental information processing can proceed also in its
subliminal mode, meaning that not all sensory signals that are
veridically encoded and adequately responded to are consciously
experienced (for reviews, see Tulving et al., 1982; Kim and Blake,
2005; Mitchell, 2006; Kouider and Dehaene, 2007; Riener, 2017).
Only part of the signals carrying contents become conscious.
In fact, consciousness only has access to very specific levels of
representation. Other levels are firmly locked away from it. For
example, we do not have access to the processes that segregate
our surrounding environment into discrete objects. How border
ownership is calculated remains elusive to consciousness—we
only experience the result of it. Similarly, as we speak or write
in sentences we have no conscious experience of how our brain
constructs them, i.e., chooses the words and puts them in the
right order with correct grammar. Hence, conscious experience
is restricted to certain contents and computations.

The present theory offers a natural way to understand this:
all subcortical and cortical processing that does not involve
L5p neurons will remain non-conscious. For example, motor
control is based on the computations of basal ganglia and
cerebellum, which are detached from the loop of consciousness.
Both basal ganglia and the cerebellum have connections to
the thalamus and cortex, which means that the outputs

of the processes happening there can be incorporated into
consciousness, while the computations themselves taking place
within the cerebellum and basal ganglia remain unconscious
(Tononi, 2004).

However, non-conscious processing also happens in cortex.
According to the present view, if the processing does not involve
L5p cells or the apical-dendritic modulation of these cells remains
insufficient, this processing will not reach the NSP thalamus
and will not be conscious. In other words, we make the strong
prediction that cortical processing in itself, when not integrated
with the NSP thalamic nuclei via L5p neurons, is not conscious.
In particular, feedforward cortical processing, where information
is mainly flowing within the cortical superficial layers bypassing
thalamocortical neurons, is non-conscious.

THALAMO-CORTICAL BROADCASTING IN
ACTION

As a closing argument, we wish to demonstrate how the presently
proposed view can explain one central phenomenon often used
in consciousness research. It is well known that conscious
experience has a limited temporal resolution, meaning that if the
presentation of different stimuli occurs too rapidly then some
fail to be consciously experienced. This is evidenced in empirical
phenomena like backward masking (for review, see Bachmann
and Francis, 2013) and attentional blink (for review, see Martens
and Wyble, 2010). Even when an identical stimulus is switched
on and off intermittently at very high frequency, the multiplicity
of stimulus replications will not be consciously perceived and
the stimuli will fuse into a continuous experience (Watson,
1986). This characteristic is tightly related to the previous one:
if conscious perception is based on the processing within the
thalamocortical loop, then it is hard for conscious perception to
resolve anything that happens faster than the processing time of
this loop. In other words, we claim that the temporal resolution of
conscious experience stems from the propagation time between
the L5p neurons, NSP thalamus and higher cortical areas.

In backward masking, two stimuli are presented in quick
succession. Under certain conditions, the second stimulus (‘‘the
mask’’) can completely abolish the first (‘‘the target’’) from
consciousness (Bachmann, 1984, 1994, 2000). Thus, although
the target is presented 50–100 ms before the mask, it is
not consciously perceived. The present theory explains this
phenomenon in the following way. When the first stimulus,
the target, activates L5p neurons, it initiates the thalamocortical
broadcasting loop. However, by the time this activity propagates
from the L5p neurons to the NSP thalamus and back to the apical
dendrites of L5p neurons, the second stimulus, the mask, has
taken over early cortical representation and now ‘‘steals the fire’’
which was started by the target. The target starts the loop, but the
mask benefits from it.

THE FUTURE OF THE PRESENT
HYPOTHESIS

The present conjecture can be directly tested in the rodent
model, where it is possible to directly manipulate the different
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components of the loops depicted in Figure 1. For example,
it is possible to specifically affect the different compartments
of L5p neurons (e.g., Takahashi et al., 2016; Suzuki and
Larkum, 2017). Which elements of the L5p neurons are most
affected by the changes in the state of consciousness? It has
been suggested that anesthesia especially affects the apical
dendritic compartment (Phillips et al., 2018), but there are
several other possibilities too (Meyer, 2015). It is also possible
to specifically target the NSP thalamus (Honjoh et al., 2018)
and to combine this with sensory stimulation. Future studies
using the modern technological toolkit will directly test the
merit of the present proposal. In this sense, the present
ideas are clearly preliminary and will need to be refined,
but the goal here was to propose that future work on the
mechanisms of consciousness should specifically target the
L5p cells.

