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What are the principles underlying effective neurorehabilitation? The aim of
neurorehabilitation is to exploit interventions based on human and animal studies
about learning and adaptation, as well as to show that the activation of experience-
dependent neuronal plasticity augments functional recovery after stroke. Instead of
teaching compensatory strategies that do not reduce impairment but allow the patient
to return home as soon as possible, functional recovery might be more sustainable
as it ensures a long-term reduction in impairment and an improvement in quality of
life. At the same time, neurorehabilitation permits the scientific community to collect
valuable data, which allows inferring about the principles of brain organization. Hence
neuroscience sheds light on the mechanisms of learning new functions or relearning
lost ones. However, current rehabilitation methods lack the exact operationalization
of evidence gained from skill learning literature, leading to an urgent need to bridge
motor learning theory and present clinical work in order to identify a set of ingredients
and practical applications that could guide future interventions. This work aims to
unify the neuroscientific literature relevant to the recovery process and rehabilitation
practice in order to provide a synthesis of the principles that constitute an effective
neurorehabilitation approach. Previous attempts to achieve this goal either focused
on a subset of principles or did not link clinical application to the principles of
motor learning and recovery. We identified 15 principles of motor learning based on
existing literature: massed practice, spaced practice, dosage, task-specific practice,
goal-oriented practice, variable practice, increasing difficulty, multisensory stimulation,
rhythmic cueing, explicit feedback/knowledge of results, implicit feedback/knowledge of
performance, modulate effector selection, action observation/embodied practice, motor
imagery, and social interaction. We comment on trials that successfully implemented
these principles and report evidence from experiments with healthy individuals as well
as clinical work.

Keywords: neurorehabilitation, motor learning, plasticity, stroke, principles

Abbreviations: ADLs, activities of daily living; CIMT, constraint-induced movement therapy; fMRI, functional magnetic
resonance imaging; KR, knowledge of results; KP, knowledge of performance; LTP, long-term potentiation; PD, Parkinson’s
disease; TMS, transcranial magnetic stimulation; VR, virtual reality.
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INTRODUCTION

So far there is no clear understanding of the principles underlying
effective neurorehabilitation approaches. Therapeutic protocols
can be readily described by the following aspects: the body
part trained (e.g., the legs), the tools or machines used for
the training (e.g., a treadmill), the activity performed (e.g.,
walking), and when the therapy commences (e.g., during the
acute phase after a stroke). However, an intervention typically
includes more elements. For instance, the use of the less affected
limb can be restricted, and the therapist can encourage the
patient to spend more time exercising or give feedback about
task performance. While some interventions, like CIMT, clearly
define their active ingredients (Carter et al., 2010; Proffitt and
Lange, 2015) that should lead to effective recovery (Kwakkel et al.,
2015), most others do not. Neurorehabilitation research aims to
find interventions that promote recovery and to establish whether
the presence or absence of improvement can be explained by any
neuronal changes that occur in the post-stroke brain (Dobkin,
2005). Neuroscience can help us to create interventions that lead
to changes in the brain; however, with no clear understanding
of what an intervention does, attributing causality remains
difficult. One way to formalize an intervention is by breaking
it into parts, studying the behavioral and neural effects of these
parts, and deriving principles from them–in the case of stroke
neurorehabilitation, these would be principles that optimize
acquisition, retention, and generalization of skills.

While there are plenty of meta-analyses that look at training
effectiveness in terms of individual body parts/functions, tools,
or machines and activities (Langhorne et al., 2009; Veerbeek
et al., 2014), the effect of experience remains much less clear
in spite of attempts to formalize and identify the principles
of neurorehabilitation. A review of principles of experience-
dependent neural plasticity by Kleim and Jones (2008) explains
why training is crucial for recovery. According to their work,
neurorehabilitation presumes that exposure to specific training
experiences leads to improvement of impairment by activating
neural plasticity mechanisms. Consequently most of the work in
the field focuses on the identification of scientifically grounded
principles that should guide the design of these training
experiences. In this vein, Kleim and Jones (2008) elaborated
on five main principles of effective training experience —
specificity, repetition, intensity, time, and salience — but offered
little concrete applicability. Another synthesis addressed further
principles (forced use, massed practice, spaced practice, task-
oriented functional training, randomized training); however, the
main focus of the review was on individual body functions,
methods, or tools, providing a global view on rehabilitation
strategies (Dobkin, 2004). Two meta-analyses investigated
specific principles. One looked only at the principle of intensity
and found that more therapy time did enhance functional
recovery (Kwakkel, 2009). Another determined that repetition
does improve upper and lower limb function (Thomas et al.,
2017). However, both studies did not investigate the mechanisms
that would lead to the effects observed. Similarly, a review
that analyzed CIMT, which combines several principles in one
method, gained interesting insights in its efficacy but did not

explain the results from a neuroscientific, mechanistic point of
view (Kwakkel et al., 2015). The work by Levin et al. (2015), on
the other hand, tried to link the principles of motor learning to
the application of these principles in novel rehabilitation methods
while offering some neuroscientific reasoning for doing so. Their
review addresses the difficulty of the task, the organization of
movement, movements to the contralateral workspace, visual
cues and objects and the interaction with them, sensory feedback,
feedback about performance and results, repetitions, variability,
and motivation. However, the included motor control and motor
learning principles were not well defined and therefore leave
room for interpretation (Levin et al., 2015).

In a previous meta-analysis (Maier et al., 2019), we compiled
a list of principles for neurorehabilitation based on literature on
motor learning and recovery: massed practice, dosage, structured
practice, task-specific practice, variable practice, multisensory
stimulation, increasing difficulty, explicit feedback/knowledge of
results, implicit feedback/knowledge of performance, movement
representation, and promotion of the use of the affected limb.
We then performed a content analysis to determine whether
these principles were present in the clinical studies included
in the review, but we did not provide an analysis of the
principles identified. In this work, we aim to extend the
number of principles found and, for each of them, unify the
neuroscientific literature from human or animal studies on motor
learning and comment on the observed neuronal effects. We
also include evidence from clinical studies to show its effect
in recovering functionality after stroke. Some principles already
serve as building blocks of effective rehabilitation programs,
e.g., CIMT (Kwakkel et al., 2015), Bobath (Kollen et al., 2009),
enriched rehabilitation (Livingston-Thomas et al., 2016), VR-
based rehabilitation (Laver et al., 2017), and exogenous or robotic
interventions (Langhorne et al., 2011). However, transferring
these principles into clinical practice faces the challenge of
operationalizing them. We comment on these difficulties and the
gaps between theory, evidence, and operationalization that we
encountered. Consequently, this work can serve clinicians and
researchers as a practical guide of principles to investigate further
effective neurorehabilitation approaches.

MATERIALS AND METHODS

In this conceptual analysis, the rehabilitation experience is
broken down into individual parts that are termed principles
of neurorehabilitation. They are principles because they are
evidenced by experimental data, and together, they could
form the foundation of a higher-order theoretical framework.
As a first attempt, a list of 11 principles was compiled
based on existing literature in a recent meta-analysis on the
effectiveness of VR-based rehabilitation systems for stroke
recovery (Maier et al., 2019). For the current work, the list
has been revised, and additional principles have been identified
through a computerized search in PubMed Central using the
keywords “principles of motor learning,” “principles of recovery,”
“principles of experience-dependent learning” and “principles
of neurorehabilitation.” We restricted the search to the last
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5 years to obtain currently used principles. We focused on
reviews, perspectives, and debates around rehabilitation methods
and interventions for stroke recovery and excluded articles that
explained study protocols or clinical trials, prevention methods,
pharmaceutical or medical interventions, or stroke taxonomies.
The principles mentioned in each paper were compared with the
original list and added if they were not present. Afterward, we
summarized for each principle the historical background based
on motor learning literature and its contribution to learning
based on human or animal studies. Further, where available,
neurological effects and clinical outcomes were included as well.

