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This review surveys physiological, behavioral, and morphological evidence converging
to the view of the cerebro-cerebellum as loci of internal forward models. The
cerebro-cerebellum, the phylogenetically newest expansion in the cerebellum, receives
convergent inputs from cortical, subcortical, and spinal sources, and is thought to
perform the predictive computation for both motor control, motor learning, and cognitive
functions. This predictive computation is known as an internal forward model. First,
we elucidate the theoretical foundations of an internal forward model and its role in
motor control and motor learning within the framework of the optimal feedback control
model. Then, we discuss a neural mechanism that generates various patterns of outputs
from the cerebro-cerebellum. Three lines of supporting evidence for the internal-forward-
model hypothesis are presented in detail. First, we provide physiological evidence that
the cerebellar outputs (activities of dentate nucleus cells) are predictive for the cerebellar
inputs [activities of mossy fibers (MFs)]. Second, we provide behavioral evidence that a
component of movement kinematics is predictive for target motion in control subjects
but lags behind a target motion in patients with cerebellar ataxia. Third, we provide
morphological evidence that the cerebellar cortex and the dentate nucleus receive
separate MF projections, a prerequisite for optimal estimation. Finally, we speculate that
the predictive computation in the cerebro-cerebellum could be deployed to not only
motor control but also to non-motor, cognitive functions. This review concludes that the
predictive computation of the internal forward model is the unifying algorithmic principle
for understanding diverse functions played by the cerebro-cerebellum.

Keywords: cerebral cortex, cerebellar circuitry, forward model, motor function, higher brain function,
neural networks

INTRODUCTION

The cerebellum has developed in the sensory domain of the central nervous system (CNS) as
evidenced by the fact that it has emerged in the alar plate (i.e., the sensory part (dorsal half) of the
neural tube of the rhombencephalon of primitive jawless vertebrate such as myxinoids (hagfish)
or petromyzonts (lampreys; Larsell, 1967; Sugahara et al., 2016). The cerebellum is hence ideally
located to accommodate multimodal sensory inputs (Larsell, 1967) including both exteroceptive
(lateral-line, vestibular, acoustic, visual) and interoceptive (somatosensory) inputs, thereby
functioning as the hub of sensory integration. In addition to sensory inputs, the mammalian
cerebellum receives inputs from cortical areas including sensory, motor, and association areas
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through the pontine nuclei (PN). In humans, the cerebellum is
estimated to share no less than 80% of the CNS neurons in no
more than 10% of the brain volume (Herculano-Houzel, 2009).
To summarize, the cerebellum has been, throughout its long
phylogenetic history, the unique hub in the CNS to accommodate
and integrate both afferent and efferent inputs from almost the
entire brain, a prerequisite for a neural substrate for adaptive and
flexible behaviors.

The cerebellum is homogenous in its local neural circuity
and heterogeneous in its input-output organization (Ito, 1984).
The local neural circuitry of the cerebellar cortex is characterized
by its superb homogeneity, sometimes expressed as being
‘‘crystal-like,’’ whereas the inputs to and the outputs from
the cerebellum are heterogeneous from one region to another.
Therefore, it is commonly postulated that the functional diversity
of the cerebellum originates from heterogeneous input-output
connectivity and is processed through a common algorithm
that is implemented in the homogenous neural circuitry
in the cerebellar cortex. In light of Marr’s three levels of
analysis, the cerebellum may perform common computation
on diversified representations of cerebellar inputs and outputs.
Therefore, the cerebellum may be better understood if we ask
‘‘how the cerebellum computes’’ than ‘‘what the cerebellum
computes.’’ In contrast to previous studies that have focused
on neural representations of an internal forward model, we
explored how the cerebellum transforms its inputs [mossy
fibers (MFs)] to its outputs [dentate nucleus cells (DNCs);
Tanaka et al., 2019]. Given the postulate that the cerebellum
may process a common algorithm, the main goal of this
review is to comprehend the physiology and pathology of
different regions of the cerebellum on a common ground of the
algorithm (Diedrichsen et al., 2019).

Among a range of proposals for the cerebellar algorithm
including timing processing (Ivry et al., 2002; Ivry and Spencer,
2004) and temporal pattern generator (Fujita, 1982; Dean
et al., 2010), one plausible candidate is the prediction of
sensory outcomes as a consequence of motor action, referred
to as the computation of an internal forward model (Jordan
and Rumelhart, 1992; Wolpert and Miall, 1996; Bastian,
2006; Ishikawa et al., 2016). The predictive computation of
the internal forward model plays a key role in predicting
outcomes of self-action, fast and stable motor control, integrating
the prediction with sensory feedback, and adaptation to a
novel environment. This review article provides physiological,
behavioral, and morphological evidence that converges to the
cerebro-cerebellum as a neural substrate of the internal forward
model. In particular, we introduce neural evidence that current
outputs from the cerebellum [i.e., outputs from the dentate
nucleus (DN)] can predict future inputs to the cerebellum
(i.e., cortical outputs relayed by MFs originated from PN), a
hallmark of an internal forward model. We will also discuss
how the input-output organization of the cerebro-cerebellum
may contribute to forward models for higher (i.e., non-motor)
brain functions.