This work will also inform the measures and theories
of consciousness. In healthy subjects, it has been possible
to show that in deep sleep (Massimini et al., 2005) and
anesthesia (Ferrarelli et al., 2010) there is a breakdown of
effective connectivity. These studies used a combination of
high-density EEG with transcranial magnetic stimulation (TMS).
By perturbing the cortex focally with TMS during conscious
wakefulness the global deterministic brain response reflects
high effective connectivity, i.e., the interactions between brain
regions are invariably complex and extend over space and time.
When the same stimulation is performed during NREM sleep,
however, a qualitatively different pattern emerges. Now the
brain’s response is dominated by bistability and even if the local
bistable response to perturbation is very strong, it fails to engage
the rest of the brain in complex interaction (Massimini et al.,
2005; Ferrarelli et al., 2010).

These two reactivity patterns can be formally quantified
by the perturbational complexity index (PCI; Casali et al.,
2013)—arguably the most successful neuronal measure of
conscious state so far. PCI is inspired by integrated information
theory of consciousness (IIT; Tononi, 2004; Tononi et al.,
2016) and aims to capture both segregation and integration
of neural processing in one measure. It can differentiate
between the conscious state and unconscious state, generalizing
to different types of anesthesia, deep sleep and disorders
of consciousness (Casali et al., 2013). Based on the present
hypothesis we predict that the central reason for why
information integration breaks down in the unconscious state
is to be found on the level of L5p neurons and their
interactions with the thalamo-cortical system. Hence, we hope
that the present work can lead to a better understanding
of the neurobiological mechanisms underlying the measures
of consciousness.

LIMITATIONS

The hypothesis presented in this work has several limitations
mainly related to the anatomy of the cortico-thalamo-cortical
circuits. First, not much is known about human L5p cells.
Recent work (Beaulieu-Laroche et al., 2018) has demonstrated
that dendritic integration is functionally more segregated in

human as compared to rat L5p neurons. Most importantly
for the current purposes, virtually nothing is known about
the projection patterns of human L5p neurons. We do not
know whether similarly to the rodent there are two classes
of L5p neurons that project either to other cortical areas
or NSP thalamus (for rodent data see Larsen et al., 2008;
Kawaguchi, 2017; Takahashi et al., under revision). Most
likely there are even more than simply these two classes.
This brings us to the second problem: if there are distinct
classes of L5p neurons that participate in cortico-cortical and
cortico-thalamo-cortical loops, then is it even meaningful to
suggest that there is an intersection of these loops? Which of
these cell types (e.g., L5A or L5B pyramidal cells) are then
crucially related to consciousness? If we would have to pick
one specific type of neuron, then it would be the thick-tufted
L5B neurons, which are the major output neurons of the
cortex, project heavily to NSP thalamus and have also been
historically related to consciousness. Even if it would turn
out that these cells do not send long-range cortico-cortical
projections, it seems that they do receive such long-range
cortico-cortical projections, especially on their apical dendrites
(Cauller et al., 1998; Feldmeyer, 2012; Lee et al., 2013). We
note that the direct evidence for this last claim is scarce,
but we hope that the next years will bring clarity about
this issue.

Third, the thalamic projection patterns as presented here
are necessarily simplified. For clarity and simplicity, we mainly
adhered to the classic distinction between SP and NSP thalamus
(as in functional terms this distinction has not been invalidated).
However, this distinction is only part of the story, with no
clear consensus on how to classify thalamo-cortical projections
(Jones, 2012 advocates the distinction of thalamic core vs.
matrix cells; however, this distinction also seems too simplistic,
see Clascá et al., 2016).

CONCLUSION

The contents of consciousness depend on the state of
consciousness. Here, we argued that there is a clear
neurobiological reason for this intertwinement: L5p cells
are in the center of both cortico-cortical and thalamo-cortical
loops, hence functionally coupling the state and contents
of consciousness. The main message going forward is that
given the advances in understanding the neural computations,
more attention should be given to the relationship between
consciousness and the L5p cells. After all, Santiago Ramón y
Cajal called them the ‘‘psychic cells.’’
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