IDENTIFICATION OF PRINCIPLES OF
NEUROREHABILITATION

Our computerized search yielded 548 records, of which 74 were
deemed adequate for further screening after we examined if
their titles either contained any of the search terms or appeared
to discuss post-stroke rehabilitation strategies. After analysis
of their abstracts and full-texts, the principles mentioned in
17 articles were extracted. We excluded papers if their title
or abstract reported or compared surgical or pharmaceutical
interventions as well as if they discussed stroke taxonomies,
proposed study protocols or clinical trials, covered principles
unrelated to stroke and/or stroke rehabilitation itself (e.g.,
principles for disease prevention, pre- and post-operative care,
care facilities, patient management, therapist education, nursing
practice, dietary recommendation, veterinary etc.), or looked into
patient or caregiver perception. The articles and reviews selected
spawned various research fields in neurorehabilitation: Motor
learning (Winstein et al., 2014), therapies [physical therapy
(Veerbeek et al., 2014), upper limb immobilization (Furlan et al.,
2016), environmental enrichment (Livingston-Thomas et al.,
2016), aerobic training (Billinger, 2015; Hasan et al., 2016), CIMT
(Kwakkel et al., 2015; Zhang et al., 2017), cognitive rehabilitation
(Middleton and Schwartz, 2012), music therapy (Zhang et al.,
2016)], tools and methods [hand robotics (Yue et al., 2017), VR
(Darekar et al., 2015; Fu et al., 2015), neurofeedback (Renton
et al., 2017)], and principles [dose and timing (Basso and
Lang, 2017)]. Together with previously collated literature, we
identified 15 principles.

The identified principles from the meta-analysis are as follows:

• Massed practice/repetitive practice (Middleton and
Schwartz, 2012; Veerbeek et al., 2014; Fu et al., 2015;
Kwakkel et al., 2015; Furlan et al., 2016; Zhang et al., 2016).

• Spaced practice (Middleton and Schwartz, 2012; Billinger,
2015; Hasan et al., 2016; Livingston-Thomas et al., 2016).

• Dosage/duration (Veerbeek et al., 2014; Winstein et al.,
2014; Billinger, 2015; Darekar et al., 2015; Kwakkel et al.,
2015; Hasan et al., 2016; Livingston-Thomas et al., 2016;
Basso and Lang, 2017; Zhang et al., 2017).

• Task-specific practice (Veerbeek et al., 2014; Winstein et al.,
2014; Fu et al., 2015; Kwakkel et al., 2015; Furlan et al., 2016;
Livingston-Thomas et al., 2016; Yue et al., 2017).

• Variable practice (Darekar et al., 2015; Fu et al., 2015;
Livingston-Thomas et al., 2016).

• Increasing difficulty (Winstein et al., 2014; Fu et al., 2015;
Kwakkel et al., 2015; Furlan et al., 2016; Hasan et al., 2016;
Livingston-Thomas et al., 2016; Zhang et al., 2017).

• Multisensory stimulation (Veerbeek et al., 2014;
Livingston-Thomas et al., 2016; Yue et al., 2017).

• Explicit feedback/knowledge of results (Middleton and
Schwartz, 2012; Veerbeek et al., 2014; Darekar et al., 2015;
Fu et al., 2015; Renton et al., 2017).

• Implicit feedback/knowledge of performance (Veerbeek
et al., 2014; Darekar et al., 2015; Fu et al., 2015; Zhang et al.,
2016; Renton et al., 2017; Yue et al., 2017).

• Modulate effector selection (Veerbeek et al., 2014; Winstein
et al., 2014; Kwakkel et al., 2015; Furlan et al., 2016;
Zhang et al., 2017).

• Action observation/embodied practice (Veerbeek et al.,
2014; Fu et al., 2015; Yue et al., 2017).

Additional principles encountered through the search:

• Goal-oriented practice (Winstein et al., 2014; Fu et al., 2015;
Yue et al., 2017).

• Rhythmic cueing (Middleton and Schwartz, 2012; Veerbeek
et al., 2014; Zhang et al., 2016).

• Motor imagery/mental practice (Veerbeek et al., 2014).
• Social interaction (Winstein et al., 2014; Fu et al., 2015;

Livingston-Thomas et al., 2016; Zhang et al., 2017).

In the following sections, we summarize for each principle the
theoretical background, the evidence for motor learning, and the
clinical effectiveness. We also added studies that comment on
the neurological changes observed after applying the principles in
motor learning tasks. The detailed neurological changes reported
by these studies can be found in Table 1.

Massed Practice/Repetitive Practice
Massed practice was defined as work episodes with very brief
to no rest periods (Schmidt and Lee, 2011). Within a work
episode, a skill can be trained repeatedly in a constant or blocked
fashion (Ammons, 1947; Mulligan et al., 1980). In the field of
rehabilitation, the term describes the prolonged and repeated
use of the more affected limb (Taub et al., 1999). Theoretically,
learning through repetitions can speed-up the shaping of priors,
which, together with likelihoods based on sensory input, aid in
making an optimal estimate for action selection (Körding and
Wolpert, 2006). Animal studies have shown that repeating skilled
movements leads to localized changes in the area responsible
for the movement, whereas the pure repetition of unskilled
movement does not (Plautz et al., 2000). In humans, early studies
have shown that blocked practice leads to faster acquisition, but
poorer retention and less transfer than variable practice (Shea
and Morgan, 1979) and that massed practice without breaks
seems less effective for motor performance (Ammons, 1947;
Ammons and Willig, 1956).

In standard therapies or clinical studies, the amount of
repetition is typically not quantified but was observed to be an
order of magnitude lower than in studies investigating recovery
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TABLE 1 | Overview of the neuronal changes due to exposure to principles of neurorehabilitation included in this manuscript.

Experience-dependent changes Principles Brain areas References

Cellular/neuronal level

Increased neuronal activity Spaced practice Task/stimulus-dependent Gerbier and Toppino, 2015

Increased cell survival and improved LTP Spaced practice Hippocampus Scharf et al., 2002;
Sisti et al., 2007

Upregulation of growth factors (protein 43, synaptophysin) Dosage Intact corticospinal tract Zhao et al., 2013

Inhibition of upregulation of growth-inhibiting factors (NogoA, Nogo
receptors and RhoA)

Dosage Peri-infarct cortex Zhao et al., 2013

Dopamine-dependent synaptic plasticity Explicit feedback Striatum Kawagoe et al., 1998

Complex spikes in Purkinje cells Implicit feedback Cerebellum Kitazawa et al., 1998

Cortical motor areas

Expansion or change of effector representation/cortical map,
dependent on effector trained

Massed practice Motor cortex Plautz et al., 2000

Increased excitability - Dosage - Motor cortex - Liepert et al., 2000;
Veerbeek et al., 2014