This article is organized as follows. Section ‘‘Predictive
Computation of Internal Forward Model’’ begins by defining
the computation of the internal forward model, discusses its

multiple functions in a computation model of motor control
and motor adaptation, and reviews experimental evidence for
the cerebellum as a locus of an internal forward model. Whereas
the topic of internal models has been reviewed previously
in the existing literature, this section emphasizes background
information for facilitating the following discussions. In
particular, we emphasize multiple computational roles that an
internal forward model can play. Section ‘‘Generation of Outputs
From the Cerebro-Cerebellum’’ delves into a physiological
mechanism to generate a wide range of output from DN by
modulating the inhibitory inputs from Purkinje cells (PCs).
Section ‘‘Functional Evidence for Cerebellar Forward Model’’
summarizes neural and behavioral evidence that the cerebellum
performs predictive computation. Section ‘‘Anatomical Structure
Supporting for Cerebellar Forward Models’’ surveys anatomical
structures of the cerebro-cerebellum that potentially scaffold the
forward-model computation. Section ‘‘Cognitive Functions and
Cerebellar Forward Models’’ branches out to speculate a possible
role of the cerebro-cerebellum in higher cognitive functions
from the viewpoint of the internal forward model. Finally,
Section ‘‘Remaining Issues About Cerebellar Internal Models’’
concludes the internal-model hypothesis of the cerebellum and
enumerates unresolved issues toward the goal of understanding
the cerebro-cerebellum.

PREDICTIVE COMPUTATION OF
INTERNAL FORWARD MODEL

Internal Forward Model and its
Computational Roles
One critical problem in biological motor control is that afferent
sensory signals have inevitable temporal delays in reaching the
central nervous system. In other words, the brain always observes
‘‘the past’’ of its own body and environments. Visual signals,
for example, arrive at the primary visual cortex about 30 ms
later and at the parietal cortex about 80 ms later than an
onset of a visual stimulus (Schmolesky et al., 1998). Delays in
sensory feedback originate from several factors, as quantified
in locomotor reflex movements in terrestrial animals of various
sizes (More et al., 2010;More andDonelan, 2018). Among factors
contributing to the feedback delay such as a synaptic delay or
an electro-mechanical delay, the dominant factor is the nerve
conduction delay, ranging about 10 ms for a shrew to about
100 ms for an elephant. Larger animals experience a longer
feedback delay yet move more slowly, whereas smaller animals
experience a shorter feedback delay but move more quickly. In
sum, sensory delays are comparable to typical time scales of
rapid movements and hence not negligible both in small and
large animals.

The delay in sensory feedback is problematic not only in
sensing the body and the environments but also in controlling
the body. It is well known in control engineering that feedback
control based on a previous state causes oscillatory and unstable
movements if the delay in feedback control is of the order of or
larger than a time constant of a controlled plant (Wolpert and
Miall, 1996). The delays in visual feedback are comparable to the
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movement time of rapid reaching movement of the upper limb
(about a few hundred milliseconds) and saccadic eye movements
(typically less than fifty milliseconds). Therefore, in biological
motor control, feedback control based on delayed sensory signals
would result in unstable movements. Nonetheless, animals
can perform a fast movement without losing its stability.
Biological motor control must be equipped with a mechanism to
compensate for the sensory delay for a fast and stable movement.

One mechanism proposed to cope with the delay in sensory
feedback is to compute a future state of the body based
on a current estimate of the body and an efferent signal
of motor control (Figure 1A). This predictive computation
internally emulates or models an actual movement of the
body by essentially solving an equation of motion of the
body forward in time, thereby known as an internal forward
model (Wolpert et al., 1998; McNamee and Wolpert, 2019).
An internal forward model predicts the state of the body time
by time that is then used by a feedback controller, thereby
allowing fast and stable movements. The feedback control
based on the prediction of the internal forward model is
called internal feedback. There are lines of evidence supporting
the hypothesis of predictive forward model and internal
feedback from neuroimaging studies (Heinks-Maldonado et al.,
2006; Bäss et al., 2008), non-invasive stimulation studies
(Miall et al., 2007; Lesage et al., 2012), and psychophysics
studies (Lang and Bastian, 1999; Nowak et al., 2004, 2007)
in human.

An internal forward model plays a role not only in online
control but also in motor learning (Sokolov et al., 2017).
In addition to delay compensation, the computation of state
prediction has been proposed to serve motor control for
cancellation of sensory effects of movements (Blakemore et al.,
1998), the transformation between sensory errors and motor
errors (Jordan and Rumelhart, 1992), and mental practice for
a selection among possible actions (Gentili et al., 2006). A
predicted consequence of a movement is to be compared with
the actual consequence of that movement, referred to as a
prediction error. Note that the prediction error differs from a
target error, which is a difference between the target and the
actual reaching point. A clever experiment revealed that the
prediction error, but not the target error, drivesmotor adaptation
in a visuomotor rotation experiment by dissociating a prediction
error from a target error (Mazzoni and Krakauer, 2006). In
this experiment, subjects were instructed that a movement of
the cursor on the display was rotated counter-clockwise from
movement directions of the hand and that they should aim an
adjacent target (or intended target) located clockwise from a
target of the task (or task target) to intentionally cancel the
imposed counter-clockwise rotation. In this design, the predicted
outcome of movement was the adjacent target. Therefore, the
target error was the difference between the task target and actual
movement, while the prediction error was the difference between
the intended target and actual movement. By strategically aiming
at the adjacent target, the target error was null. A surprising
finding was that the target error increased in subsequent trials
even when the target error was almost null, indicating that
the prediction error, not the target error, drove the adaptation

to visuomotor rotation. Intriguingly, similar prediction-based
learning algorithms have been also proposed in reinforcement
learning where a reward drives a learning process (Barto et al.,
1983). There, a reward prediction error (i.e., an actual reward
minus an expected reward) but not a reward itself plays a critical
role in driving learning processes. In sum, the brain predicts
a consequence of its action, compares the prediction with an
actual consequence, and improves the next action both in error-
based motor learning and reward-based reinforcement learning
(Shadmehr et al., 2010).