- Variable practice - Motor cortex - Lage et al., 2015;
Lin et al., 2011

Normalization of activation in ipsilesional cortex Dosage Motor cortex Schaechter, 2004

Change in sensorimotor organization Multisensory stimulation Motor cortex Rosenkranz and Rothwell, 2006

Increased neuronal recruitment during acquisition, decreased
activity during retention

Variable practice Prefrontal areas, PMA,
inferior frontal areas

Lage et al., 2015;
Lin et al., 2011

Increased cortical activation in lesioned hemisphere during paretic
movement

- Task-specific practice - SMC, PMC
- SMC

- Jang et al., 2003
- Wilkins et al., 2017

- Modulate effector
selection

- SSC/SMA, dorsal
PMC

- Johansen-Berg et al., 2002

Increased cortical activation in contralesional hemisphere during
paretic movement

Rhythmic cueing SMC Luft et al., 2004

Decreased activation in contralesional hemisphere during paretic
movement

Task-specific practice - SMC, PMC, SMA
- Motor cortex
- SMA, PMA

- Jang et al., 2003
- Boyd et al., 2010
- Wilkins et al., 2017

Increased laterality index during paretic movement Task-specific
practice

- SMC
- Motor cortex
- SMC, SMA, PMA

- Jang et al., 2003
- Boyd et al., 2010
- Wilkins et al., 2017

Increased power spectra Multisensory stimulation SMC, SSC Gomez-Rodriguez et al., 2011

Fronto-parietal network

Increased activation of contralateral fronto-parietal network Goal-oriented
practice

Motor cortex, SMA, SSC,
parietal areas

Nathan et al., 2012

Increased activation of bilateral parietal areas, together with
lateralized pre-motor areas and sensorimotor areas

Increasing difficulty PMC, SMA, SMC, SPA, IPA Wexler et al., 1997;
Winstein et al., 1997

Increased activation of bilateral parietal, premotor and visual areas Action observation Dorsal and ventral PMC,
pre-SMA, SPA, IPA,
visual cortex

Hardwick et al., 2018

Increased activation of lateralized parietal areas, together with
pre-motor areas

Motor imagery Bilateral dorsal PMC, left
ventral PMC, Bilateral
pre-SMA, left IPA, left SPA,

Hardwick et al., 2018

Increased activation and functional connectivity Mirror therapy - Ipsilateral motor
cortex, visual
processing areas

- Arya, 2016

(Continued)
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TABLE 1 | Continued

Experience-dependent changes Principles Brain areas References

- Bilateral PMA,
contralateral SMA
and SMC, parietal
cortex

- Hardwick et al., 2018

Cerebellum

Increased activation - Rhythmic cueing - Cerebellum (ipsilesional) - Luft et al., 2004

- Modulate
effector selection

- Cerebellum (bilateral) - Johansen-Berg et al., 2002

Somatosensory Cortex

Reversal of SEP to pre-infarct Dosage Somatosensory cortex Joo et al., 2012

Extended networks

Auditory feedback lead to reduced activity during acquisition Implicit feedback SMC, SMA, opercular,
temporal and parietal
areas

Ronsse et al., 2011

Visual feedback lead to increased activity during acquisition Implicit feedback Occipital gyri, cerebellar
lobules and vermis

Ronsse et al., 2011

Visual feedback preserved activation, when no feedback was given
during testing

Implicit feedback Occipitotemporal cortex Ronsse et al., 2011

Auditory feedback suppressed activity, when no feedback was
given during testing

Implicit feedback Auditory cortex Ronsse et al., 2011

Increased fractional anisotropy Rhythmic cueing Arcuate fasciculus (white
matter tract connecting
auditory and motor
regions)

Moore et al., 2017

Activity in social cue network Social interaction Right posterior STS, right
anterior STS, right TPJ

Redcay et al., 2010

LTP, long-term potentiation; PMC, premotor cortex; SPA, superior parietal area; IPA, inferior parietal area; SEP, somatosensory-evoked potentials; SMC, sensorimotor
cortex; SMA, supplementary motor area; SSC, somatosensory cortex; STS superior temporal sulcus; TPJ, temporoparietal junction.

in rats and monkeys (Lang et al., 2007). Instead, the evidence
for massed practice relies typically on the number of sessions or
duration (French et al., 2016). A study looking into the feasibility
of translating repetition amounts of animals to humans found
improved motor functioning after training with high-repetition
doses. However, no “pure” repetition training was provided, as
the protocol included a variety of tasks that increased in difficulty
(Birkenmeier et al., 2010). On the contrary, a study comparing
four groups with different repetition amounts did not find
significant differences based on the number of repetitions (Basso
and Lang, 2017). This intervention included other principles
as well. Meta-analyses confirm the mixed effects of repetitive
training on improvement (Langhorne et al., 2011; Veerbeek et al.,
2014; French et al., 2016; Thomas et al., 2017). Hence, massed
practice appears to be a commonly used ingredient, but its clinical
operationalization is often confounded with other principles. In
order to investigate its true effects on recovery and compare
across studies, the repetitions within a training session and across
therapy duration should be measured and quantified.

Spaced Practice
Spaced practice implies that training should be structured in
time to include rest periods between repetitions or sessions
(Lee and Genovese, 1988; Schmidt and Lee, 2011). Instead
of spaced practice, the term distributed practice is often used
in literature. However, some authors use the term distributed
practice as a combination of spaced and massed practice (Cepeda
et al., 2006). Research on human skill acquisition suggests that
increasing the time spacing between learning periods improves
final test performance (Cepeda et al., 2006). However, when
these learning periods are too long, learning and retention rates
drop (Savion-Lemieux and Penhune, 2005). The mechanisms
behind the effects of distributed practice remain unclear. It has
been hypothesized that the first exposure to a stimulus pre-
activates its representation in memory, requiring no further
activation in a subsequent repetition trial, leading to a poorer
internal representation of that stimulus, which has been termed
as the repetition suppression effect (Gerbier and Toppino, 2015).
Animal and fMRI studies support this hypothesis, showing that
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neuronal activation decreases after stimulus repetition where the
magnitude is modulated by the delay between the first and second
presentation, with larger delays leading to greater decreases
(Brown et al., 1987; Henson et al., 2000, 2004; Henson, 2003).
Spaced practice might counteract the repetition suppression
effect by canceling stimulus priming (Gerbier and Toppino,
2015). TMS revealed that primary and supplementary motor
areas are involved in motor memory consolidation (Censor and
Cohen, 2011), which might be facilitated by spaced practice.
Further, learning and physical activity have been linked to
hippocampal neurogenesis (Praag et al., 1999). Animal studies
also suggest that spaced practice facilitates long-term memory
formation (Okamoto et al., 2011; Yamazaki et al., 2015) by
fostering the survival of cells in the dentate gyrus that are
important for learning and memory (Sisti et al., 2007). Also,
in vivo spacing of electrical stimulation facilitates the recruitment
of protein-synthesis-dependent processes, which facilitates late
LTP effects (Scharf et al., 2002; Gerbier and Toppino, 2015).

In the clinical field, only a few studies have investigated the
effect of spacing on post-stroke recovery. A clinical study that
investigated whether a CIMT protocol could be distributed over
more days with less therapy time per day showed improvement
in motor outcomes that were similar to previous CIMT
protocols and superior outcomes in long-term quality of life
(Dettmers et al., 2005).

Dosage
Unlike in pharmacology, dosage is an ill-defined term in
rehabilitation (Dobkin, 2005; Kwakkel, 2009). Generally, it
is operationalized as the number of hours spent in therapy
(Kwakkel, 2009; Birkenmeier et al., 2010; Veerbeek et al., 2014;
Basso and Lang, 2017), the frequency of training sessions
and the duration of a session (Dobkin, 2005), or the training
amount required to stimulate learning (Wadden et al., 2017).
High dosages are often equated with high intensity of training
(Kwakkel et al., 2015). However, the intensity of training could
also be operationalized as the metabolic cost, work rate, or
perceived intensity through exertion (Billinger, 2015; Hasan et al.,
2016), which are rarely measured in standard therapies except in
fitness and aerobic protocols (Kwakkel, 2009).

Typically, inpatients receive only 22 (Veerbeek et al., 2014)
to 60 min of training a day, with fewer minutes at later stages
(Schaechter, 2004). There is some evidence that increasing
therapy hours would be beneficial to speeding up functional
recovery (Lohse et al., 2014; Veerbeek et al., 2014). At least
16 h of extra training (e.g., 71 more minutes per day for
3 months) within the first 6 months seem to be required
for functional gains (Kwakkel et al., 2004; Veerbeek et al.,
2014). However, there is some controversy over the benefits
of increased training early after stroke (Schaechter, 2004;
Dromerick et al., 2009; Kwakkel, 2009), and a pooled analysis
revealed no evidence of an effect of additional doses (Hayward
et al., 2014). Hence, the exact dose-response for different
therapies at different stages post-stroke needs to be determined
(Kwakkel, 2009; Basso and Lang, 2017). Also, it seems that motor
performance needs to reach an asymptotic level in the first
session to facilitate delayed performance gains across sessions

or days. Therefore, delayed performance gains seem not to
depend on repetition or over-night consolidation, but on the
amount of training that induces asymptote in the individual’s
performance (Hauptmann et al., 2005). Neurologically, high-dose
rehabilitation protocols with extended training hours possibly
induce structural plastic changes as well as a reorganization of
neural networks (summarized by Kwakkel et al., 2015), increase
cortical excitability and improve motor function and use (Liepert
et al., 2000; Veerbeek et al., 2014). Several studies observed a
normalization in ipsilesional cortex activity, which could underlie
the functional gains (Schaechter, 2004).

Task-Specific Practice
Task-specific practice postulates that changing the conditions of
a task might require a change in the abilities needed to execute it;
conditions during training should match the conditions during
testing (Schmidt and Lee, 2011). Thus, the specific conditions
of practice shape the internal sensorimotor representation of the
skill learned (Nudo et al., 1996; Ridderinkhof et al., 2004), leading
potentially to highly specialized skills (Keetch et al., 2005) whose
performance is superior in transfer tasks that meet the training
conditions (Schmidt and Lee, 2011). Grounded in this principle,
conventional rehabilitation protocols focus their training on the
execution of ADL, as they are deemed meaningful to the patient
(Hubbard et al., 2009). Since the main target of rehabilitation is
to enable the patient to perform ADL independently (Winstein
et al., 2014), therapy might not prioritize the restoration of
pre-stroke movement patterns but allows the patient to acquire
compensatory movement skills.

One study with a large sample size found that task-specific
practice appears to be similar to standard therapy in improving
motor functionality (Winstein et al., 2016). On the other hand,
smaller fMRI studies found that task-specific training facilitated
motor learning and retention (Boyd et al., 2010) and induced
a change in the laterality index, which was confirmed in other
studies as well (Jang et al., 2003; Wilkins et al., 2017). However,
while two studies found reduced activity in the contralesional
cortex, one (Jang et al., 2003) found changes in neuronal activity
patterns in both hemispheres. A study with TMS demonstrated
a trend toward reduced interhemispheric inhibition following
task-specific training (Singer et al., 2013).

Goal-Oriented Practice
Since a given goal (e.g., throwing a ball into the basket)
could be accomplished by many different motor synergies, it
is assumed that movement control is achieved through the
coupling of goal-specific functional movements. Goal-oriented
practice, therefore, does not emphasize primarily individual
muscles or movement patterns involved in execution but requires
the patient to explore the couplings that are suitable to achieve
the task (Horak, 1991). In general, motor skill performance
and learning are enhanced if attention is directed to the effect
of movement instead to the movement itself (Wulf and Prinz,
2001). Goal-oriented movements appear to produce a better
reaching performance than the same movements without a
goal (Wu et al., 2000), and setting specific, difficult goals
leads to higher motor learning performance than non-specific
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goals (Gauggel and Fischer, 2001). It appears that probing a
skill in a goal-directed fashion after overnight consolidation
promotes better performance than probing the skill by drawing
attention to finger movements (Cohen et al., 2005). Evidence
from studies looking into tool-use in animals and humans suggest
that, neurologically, action goals are represented as effector-
dependent in the anterior intraparietal sulcus and primary motor
areas, and as effector-independent in the ventral intraparietal
sulcus and premotor cortex (Gallivan and Culham, 2015). Goal-
oriented movements produce higher activity in sensorimotor
areas (Nathan et al., 2012).

There is some evidence that goal-oriented practice is beneficial
for recovery (Bosch et al., 2014). However, the described
interventions seem to be confounded by other principles that are
sometimes ascribed to goal-oriented training (Harvey, 2009).

Variable Practice
Variable practice can be achieved in two ways: (1) by providing
variability within a training sequence, a method termed as
variability of practice (Schmidt, 1975), or (2) by randomizing
the presentation of individual training sequences, a method
termed as random practice or contextual interference (Battig,
1966; Shea and Morgan, 1979). Both methods have been
shown to lead to better retention (Shea and Kohl, 1991)
and enhanced generalization to similar but untrained tasks
(McCracken and Stelmach, 1977) or movements (Shea and
Morgan, 1979; Mulder and Hochstenbach, 2001; Park et al.,
2016), despite hampering initial performance (Shea and Morgan,
1979). However, a random presentation of information might
be detrimental to motor learning (Mulder and Hochstenbach,
2001). Imaging studies have shed some light on the mechanisms
supporting these effects. fMRI and TMS studies in humans
indicate that improved performance due to variable practice
correlates with increased neuronal activity and connectivity in
the areas of the motor learning network during acquisition,
which is associated with better performance at retention stages
(Lage et al., 2015). Also, the motor cortex showed greater
excitability during retention. These results point to more
efficient retrieval of motor memory due to variable practice
(Lin et al., 2011). More complex bimanual visuomotor tasks
that were practiced randomly have shown modality-specific
activation patterns that led to the recruitment of areas related
to visual processing (Pauwels et al., 2018). The effect of variable
practice might be related to the strong link between the
neuromodulatory systems that control neuronal plasticity and
novelty, for instance, the dopaminergic (Redgrave and Gurney,
2006), cholinergic (Hasselmo et al., 1996), and noradrenergic
systems (Vankov et al., 1995), which are used by the brainstem
activation system for controlling the global state of arousal
(Gur et al., 2007).

In the clinical context, one study that investigated random
versus blocked practice failed to find an effect (Hayward et al.,
2014). It seems that this principle is rarely studied explicitly in
clinical studies (Darekar et al., 2015; Nielsen et al., 2015), but
instead applied in conjunction with other principles to overcome
boredom (Birkenmeier et al., 2010).