A less well-known but equally important function of an
internal forward model is its role in the computation of
gains in feedback control and Kalman filtering. In addition
to the predictive computation reviewed above, the forward
model is required for the computation of gain matrices both
for the feedback controller and Kalman filtering. The optimal
feedback control (OFC) model provides a unified framework
that integrates diverse computational processes in motor control
and motor learning such as the internal forward model, Kalman
filter, and feedback control (Todorov and Jordan, 2002; Todorov,
2004). In the OFC model, the cost function (typically expected
movement error plus control cost) is optimized so that a task goal
is achieved with a minimum energy. There, the state of the body
is not directly observable but must be estimated from sensory
feedback signals, and the feedback controller is driven by the
estimated state. Therefore, the OFCmodel naturally incorporates
the predictive computation of the internal forward model.

The core element in the OFC model is the computation
of two gain matrices (Kalman gain and feedback gain
matrices). First, the Kalman filter is a recursive method to
estimate the current state that integrates a predicted state
from an internal forward model and sensory afferents. An
optimal estimator is a weighted sum of a predicted state
and sensory afferents determined by Kalman gain according
to their relative accuracies (or variances). The computation
of Kalman gain requires the accuracy of a predicted state
from an internal forward model for the optimal tradeoff.
Second, the optimally estimated state propels the feedback
controller to generate appropriate motor commands, which
is a product of the estimated state and the feedback gain
matrix. Here, the computation of the feedback gain matrix
requires information about the body dynamics and the control
cost so that the body is guided to achieve the task goal
with a minimum amount of energy. Again, the internal
forward model contributes to the computation of feedback gain.
Accordingly, the computation of gain matrices in the OFC
model necessitates the knowledge of dynamics implemented in
an internal forward model.

To summarize, an internal forward model plays at least the
three key roles in motor control and motor learning: (1) state
prediction for compensating the delay in sensory feedback in
online motor control; (2) state prediction for computing a
prediction error between a predicted outcome and an actual
outcome in motor learning; and (3) computation of Kalman gain
and feedback gain. Theoretically speaking, it is possible that these
roles are solved collectively by a single, unified forward model or
separately by multiple, distributed forward models. Convergent
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lines of evidence suggest that the cerebellum is a neural correlate
of an internal forward model, as discussed below.

Previous Evidence for Cerebellar Forward
Model in the Cerebellum
An internal forward model contributes not only to state
prediction for a fast movement but also to the computation of
prediction error for motor learning and of gain matrices for
the OFC model. A wide range of previous studies converge
to the cerebellum processes as the loci of internal forward
models (Nowak et al., 2004; Bastian, 2006; Morton and Bastian,
2006; Nowak et al., 2007; Tseng et al., 2007; Lesage et al.,
2012). The internal-forward-model hypothesis of the cerebellum
indicates that the delayed state and control signal in Figure 1A
corresponds to the MFs in Figure 1B and that the predicted
state in Figure 1A corresponds to the DNCs in Figure 1B.
The cerebellar circuit is characterized by two specific features
(Figure 1B): (1) the mostly feedforward connectivity from MFs
as an input to DN as an output; and (2) the expansion from
MFs (input to the cerebellum) to granule cells (GCs; input
to the cerebellar cortex) and the compression from MFs to
DNCs (output from the cerebellum). A possible computational
role of the expansion coding in GCs is reviewed in Sanger
et al. (2020). Given the multitude of computational functions
of the internal forward model, it is not surprising that an
impairment of the cerebellum leads to a plethora of motor
deficiencies collectively known as cerebellar ataxia (Holmes,
1917). Also, cerebellar patients suffer from an inability in motor
adaptation and motor learning (Martin et al., 1996; Smith
and Shadmehr, 2005; Morton and Bastian, 2006; Tseng et al.,
2007). Therefore, the proper functioning of the cerebellum
is required for well-coordinated movements and adaptive
motor learning.

Most supporting evidence for the internal-forward-model
hypothesis of the cerebellum comes from clinical studies,
human neuroimaging and non-invasive stimulation studies
(Imamizu et al., 2000; Miall et al., 2007; Ishikawa et al.,
2016). These studies are broadly categorized into two aspects
of the hypothesis: predictive activities and motor learning.
First, predictive activities are diminished or altered when the
cerebellum is impaired or suppressed. Nowak et al. (2004, 2007),
for example, reported that patients of cerebellar agenesis did not
show predictive muscle activities in one hand when catching
a ball released by the other hand. Miall et al. (2007) applied
transcranial magnetic stimulation to the cerebellum during
hand movements and found that the hand trajectories deviated
from a target. This deviation of trajectories was interpreted
as a temporary disruption of forward-model prediction by the
stimulation. Second, motor leaning is deteriorated in cerebellar
patients. Martin et al. (1996) reported that motor adaptation
to displacement prism was severely diminished in cerebellar
patients. More recently, Tseng et al. (2007) reported that
cerebellar patients had selective impairment in a rapid adaptive
process but retained a slow adaptive process. These deficits
in motor prediction and motor leaning are supportive of the
internal-forward-model hypothesis of the cerebellum.