Increasing Difficulty
According to Guadagnoli and Lee (2004) and based on the ideas
from Marteniuk (1976), task difficulty can be described by the
training requirements and conditions that are pertinent to the
task, called the nominal task difficulty, and by how challenging
the training is relative to the skill of the performer, called
the functional task difficulty. Practice leads to fewer prediction
errors and less need to process error information. Increasing
the nominal task difficulty hence increases prediction errors
and error processing demands. The optimal challenge point
lies where functional task difficulty leads to a balance between
information processing demands and performance, which is
optimal for learning (Marteniuk, 1976; Guadagnoli and Lee,
2004). It has been shown that training with difficulty levels
personalized to the learner’s capabilities leads to superior learning
outcomes than when increases in difficulty are fixed (Wickens
et al., 2013). Further, if subjects can control the task difficulty
by themselves, their motor performance during acquisition and
retention is significantly better (Andrieux et al., 2012). However,
if difficulty surpasses one’s perceived ability to succeed, it might
lead to detrimental effects on performance (Gendolla, 1999).
Brain imaging studies showed increased activity in lateralized
pre-motor and sensorimotor areas, but with an even more
pronounced increase in parietal areas, pointing to a specialization
of that area for task complexity (Wexler et al., 1997; Winstein
et al., 1997). Potentially, noradrenergic neurons keep track of
high or low task performance due to difficulty by switching
their activity pattern preceding behavior (Rajkowski et al., 2004;
Aston-Jones and Cohen, 2005).

In stroke rehabilitation, task difficulty has been partly
investigated through shaping or graded practice. Shaping is a
concept that was initially used by behaviorists studying operant
conditioning in animals and that was successfully transferred
from animals to humans by making it part of CIMT (Taub,
1976; Taub and Uswatte, 2003): The use of the impaired limb
is augmented by progressively increasing the complexity of the
required movement (Taub et al., 1994; Kwakkel et al., 2015).
Although shaping appears to be one of the essential components
of CIMT, its particular effect on motor recovery has not been
studied on its own (Kwakkel et al., 2015). Increasing difficulty
has been successfully used in standard care studies (Woldag
et al., 2010), robot-assisted therapy (Lucca, 2009), and VR-based
systems (Cameirão et al., 2012; Ballester Rubio et al., 2016), all of
which showed beneficial effects on motor recovery. Task difficulty
appears to be implicitly present in many tasks that investigate
motor learning without being explicitly operationalized.

Multisensory Stimulation
The perception and integration of multiple senses are
fundamental abilities of the brain. Because sensory information is
noisy, the integration of various modalities requires probabilistic
estimations to enhance perception (Knill and Pouget, 2004).
Studies in the cat superior colliculus showed that a single neuron
could be responsive to several sensory modalities (Meredith
and Stein, 1986; Wallace and Stein, 1996). In primates, the
classic areas associated with multisensory processing are the
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superior temporal sulcus, the intraparietal cortex, and the
frontal cortex, with newer studies confirming multisensory
processing also in areas that were previously thought to be
mainly unisensory (Ghazanfar and Schroeder, 2006). One
sensory input (e.g., touch) can influence how another sensory
modality is perceived (e.g., vision) (Driver and Noesselt, 2008);
therefore, exposure to multisensory feedback can enhance the
ability to detect, discriminate and recognize sensory information
(Driver and Noesselt, 2008; Shams and Seitz, 2008; Gentile et al.,
2011). For instance, active physical exploration of multisensory
stimuli led to greater accuracy in an associative recognition task
showing enhanced connectivity between sensory and motor
cortices (Butler et al., 2011). Animal studies demonstrated
that sensory feedback is crucial in motor learning. Monkeys
with an ablated primary sensory hand area had no problems
in executing a previously known task but were unable to
learn new skills (Pavlides et al., 1993). Providing multisensory
stimulation during goal-oriented action execution might help to
establish sensorimotor contingencies (McGann, 2010). Muscle
vibrations appear to influence the sensorimotor organization,
whereas paired associative stimulation with TMS increases
motor-evoked-potentials (Rosenkranz and Rothwell, 2006).

Of specific interest for rehabilitation is the integration of
visual and proprioceptive information to perform movements.
It has been shown that vision and proprioception are weighted
differently at various stages during motor planning (Sober and
Sabes, 2003), suggesting a target for multisensory manipulations.
Concurrent haptic feedback during motor imagery appears to
enhance the classification accuracy of brain-computer interfaces
when decoding movement intention, indicating that it can aid
in closing the sensorimotor loop (Gomez-Rodriguez et al., 2011).
Multisensory stimulation training might help patients to recover
from unimodal deficits, for instance, visual deficits or auditory
localization deficits (Làdavas, 2008).

Rhythmic Cueing
Neuroentrainment encompasses the study of the temporal
relationship between the body’s movements and the rhythmic
stimulation emerging from the environment. Any sensory
modality (auditory, visual, tactile, or vestibular) can be used
for entrainment (Ross and Balasubramaniam, 2014). To date,
there is not much literature about visual entrainment, possibly
because the auditory-motor synchronization appears to be
mainly driving internal rhythmic movement control (Ross
and Balasubramaniam, 2014). Hence, mainly auditory cues
are used to synchronize movements to rhythmic patterns
(Rossignol and Jones, 1976; Schaefer, 2014). Rhythmic patterns
act like a template whose sequence can be anticipated (Nombela
et al., 2013). The regularity detection and tempo tracking of
rhythmic patterns increases the activity in motor network
areas and cerebellum (Schaefer, 2014) and creates a mental
representation of the rhythm, the so-called auditory model,
which enables motor movements to anticipate the rhythmic
pattern. The pooled evidence provided in the reviews by
Grahn (2012) and Nombela et al. (2013) suggests that there
are neuronal interactions between auditory and motor systems
(Grahn, 2012; Nombela et al., 2013), and auditory-cued motor

training can change their mutual structural connectivity
(Moore et al., 2017). The auditory-motor action coupling
relies on a subcortico-thalamic-cortical circuitry that can be
activated through extrinsic cueing (Grahn, 2012; Nombela
et al., 2013). Cerebellar patients cannot consciously perceive
rhythm changes and show high variable motor responses.
However, rhythmic synchronization, respectively, motor
entrainment remains intact (Molinari et al., 2003), suggesting
that the cerebellum might control the rhythmic auditory-motor
synchronization by monitoring rhythmic patterns. Even without
cueing, repetitive movements become periodic over time, as
observed when analyzing gait patterns. The gait impairment
observed in PD is ascribed to a deficiency of the internal timing
ability that disturbs coordinated rhythmic locomotion, and
which can be improved with rhythmical auditory stimulation
(Thaut et al., 1996). Besides, rhythmic somatosensory cueing
of stride frequency through vibrotactile stimulation at the
wrist could improve qualitative walking performance in PD
(van Wegen et al., 2006).

There is evidence that auditorily paced treadmill walking
can improve gait coordination in stroke patients as well (Thaut
and Abiru, 2010). Further, bilateral arm training with rhythmic
auditory cueing enhances functional motor performance, which
is maintained long-term (Whitall et al., 2000) and induces cortical
and cerebellar changes (Luft et al., 2004). Meta-analyses found
large effects that rhythmic auditory cueing improves walking
velocity, cadence, and stride length (Yoo and Kim, 2016) and
beneficial effects on improving upper limb impairment and
function (Ghai, 2018) after stroke.