GENERATION OF OUTPUTS FROM THE
CEREBRO-CEREBELLUM

The DN is the final output station from the cerebro-cerebellum.
To contribute to the three roles of an internal forward
model mentioned above, DNCs should be able to generate
dynamic patterns of output. Our previous study unveiled a
simple mechanism to explain a wide range of modulation
(i.e., facilitation and suppression) of DNC activity (Ishikawa
et al., 2014) and solved the controversy over the generation of
burst activity of DNCs before limb movement (Thach, 1970;
Strick, 1983;Wetts et al., 1985; Chapman et al., 1986; Fortier et al.,
1989; van Kan et al., 1993; Goodkin and Thach, 2003) without a
major excitatory drive.

To explain the excitation of DNCs [specifically, deep
cerebellar nuclei (dCN) cells], two physiological mechanisms
have been proposed. One mechanism is the recruitment of
a post-inhibitory rebound excitation (Aizenman and Linden,
1999; Hoebeek et al., 2010; Tadayonnejad et al., 2010; Witter
et al., 2013). Another mechanism is the suppression of PCs
that facilitates dCN cells by a release from tonic inhibition
from PCs, a mechanism known as disinhibition (Albus, 1971;
Miyashita and Nagao, 1984; Nagao, 1992; Shinoda et al., 1992;
Medina andMauk, 2000). To address how DNCs become excited
or inhibited during voluntary limb movements, we compared
the temporal patterns of activity for PCs and DNCs recorded
from the same monkeys during step-tracking movements of
the wrist (Ishikawa et al., 2014). If the post-inhibitory rebound
excitation serves for the facilitation, phasic excitation of PCs
and a concomitant inhibition of DNCs should precede the main
excitation of DNCs. On the other hand, if the disinhibition
serves for the facilitation, we should observe the suppression of
PCs and the activation of DNCs at the same timing. We found
that (Ishikawa et al., 2014) the majority of PCs in the Cerebro-
cerebellum demonstrated suppression before the onset of wrist
movements. At the same time, the majority of DNCs were
activated without prior suppression. This finding supports the
disinhibition mechanism that the movement-related activation
of DNCs occurs when they are released from tonic inhibition
from PCs.

The proposed mechanism in generating burst activities of
DNCs is summarized in Figure 2. MF inputs to the cerebellar
cortex are relayed by GCs and activate one or both of parallel
pathways to PCs. The indirect pathway suppresses PCs via
inhibitory interneurons (INs; Figure 2A) whereas the direct
pathway activates PCs directly through parallel fibers (PFs;
Figure 2B). In this way, the activity of individual DNC is
regulated by the summation of inputs through the parallel
pathways. In line with our proposal, Dean and Porrill (2010)
proposed that the parallel pathways perform in a competitive
way to suppress or facilitate the activity of PCs in the cerebellar
cortex. Our finding extends their idea to explain the role of
the parallel pathways for the generation of dynamic output
from DN (Ishikawa et al., 2014). Overall, in our population
of PCs, movement-related suppression of simple spike (SS)
activity dominates before movement onset and contributes to
the initiation of movement, while movement-related facilitation
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FIGURE 1 | Schematics of motor control and the cerebellar circuit. (A) An internal forward model receives time-delayed sensory feedback (x(t − t delay) and efference
copy (u (t)) and predicts a current state ( (t)) (bottom row). Difference between movement goal (xgoal) and predicted state ( (t)) drives a feedback controller to
generate a control signal (u (t)), which in turn steers the controlled plant (top row). (B) Schematics of the neural circuit in the cerebellum from mossy fibers (MFs) to
dentate nucleus cells (DNCs). Note that this feedforward circuitry resembles that of an internal forward model, indicating that the cerebellar input representing a
time-delayed state is converted into the cerebellar output representing a current state. The numbers accompanied by the cell labels denote the relative numbers of
cells in comparison with Purkinje cells (PCs), illustrating the expansion from MFs to granule cells (GCs) and the compression from MFs to DNCs. These numbers
were calculated from corresponding numbers listed in Ito (1984).

dominates after movement onset and contributes to termination
of movement (see Figures 8A, 9A in Ishikawa et al., 2014).

The differential recruitment of the two pathways is also
organized in a spatially congruent manner; activities of DNCs
were modulated by activities of PCs with overlapping receptive
fields (RFs; Ishikawa et al., 2014). A large proportion of
PCs whose somatosensory RFs were found in the distal
arm (i.e., around the wrist joint) showed strong suppression
before movement onset, whereas the majority of DNCs with
the same RFs showed a concurrent burst of activity. In
contrast, PCs with RFs in the proximal arm demonstrated
a marked and simultaneous increase in activity, while DNCs
with the same RFs were strongly suppressed. Our observation
suggests that activation of DNCs by disinhibition from
PCs facilitates the execution of wrist movement, whereas
suppression of the DNCs due to increased PC activity
contributes to the stabilization of proximalmuscles and improves
task performance.

The organization of the parallel pathways of the cerebellar
outputs and its spatially congruent recruitment reminds us
of two often overlooked clinical signs described by Holmes
(i.e., asthenia and adventitiousness). We proposed that these
signs may be caused by malfunctions of the two output modes

(Ishikawa et al., 2015). Asthenia represents a failure of the
recruitment of muscle activities resulting in delayed initiation
and the slow build-up of movement, whereas adventitious
movement is sporadic or erratic activation of muscles to be
suppressed resulting in instability. Namely, the asthenia and
adventitiousness may reflect deficits in the control of the
disinhibition and inhibition, and they could be essential building
blocks of various ataxic movements (Ishikawa et al., 2015).
Overall, the malfunction of the parallel pathways disturbs
whatever contribution of the cerebellum by altering the proper
input-output organization.

FUNCTIONAL EVIDENCE FOR
CEREBELLAR FORWARD MODEL

Neural Evidence for Cerebellar
Internal Model
In contrast to the wealth of evidence, it is intriguing that
few previous studies hitherto examined the internal-forward-
model hypothesis of the cerebellum from electrophysiological
data. Of particularly notable is a series of electrophysiological
studies recorded from monkeys performing a manual pursuit
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FIGURE 2 | The balance between parallel pathways in the cerebellar cortex determine DNC output. (A) In the indirect pathway, the PC activity is suppressed
through inhibitory interneurons (IN), which in turn enhances the DNC activity with disinhibition. (B) In the direct pathway, PC is activated through excitatory parallel
fiber (PF) inputs, which in turn suppresses the DNC activity. The balance between the two pathways determines the final output patterns of individual DNCs. In this
way, inhibitory PCs can exert bidirectional effects on DNCs and generate a variety of output patterns. Pluses (+) and minuses (−) represent excitatory and inhibitory
synapses, respectively. Adapted from Ishikawa et al. (2014) under CC-BY license.

tracking task (Roitman et al., 2005; Pasalar et al., 2006;
Ebner and Pasalar, 2008). Firing rates of SSs of PCs reflected
and preceded movement kinematics (hand position and
velocity) irrespective of assistive/resistive forces imposed on the
hand, supporting that the PCs implement the forward-model
computation in the kinematic space. On the other hand, there
is another electrophysiological study that contradicts with the
internal-forward-model hypothesis. Firing rates of PCs recorded
from monkeys performing an elbow flexion/extension task
consistently covaried with the level of imposed force, indicating
that the PCs represent movement dynamics but not movement
kinematics, the findings more consistent with the internal-
inverse-model computation (Yamamoto et al., 2007). Therefore,
it is yet an open question whether the cerebellum performs the
forward-model computation in kinematic space or the inverse-
model computation in dynamic space. These studies posit that
kinematic and dynamic representations in PCs correspond to
a forward model or an inverse model, respectively. But both
internal models contain kinematic and dynamic representations,
and PCs are not final outputs of the cerebellum. We hence think
that examining the coding representation of PCs does not directly
address the question about the internal-model hypotheses of the
entire cerebellum.

Instead of focusing on a neural representation in single
population as in the previous studies, our recent study tackled
this problem by examining how neural representations are
transformed from one population to another through the
cerebellar circuit (Tanaka et al., 2019). The cerebellum has
the unique anatomical structure composed of feedforward
connectivity particularly suited for the internal-forward-model
computation (Figure 1B). One natural prediction derived from
the hypothesis is that a current output of an internal forward
model should contain predictive information about a future
input to that internal forward model. If the internal-forward-
model hypothesis of the cerebellum holds, current activities
of the cerebellar outputs should be able to predict future
activities of the cerebellar inputs. Our previous studies reported
movement-related modulation of firing rates of MFs, Golgi cells,

PCs and DNCs recorded from monkeys performing step-track
wrist movements (Ishikawa et al., 2014; Tomatsu et al., 2016).
Specifically, we analyzed the firing rates of 94 MFs, 83 PCs, and
73 DNCs (Tanaka et al., 2019).

We first addressed how the firing cells of PCs were driven
by the firing rates of MFs. A linear weighted sum of MF
firing rates reconstructed PC firing rates most parsimoniously,
in comparison with a thresholding model, a quadratic model
or an FIR model. The successful reconstruction by the linear
model was unanticipated given the fact that a PC receives
an estimated 105 PF inputs whereas our linear reconstruction
included only 94 MF inputs per PC. This was probably
because all recorded cells were task-related whose activities
were modulated by the movement task, and we surmise
that only a few dozens of MFs contributed significantly
to the task-related firing rates of PCs. Similarly, we found
that the firing rates of DNCs were also well reconstructed
as a weighted linear sum of MFs and PCs. Dominant
computational models of the cerebellar cortex posit more
complex processes; the perceptron model assumes nonlinear
thresholding at PCs (Marr, 1969; Albus, 1971), and the adaptive
filter model assumes a dependence of PC firing rates on
current and previous MF firing rates (Fujita, 1982; Dean
et al., 2010). Our analysis, on the other hand, implies that the
cerebellar computation is rather linear, markedly simpler than
previously thought.

We then proceeded to directly test the internal-forward-
model hypothesis by examining whether the cerebellar output
could predict the cerebellar input in the future. Following the
linear reconstructions of PC and DNC firing rates, the MF firing
rates at time t+t1 were predicted as a linear weighted sum of the
DNC firing rates at time t. We found that the linear prediction
of MF firing rates was statistically significant when compared to
directionally randomized surrogate data. This analysis suggests
that the current output from the cerebellum (DNC firing rates
at time t) contained predictive information about the future
input to the cerebellum (MF firing rates at time t+t1), which
in turn supports the internal-forward-model hypothesis of the
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FIGURE 3 | Schematics of the cerebellar circuit and corresponding computational steps. (1) Prediction computation. The PCs computes a predicted state from a
current estimate conveyed by the MFs. (2) Filtering computation. The predictive state computed by the PCs are integrated with an observation signal conveyed by
other MFs for optimal estimation in DNCs. (3) Cerebellar prediction. The current output from the cerebellar circuit (DNCs) can predict future inputs to the
cerebellum (MFs).

cerebellum. Since the MF activities analyzed here originate from
the motor cortex, the cerebellar output predicts the future state
of the motor cortex, which in turn returns to the motor cortex
through the thalamus.