Explicit Feedback/Knowledge of Results
KR has been defined as verbal, terminal and augmented feedback
about goal achievement (Salmoni et al., 1984). Although the
finding that extrinsic feedback can effectively create simple
stimulus-response associations was brought forward by animal
research in reinforcement learning, KR signifies more than just
extrinsic rewards (Winstein, 1991; Schmidt and Lee, 2011). KR
contributes to learning through cognitive processing, not through
conditioning (Salmoni et al., 1984). KR is provided through
explicit feedback. Explicit feedback is given on quantitative or
qualitative task outcomes, e.g., correctness, exactness, success,
or failure (Mazzoni and Krakauer, 2006; Subramanian et al.,
2010; Schmidt and Lee, 2011). This feedback does not have
to be verbal. For instance, when failing to reach for a target,
the subject can hear unpleasant tones or see that the failed
targets change color (Taylor et al., 2014). Also, explicit feedback
about kinematic outcomes can be KR, e.g., playing back a
recorded movement after execution. However, this feedback
supports learning only if the movement features that led to
the outcome are pointed out to the subject (Salmoni et al.,
1984). Explicit feedback seems to activate explicit learning
mechanisms and shows only subtle effects on implicit learning
mechanisms (Taylor et al., 2014). While implicit learning
appears to increase the cortical motor output maps of the
involved movement initially, they return to baseline topography
once the learned content can be explicitly declared. Possibly
through explicit feedback a global motor plan is learned
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that is represented by higher-order neuronal networks, which
influence the cortical sensorimotor representations differently
(Pascual-Leone et al., 1994). Rewarding or punishing feedbacks
appear to have dissociative effects on skilled motor learning.
Punishment can speed up motor learning, whereas rewards
ensure long-term retention (Abe et al., 2011; Galea et al.,
2015). The reinforcement of positive outcomes appears to
foster a success-driven learning system, which limits decay
after learning, possibly by mobilizing the dopaminergic system
(Wickens et al., 2003). Reward expectations modulate the
activity of caudate neurons (striatal projection neurons), which
receive reward-related information through the dopaminergic
input from substantia nigra and spatial information through
the cortico-striatal connection. Consequently, they modulate
the inhibitory output of the basal ganglia, biasing attention to
rewarded items. Either reward-driven activity of caudate neurons
is a result of cerebral plasticity, or activity in the cerebral
cortex is influenced by caudate neurons through the output
nuclei of basal ganglia (Kawagoe et al., 1998). Dopamine has
a gradual build-up and can persist for longer time courses; it
might support long-term memory formation of motor actions
(Abe et al., 2011).

KR has been used to reinforce adherence to CIMT (Taub
et al., 1994). Meta-analyses often analyze KR together with KP
under the umbrella term augmented feedback (van Dijk et al.,
2005; Hayward et al., 2014). A meta-analysis analyzing different
feedback types reported positive effects on motor function for
KR (Molier et al., 2010). However, this evidence is based on one
study (Eckhouse et al., 1990), whose intervention included other
principles as well. It can, therefore, not be established whether KR
is effective for motor recovery.

Implicit Feedback/Knowledge of
Performance
KP was defined as feedback given about movement execution
in the form of verbal descriptions, demonstrations, or replays
of recordings (Gentile, 1972). Advances in technology made it
possible that KP can be delivered online, in an implicit manner
and concurrent during movement execution, providing verbal or
non-verbal feedback about ongoing intrinsic somatic processes
and movement kinematics (Salmoni et al., 1984; Winstein,
1991). For instance, feedback in the form of sounds and colors
can be given while trunk displacements surpass a threshold
(Subramanian et al., 2007). Biofeedback uses physiological
sources like electromyograms to provide patients with real-time
visual or auditory signals about their motor activity (Huang
et al., 2006). Ultimately arm movements can be visualized and
augmented using VR representations (Ballester Rubio et al.,
2015b; Ferreira dos Santos et al., 2016).

Implicit sensory feedback enhances learning from
sensorimotor prediction errors, which for instance can aid
the adaptation to unexpected perturbations (Shadmehr et al.,
2010), possibly by contributing to implicit learning mechanisms
(Taylor et al., 2014). Concurrent implicit feedback leads to
lasting adaptations to visuomotor rotations, which are not
(Hinder et al., 2008) or less observed (Taylor et al., 2014)

when feedback about movement outcome, e.g., KR is given.
Although KP appears to be beneficial during training, there is
evidence that subjects can become dependent on it, showing
inferior performance when feedback is removed (Ronsse et al.,
2011). Ronsse et al. (2011) compared the effects of providing
concurrent visual to concurrent auditory feedback during the
acquisition of a bimanual movement pattern. The authors
found that subjects that had obtained visual KP showed poorer
performance during retention testing than subjects that were
given auditory KP. During acquisition, the visual feedback
increased the activity in vision/sensorimotor-specific areas,
which was maintained during retention testing even in the
absence of feedback. On the contrary, the concurrent auditory
feedback reduced the activity in temporo-parieto-frontal areas
and deactivated task-specific sensory areas during retention
testing without feedback. These results suggest that subjects
can become dependent on concurrent visual feedback, but not
on concurrent auditory feedback because they rely on sensory
processing areas that have become tuned to visual information
during practice. The auditory feedback, on the other hand,
might foster the formation of an internal controller, evidenced
by the stronger activation of prefrontal areas. Alternatively,
auditory feedback might promote reliance on proprioception
and is consequently ignored during training (Ronsse et al.,
2011). Results from cerebellar patients that were exposed to
force-field learning tasks propose that the cerebellum may
play an important role in using implicit information to correct
and adapt motor commands to changed limb dynamics,
and in forming internal controllers (Nezafat et al., 2001;
Smith and Shadmehr, 2005; Tseng et al., 2007). In contrast to
explicit error signals mediated through midbrain dopamine
neurons in basal ganglia, implicit sensorimotor errors are
possibly encoded by cerebellar climbing fibers and manifest
in complex spikes in Purkinje cells during reaching tasks
(Kitazawa et al., 1998). Computational modeling of adaptation
to visuomotor rotations following concurrent visual feedback
points to narrowly tuned neurons in the cortex that are driven
by a prediction error that is computed by the cerebellum
(Tanaka et al., 2009).

Stroke patients experienced a significant recovery in motor
function and showed increased activation in the ipsilesional
primary sensorimotor cortex after 4 weeks of training with a
VR system that provided them with implicit feedback about
their upper-limb movement (Jang et al., 2005). However, the
system also included several other principles. In addition, the
provision of KP has been shown to recover impaired movement
patterns (Cirstea and Levin, 2007), to reduce learned non-
use (Ballester Rubio et al., 2015b), and to lead to longer-
lasting recovery effects (Subramanian et al., 2010). A meta-
analysis found a beneficial effect for KP on motor function
(Molier et al., 2010); however, the effect was based on
two studies only.

Modulate Effector Selection
In the acute stage after stroke, patients typically suppress the use
of the affected limb due to pain, weakness, or malfunctioning
(Taub and Uswatte, 2003). As a consequence, they are prone
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to overuse the non-paretic limb, and the resulting under-
usage of the impaired limb can cause a loss of behavioral and
neuronal function (Andrews and Stewart, 1979; Taub et al.,
2006). Some authors argue that this compensation strategy,
called learned non-use, emerges because the spontaneous use
of the paretic limb does not cross a threshold level (Han et al.,
2008). Although standard therapy focuses on improving the
functionality of the impaired limb, the improvement does not
transfer to increased use of the arm for ADLs (Smania et al., 2012;
Kwakkel et al., 2015).