We note that the linear equations derived from the
experimental firing rates resemble those of optimal estimation
known as Kalman filter. Based on formal correspondence
between the experimentally derived linear equations and
the Kalman-filter equations, we speculate the following
computational steps in the cerebellar circuits (Figure 3):
(1) the PCs compute a predictive state from a current estimate
conveyed by the MFs (Predictive computation); (2) the DNC

activities combine the predicted state from the PC activities and
sensory feedback from the MF activities (Filtering computation);
and (3) the DNC activities predicts a future input to the
MFs (Cerebellar prediction). Our finding indicates that the
cerebellum performs not only an internal-forward-model
prediction but also an optimal integration of a predicted state
and sensory feedback signals.

Behavioral Evidence for Cerebellar
Internal Model
Although the cerebro-cerebellum has long been suggested as
a neural substrate of internal forward models (Wolpert and
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Miall, 1996; Bastian, 2006; Ebner and Pasalar, 2008; Ishikawa
et al., 2016), few behavioral methods are available to evaluate
the contribution of forward models in patients with cerebellar
ataxia (but see Bhanpuri et al., 2014). Our previous studies have
developed a method to analyze the contribution of position-
and velocity-dependent motor commands (i.e., muscle activities)
in visually-guided pursuit movements of the wrist (termed as
Br/Kr ratio, defined below; Lee et al., 2015; Kakei et al., 2019).
Here, Br and Kr stand for viscous and elastic coefficients,
respectively, estimated from wrist movements of a subject with
a canonical correlation analysis, and the Br/Kr ratio evaluates
the ratio of velocity control to position control. The movement
kinematics of wrist was decomposed into a slower (i.e., lower-
frequency, <0.5 Hz) F1 component and a faster (i.e., higher-
frequency, >0.5 Hz) F2 component, and the Br/Kr ratio was
computed for F1 component and F2 component, respectively.
The F1 component belonged to the same frequency range of the
target motion and encoded both velocity and position (higher
Br/Kr ratio) of the target motion. This kinematic formula of
the F1 component appeared optimal to synchronize the wrist
movement with the target motion in a predictive manner.
Indeed, for the control subjects, the F1 component lagged
behind the target motion for about 60 ms (15.0–107.4 ms,
mean ± SD = 66.3 ± 29.4 ms, 13 subjects; Figure 4A, Controls).
The short delay excludes a possibility that the F1 component
of the wrist movement was generated with visual feedback
of the target motion. The conduction time of the peripheral
motor nerve (∼10 ms) and electromechanical delay (∼50 ms)
alone would take that long (∼60 ms). Thus, the delay of the
F1 component was too short to be a feedback delay. Rather, the
generation of the F1 component in the CNS must have preceded
the corresponding motion of the target, considering the average
lead time of neuron activity in the primary motor cortex for the
wrist movement (∼100 ms).

We next evaluated the delay of the F1 component in
patients with cerebellar ataxia. The F1 component was
delayed significantly more (∼100 ms) in the patient group
(79.5–322.4 ms, mean ± SD = 172.1 ± 82.0 ms, 19 subjects;
p < 0.0001) than in the control group (Figure 4A, Patients). The
delay may be explained as poor recruitment of facilitation in
DN due to a decrease in the disinhibition of DNCs, i.e., asthenia
(Ishikawa et al., 2015). The prediction delayed by this amount
is no longer predictive and may force the patients to rely on the
pure feedback control, further destabilizing the wrist movement
ataxic (Kakei et al., 2019).

We further demonstrated that the Br/Kr ratios of the
predictive (F1) component had a significant difference
between the control and patient groups. Namely, the Br/Kr
ratios of the F1 component of the patient group (0.3–1.9,
mean ± SD = 0.99 ± 0.42; Figure 4B, Patients, F1) were
significantly lower than those of the control group (1.4–2.5,
mean ± SD = 1.73 ± 0.36; Figure 4B, Controls, F1; p < 0.001),
suggesting difficulty in recruiting velocity control in cerebellar
patients. In contrast, Br/Kr ratios of the F2 component were
comparable for both groups (compare Figure 4B, Cerebellar
patients, F2 and Controls, F2). Taken together, our results
support the hypothesis that cerebellar patients have an

FIGURE 4 | Changes in movement kinematics of ataxic patients. (A) Delay
of the F1 domain of the wrist movement from the target motion.
Cross-correlation was calculated by changing the delay δ of the target motion
relative to the wrist movement. Controls: Histogram of the optimal delay δ for
the control subjects (n = 13). Cerebellar patients: Histogram of the optimal
delay δ for the cerebellar patients (n = 19). (B) Comparison of the Br/Kr ratios
for the F1 and F2 components between the controls and the cerebellar
patients. Controls: Br/Kr ratios of the control subjects for the F1 component
(top) and the F2 component (bottom; n = 13). Note the highly significant
difference between the two components. Cerebellar patients: Br/Kr ratios of
the patients for the F1 (top) and the F2 (bottom) components (n = 19). Note
the selective decrease of Br/Kr ratios for the F1 component in the patients.
Adapted from Kakei et al. (2019) under CC-BY license.

impairment in the forward-model prediction while relatively
maintaining corrective control in response to sensory feedback.