Of those therapeutic approaches that were successful in
counteracting learned non-use CIMT is the most common and
most successful one (Kwakkel et al., 2015). An fMRI study
revealed changes in brain activity patterns due to paretic arm
use in patients that underwent a 2 weeks CIMT program at
home where the non-affected arm was constrained for 90% of
the waking time. Increased grip strength in the affected limb
correlated significantly with increased fMRI signal change in
ipsilesional cortico-cerebellar areas (Johansen-Berg et al., 2002).
However, a meta-analysis did not find a pooled effect that forcing
the use of the paretic arm alone is effective (Hayward et al.,
2014). Other approaches aimed at promoting paretic arm-use
through positive reinforcement during bilateral arm training
(Ballester Rubio et al., 2016) or through wearable devices (e.g.,
bracelets) that provide feedback about performance of ADLs
(Ballester Rubio et al., 2015a).

Action Observation/Embodied Practice
Action observation (Martens et al., 1976) gained increased
attention after the discovery of mirror neurons (Rizzolatti and
Sinigaglia, 2010): in monkeys, some neurons discharged not only
when the animal executed a motor command but also when it
observed another individual executing it. In humans, subjects
who first observed other individuals performing a novel task
performed better in the same task than control subjects that did
not observe other individuals or observed a slightly different task
(Mattar and Gribble, 2005). It is thought that in monkeys, as in
humans, action observation relies on the frontoparietal network
(Rizzolatti and Sinigaglia, 2010). Indeed, a meta-analysis showed
that in humans, movement observation, as well as movement
execution, recruits mainly the premotor and parietal areas.
Movement observation, however, exclusively activated the visual
cortex, whereas execution activated the primary motor cortex
(Hardwick et al., 2018). Therefore, action observation might
facilitate movement execution and motor learning by facilitating
the excitability of the motor system (Mulder, 2007). Indeed, TMS
during action observation elicited increased muscle activation
patterns (Fadiga et al., 1995). For practical reasons, action
observation could be especially beneficial for stroke patients with
severe hemiparesis or complete paralysis. There is some clinical
evidence that action observation therapy can reduce impairment
and increase brain activation in the frontoparietal network and
bilateral cerebellum (Ertelt et al., 2007).

Besides internalizing someone else’s movement, humans can
also ascribe ownership and agency to body parts that do not
pertain to them (Botvinick and Cohen, 1998). The discovery
of rubber hand illusions (Botvinick and Cohen, 1998) led to

insights about the mechanisms underlying agency. Both the
sense of agency (Sato and Yasuda, 2005) and ownership are
susceptible to manipulations (Slater et al., 2010), that have
been used for therapeutic purposes, for instance, in mirror
therapy (Ramachandran and Rogers-Ramachandran, 1996).
Similar to action observation, mirror therapy appears to rely
on the frontoparietal circuit (Harmsen et al., 2015), which
is why its motor learning effects are partly explained by the
same mechanisms (Hamzei et al., 2012). However, contrary to
movement observation, mirror therapy robustly activates the
primary motor cortex and visual processing areas ipsilateral to
the mirrored movement. Also, mirror therapy seems to increase
functional connectivity between cortical motor areas and to excite
the neural connection between the two hemispheres (Hamzei
et al., 2012; Arya, 2016). A meta-analysis attests mirror therapy
a significant long-term effect on motor function, the ADLs,
the reduction of pain and the reduction of visuospatial neglect
(Thieme et al., 2012).

If the impairment of the limb impedes active movement,
visual illusions could be presented to the patients to simulate
movements with the paretic arm. The error-prediction
mechanism driven by the cerebellum could be equally activated
through the alternative representation (Fiorio et al., 2014).
Possibly, the stronger the visual illusion, the more agency
is ascribed to it, which could explain the difference in brain
activation patterns between action observation and mirror
therapy. The sense of agency seems to be important when
learning from sensorimotor prediction errors (Tsakiris et al.,
2007), respectively agency is reduced when prediction and
outcome do not match (Sato and Yasuda, 2005). However, there
is no consensus on the definition of ownership and agency, which
makes their operationalization in clinical practice difficult.

Mental Practice/Motor Imagery
Mental practice and motor imagery rely on the ability to simulate
actions mentally without overt behavior, as summarized by the
simulation theory (Jeannerod, 2001). Motor imagery can be seen
as a mental rehearsal of future movements and motor plans
(Naito et al., 2002; Schmidt and Lee, 2011), that can be beneficial
for motor learning (Di Rienzo et al., 2016). However, actual
physical practice shows superior effects on learning (Hird et al.,
1991). A meta-analysis compared the brain areas that are active
during mental imagery and movement execution. Both seem to
recruit premotor areas, somatosensory cortex, and subcortical
areas. Also, activation in the mid-cingulate cortex was found,
with motor imagery activating more the anterior region that
is linked to the cognitive aspects of motor control, whereas
motor execution recruiting more the posterior region that is
associated with basic motor functions. While motor imagery
appears to activate more the parietal cortex, movement execution
appears to recruit more classic sensorimotor regions like the
primary motor cortex and cingulate motor areas (Hardwick
et al., 2018). These findings are in line with studies showing that
lesions in the frontoparietal system can diminish the ability of
motor imagery (Johnson, 2000; Danckert et al., 2002). Motor
imagery and physical practice also appear to induce similar
learning-dependent brain changes (Di Rienzo et al., 2016). Not
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surprisingly, the activation pattern of motor imagery appears
to be similar to the one identified in action observation
and mirror therapy.

The learning effects of motor imagery and mental practice
have been extensively studied in sports, whereas research
regarding their clinical efficacy and efficiency is sparse and
relatively recent (Mulder, 2007). However, motor imagery is
thought to be advantageous for stroke recovery, especially
for severely impaired patients (Mulder, 2007). Since patients
retain the ability to imagine movements with the paretic limb,
mental motor practice might facilitate functional reorganization
(Johnson, 2000). A meta-analysis looking into the effectiveness
of mental practice also found some trends for positive outcomes.
However, pooled effects could not be estimated because only a
few Class I studies exist, and their protocols, measurements, and
interventions vary widely (Braun et al., 2006).

Social Interaction
Social interaction has been defined as a behavior in which the
participants’ actions are both a response to and a stimulus for the
counterpart’s behavior (Rubin et al., 2006). Many ADL implicate
social interaction, and a failure to perform them might lead to
an undesired dependence on others (Lilja et al., 2003). The level
of self-efficacy influences motor skill performance and learning,
and in turn, is influenced by the appraisal or discouragement
from others (Wulf et al., 2012). fMRI recordings of a subject
experiencing a live social interaction revealed activations in areas
commonly identified in the perception of social cues besides other
regions involved in goal-directed and visual attention as well as
reward processing (Redcay et al., 2010).

Animals that are allowed social interaction when recovering
from an artery occlusion show higher functional improvement
(Johansson and Ohlsson, 1996), increased recovery of behavior,
and lower mortality, especially if the interaction partner was
healthy (Venna et al., 2014). Including and investigating the
impact of social interaction as part of the rehabilitation
experience seems an important but missed opportunity. We
found no study that was evaluating this specific aspect in
a randomized controlled trial. One study evaluating enriched
environments that included social interaction found positive
results in terms of activity (Janssen et al., 2014).