We then proceeded to examine the relationship between Br/Kr
ratios of the F1 component and performance/accuracy of pursuit
movement in the cerebellar patients and the control subjects
(Figure 5), because the characteristic decrease in Br/Kr ratio

Frontiers in Systems Neuroscience | www.frontiersin.org 8 April 2020 | Volume 14 | Article 19

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Tanaka et al. Internal Forward Model in Cerebro-Cerebellum

of the F1 component might have reflected impaired predictive
control in the patient group. To test this hypothesis, we examined
the relationship between the Br/Kr ratios of the F1 component
and the accuracy of the pursuit movement (i.e., F1 error,
Kakei et al., 2019). The Br/Kr ratio of the F1 component and
the F1 error were negatively correlated (Figure 5A). Next,
we examined the relationship between the F1 error and the
tracking score. The tracking score was defined as a percentage
of time when the cursor was kept within the target circle. The
F1 error and the tracking score demonstrated a strikingly linear,
negative correlation (Figure 5B). Overall, the Br/Kr ratio of the
F1 component is a useful measure to assess the accuracy of
predictive control, which could be quantified noninvasively in a
clinical setting.

ANATOMICAL STRUCTURE SUPPORTING
FOR CEREBELLAR FORWARD MODELS

Morphologic Substrata of the
cerebro-Cerebellum for Kalman Filter
Here we argue morphological substrata supporting our findings
of predictive computation presented in Section ‘‘Behavioral
Evidence for Cerebellar Internal Model’’. The conventional
circuit diagram of the cerebro-cerebellum (Figure 6A) depicts
the MFs projecting both to the cerebellar cortex and DN as
collaterals, implying that the cerebellar cortex and DN share
the same source of input. On the other hand, the prerequisite
of the Kalman filter is the two distinct inputs: current estimate
and current measurement; One MF input comes from the
cerebral cortex to the cerebellar cortex (via PN) and plays an
essential role in the prediction step, and another MF input to
DN conveys sensory feedback information and plays a critical
role in the filtering step. Therefore, the conventional diagram of
the cerebro-cerebellum in which the same MF projecting to the
cerebellar cortex and DN is not compatible with our proposal of
Kalman-filter computation in the cerebellum.

Discordant to the conventional diagram, extant anatomical
studies rather suggest that the cerebro-cerebellum receives
respective projections to the cerebellar cortex and DN
(Figure 6B). The first requirement of the Kalman-filter model
is that MFs originated from the PN project to the cerebro-
cerebellum without collaterals to DN. Indeed, Kelly and Strick
(2003) demonstrated a strong projection from the primarymotor
cortex (M1) to the cerebro-cerebellum, which was assumed to
carry efference copy signals. Also, Na et al. (2019) demonstrated
that MFs originated from PN have virtually no collateral
projection to DN on their way to the cerebro-cerebellum. Taken
together, it is most likely that the first requirement is satisfied
for the input from M1 to the cerebro-cerebellum. The second
requirement of the Kalman-filter model is that MFs conveying
feedback input provide collaterals to DN. Wu et al. (1999)
demonstrated that MFs originated from the lateral reticular
nucleus (LRN), which receives strong somatosensory inputs
from the spinal cord, have abundant collateral projection to DN
and other cerebellar nuclei on their way to the vermis and the
intermediate zone (see Figures 8–10 in Wu et al., 1999). Also,

these MFs from PN and LRN have only minor overlap in their
projection to the cerebellar cortex (Wu et al., 1999; Na et al.,
2019). These observations converge to the neural organization
compatible with the requirement of the Kalman-filter model
(Figure 6B).

Consistent with the anatomical observations, there were two
functionally distinct populations of MFs in our data set (Tanaka
et al., 2019). One population ofMFs contributed to the prediction
step and the other population of MFs contributed to the
filtering step. We confirmed that partially distinct populations
of MFs contributed to the reconstructions of PCs and DNCs,
respectively; the average correlation coefficient between weights
of MF–PC and MF–DNC projections was no more than 0.060. A
statistical test based on resampling verified that the correlation
between the two MF populations was statistically significant
(p < 10−5). Therefore, it was concluded that PCs and DNCs
received the projections from distinct populations of MFs,
thereby fulfilling the requirements of the Kalman-filter model.

As outlined in the ‘‘Introduction’’ section, an input to and
an output from a specific region of the cerebellum are a key
to understanding of the function played by that region. The
‘‘corticonuclear organization’’ depicted in Figure 6B appears to
be specific for the cerebro-cerebellum (i.e., the newer part of the
cerebellum), the other regions of the cerebellum could receive
input projections in different ways (Ito, 1984). For instance, in
the vestibular nucleus, nuclear neurons may act as a relay for
MF afferents, whereas PCs activated by the MF afferents may
exert modulatory action on the nuclear relay cells (Figure 6A,
see also Figure 92A in Ito, 1984). Similarly, in the fastigial
nucleus, nuclear cells may serve as a relay for PC output reflecting
MF inputs, while collaterals of MFs provide a background
excitation on which PCs can impose efficient bidirectional
modulation (i.e., inhibition and disinhibition; Figure 6A, see
also Figure 92B in Ito, 1984). In these cerebellar regions, the
corticonuclear organization is not compatible with the Kalman
filter, where the cerebellar cortex and DN receive shared MF
projections. Overall, even if the input-output organization is
common for the entire cerebellar cortex, different regions may
contribute to computationally different operations depending
on the organization of MF collaterals in the cerebellar nuclei
(Ito, 1984). It should be noted that Ito (1984) pointed out
the possibility of this type of heterotopic combination of a
direct collateral MF input and an indirect MF input via PCs
(i.e., ‘‘sidepath’’) to DN (see Figure 92D in Ito, 1984), to explain
spontaneous activities of DN neurons that lack collateral inputs
of MFs originated from PN (Allen and Tsukahara, 1974).