DISCUSSION

This synthesis aimed at identifying a set of principles that
should guide the design of effective neurorehabilitation protocols
for post-stroke recovery. We identified 15 principles based
on existing work on motor learning and recovery: massed
practice/repetitive practice, spaced practice, dosage/duration,
task-specific practice, task-oriented practice, variable practice,
increasing difficulty, multisensory information, rhythmic
cueing, explicit feedback/knowledge of results, implicit
feedback/knowledge of performance, modulate effector selection,
action observation/embodied practice, mental practice, and
social interaction. Where possible, we identified the therapeutic

and neurological effects of these principles from experimental
work and clinical studies and commented on their limitations.

Our motivation for this analysis is twofold. Firstly, we
are confident that the quality of evidence from clinical work
and its interpretation would be enhanced if interventions are
described along with the included principles. Reviews or meta-
analyses with ambiguous effects often state that the included
protocols remained vague on the exact experience provided to the
patients, which makes the comparison and interpretation difficult
(Veerbeek et al., 2014; Renton et al., 2017). By focusing solely
on the ingredients of therapeutic interventions and compiling
their current neuroscientific evidence, we aim to raise awareness
of their importance. Also, this work might serve as a guide
for clinicians and researchers to construct or identify the active
ingredients in their interventions and to discover evidence
currently missing. Secondly, we believe that there is a need to
create a link between the principles of motor learning and their
current operationalization in clinical studies and practice. We
have identified several difficulties and shortcomings that do not
aid in obtaining a common understanding of these principles and
hence complicate the clinical investigation.

It seems that many principles are poorly operationalized in
clinical trials. For instance, when massed practice is investigated,
the repetitions performed within a session and during the
treatment duration are rarely quantified (Lang et al., 2007) such
that recovery effects due exclusively to repetition cannot be
singled out. Also, the clinical research of spaced practice and
dosage/duration would benefit if the parameters were quantified
in a standardized way. Particularly dosage should be explicitly
described in treatment minutes per session in order to be
able to establish a dose-response due to training (Dobkin,
2005). Furthermore, dosage/duration should not be equated with
intensity since the intensiveness of training cannot be estimated
through treatment minutes only (Billinger, 2015). Intensity
should be an independent principle that needs to be investigated
separately. Task-specific and goal-oriented practice appear to be
often used interchangeably (Winstein et al., 2014; Fu et al., 2015;
Yue et al., 2017) although their training target is different. While
task-specific practice focuses on the acquisition of a specific skill
(Keetch et al., 2005) for ADL, goal-oriented practice permits the
use of any movement or skill that is deemed suitable to achieve
the goal (Horak, 1991), fostering the exploration of alternative
movement patterns. Variability appears to be included inherently
in many protocols (Darekar et al., 2015), possibly because it
renders the training less repetitive and, therefore, less boring
(Birkenmeier et al., 2010), which could counteract low adherence.
However, this link has not been explicitly studied. Increasing the
difficulty during practice is part of many intervention protocols
as well; however, personalizing the difficulty level in order to
provide training at the optimal challenge point seems to be
rarely addressed. Concerning multisensory integration, it would
be interesting to explore whether the presence of more than
two sensory stimulations could enhance learning (Sánchez et al.,
2013). Similarly, rhythmic entrainment could be extended with
protocols exploring if visual or haptic entrainment might aid
recovery of impaired movements (Penhune et al., 1998). Explicit
feedback and implicit feedback are often investigated together
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under the umbrella term of augmented feedback, as evidenced
by the sourced meta-analysis and clinical studies (Molier et al.,
2010). However, their aim and the neuronal mechanisms that
they appear to stimulate are different. While explicit feedback
provides terminal feedback about movement outcome, implicit
feedback provides concurrent error-signals during movement
execution fostering possibly different learning mechanisms.
Meta-analyses also appear to interpret the sensory modality of
the feedback, e.g., if it is visual, auditory or haptic as a feedback
type. However, the sensory modality is a separate layer that is
added to feedback. Explicit feedback, as well as implicit feedback,
can be unisensory or multisensory. Action observation and
mirror-therapy appear to be well studied therapeutic ingredients,
whereas mental practice is only addressed in a few studies, and
social interaction remains unexplored territory so far. If the
principles would be better operationalized, it would not only
help to identify their contribution to the recovery of motor
functions, but also other learning outcomes such as cognitive or
language improvements.

The neuronal changes found within each principle allow
us to draw some general conclusions for the advancement of
neurorehabilitation. While some principles appear to modulate
more specific brain areas (massed practice, dosage, variable
practice, task-specific practice, modulate effector selection,
multisensory stimulation) within the motor areas of the cortex
others appear to recruit or rely more on networks of brain regions
(goal-oriented practice, increasing difficulty, action observation,
motor imagery, mirror therapy, rhythmic cueing, implicit
feedback/knowledge of results, social interaction). An effective
rehabilitation approach should thus incorporate principles of
both types in order to counteract neuronal degradation and
promote improvement. Firstly, a training that addresses only
a limited subset of the neuronal circuitry underlying a general
function might limit transfer to other behaviors that depend on
the same circuitry (Kleim and Jones, 2008). Secondly, not all
principles are equally applicable to all patients. Some principles
might be more beneficial early after stroke, whereas others
benefit patients with less severe damage. Spontaneous biological
recovery and activity-dependent plasticity appear to interact
differently at different stages after stroke, which, aside from
other factors like severity, predicts recovery (Reinkensmeyer
et al., 2016; Hylin et al., 2017). It seems that in acute patients
the sensorimotor cortex activity is highly abnormal, and the
normalization in activity patterns is linked to better recovery
(Schaechter, 2004). Principles like task-oriented practice that
promote localized changes, might therefore be more beneficial
at the acute stage after stroke (Schaechter, 2004), whereas

therapies like CIMT, where the forced use of the impaired
limb is paired with increasing difficulty and further principles,
have been shown to be more suitable at later stages after
stroke and for less impaired patients (Dromerick et al., 2009).
More severely impaired patients, on the other hand, might
benefit from action observation, mirror therapy and motor
imagery (Dohle et al., 2009; Sun et al., 2013). Future studies
will show the optimal combinations of principles that stimulate
plasticity in a way that learning of preexisting or novel
functions is enhanced.

We are aware that the view proposed here is strongly
influenced by knowledge mainly derived from clinical work
with hemiparetic stroke patients. However, the literature
indicates that other diseases, for instance, PD (Rossiter et al.,
2014) or Alzheimer’s disease (Kalaria, 2002), show similar
cognitive, functional, and neuronal alterations even though they
may have different pathologies. Therefore, these principles of
neurorehabilitation could be potentially applied beyond the field
of stroke. As our main goal was to provide a synthesis that is
informative and practical, in-depth analysis of each principle
and its neurological underpinnings lie outside of the scope of
this work. In future work, we will unify the principles addressed
here in a theoretical framework to show how each of them
contributes to the restoration of sensorimotor contingencies
(Verschure, 2011).

In summary, our review provides a synthesis of effective
therapeutic ingredients that could be beneficial in aiding recovery
after stroke. We hope that future work will extend the evidence
presented here by implementing and investigating the principles
of neurorehabilitation in novel rehabilitation protocols for stroke
and other patient populations.
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