Compressed Prediction of the Cerebellar
Internal Model
The cerebro-cerebellar loop has more abundant projections
from the cerebral cortex to the cerebellum than those from
the cerebellum to the cerebral cortex (Figure 1B). To the best
of our knowledge, little attention is paid to the asymmetry of
the cerebro-cerebellar loop, in terms of the number of output
neurons on each side of the loop. The number of axons in the
cerebral peduncle (CP) conveying cortical outputs to PN and
other precerebellar nuclei is estimated as twenty-one million in
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FIGURE 5 | Accuracy of predictive (F1) component. (A) Relationship between the Br/Kr ratios for F1 component and Cursor-Target error for F1 (F1 error, in short).
The F1 error is defined as an average error between the target motion and the F1 component of the movement during a trial. Note the negative correlation.
(B) Relationship between F1 error and Tracking Score. Note the linear relationship. Overall, Br/Kr ratio for the F1 component has a strong positive correlation with the
accuracy of the pursuit movement. Adapted from Kakei et al. (2019) under CC-BY license.

FIGURE 6 | Two schematics of cortico-nuclear organization. (A) The conventional scheme in which the same MF projects to the cerebellar cortex (CBX) and DN
both of which belong to the same corticonuclear complex (Ito, 1984). (B) Proposed scheme that one MF (MFa) from pontine nuclei (PN) projects to the cerebellar
cortex (i.e., cerebro-cerebellum; CBXa) without collateral projection to DN, whereas another, separate MF (MFb) projects to DN. Note that MFa and MFb have distinct
projection areas in the cerebellar cortex, CBXa, and CBXb, respectively. This scheme is consistent with the requirements of the Kalman-filter model.

humans (Tomasch, 1969). On the other hand, the number of
axons in the return path, i.e., the superior cerebellar peduncle
(SCP) relaying the cerebellar output to the thalamus, is no
more than 0.8 million in human (Heidary and Tomasch, 1969).
Therefore, the output from DN can convey less than 5% of
the information of the cortical output assuming comparable
discharge frequencies for corticofugal neurons and DNCs (Kakei
et al., 1999, 2001; Ishikawa et al., 2014; Tomatsu et al., 2016).
The cerebro-cerebellum returns its output back to the cerebral
cortex that is considerably compressed from the input it receives.
One may then wonder what the functional advantage of the
compact representation is. There appears no consensus on the
functional role of the compact representation (Sanger et al.,

2020). Given the fact that the cerebellum contributes to fast,
trained and automated motor control with reduced effort and
attention, the compressed representation may be beneficial or
even necessary to extract relevant information from numerous
and redundant cerebellar inputs and to assign more attention to
the task currently in the focus.

COGNITIVE FUNCTIONS AND
CEREBELLAR FORWARD MODELS

The cerebellum was once thought of as an organ for motor
coordination. The motor cerebellum is mainly represented in the
anterior lobe with a smaller, secondary representation in lobule
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VIII (Kelly and Strick, 2003). Although possible involvement
of the cerebellum in non-motor mental functions had been
suggested occasionally in the past, it has become the subject of
systematic consideration since the beginning of 1990s (Leiner
et al., 1986; Schmahmann, 1991; Ito, 1993; Schmahmann, 2004;
Ito, 2008). With a use of trans-neuronal transport of neurotropic
viruses, Middleton and Strick (1994) provided the first evidence
in the monkey that the cerebellum is connected to the non-motor
area 46 of the prefrontal cortex and revised the conventional
view of the cerebellar devotion to motor control. Strick and his
colleagues eventually established that the hemispheric parts of
the cerebellum (mainly Crus I and Crus II) are connected with
various cortical association areas through DN (Middleton and
Strick, 1994; Dum and Strick, 2003; Kelly and Strick, 2003).

The existence of the human non-motor cerebellum was
later demonstrated repeatedly in non-invasive imaging studies
(e.g., Hanakawa et al., 2003; for reviews see Stoodley and
Schmahmann, 2009; Buckner, 2013). A surprisingly powerful
approach capable to map the topographical organization of the
cerebellar cortex in the human has recently provided insight
into the functional mapping between the cerebellum and the
cerebral cortex. The approach derives from the observation that
brain organization can be inferred by measuring spontaneous
low-frequency fluctuations in intrinsic activity (Biswal et al.,
1995; Fox and Raichle, 2007). Recently, Buckner et al. (2011)
and Wang et al. (2013) demonstrated base on this approach that
the cerebro-cerebellum collects information from almost all the
entire cortical areas, suggesting that the cerebellum still keeps the
position of the CNS hub even in human. More recently, Guell
et al. (2018) used data from the Human Connectome Project
(n = 787) to analyze cerebellar fMRI task activation (motor,
working memory, language, social and emotion processing) and
resting-state functional connectivity. They demonstrated novel
aspects of the functional topography of the human cerebellum.
There were two distinct representations (lobules I-VI and lobule
VIII) of motor activation that was consistent with prior studies,
in particular with the above-mentioned trans-neuronal tracing
study in the monkey (Kelly and Strick, 2003). Newly revealed
were three distinct regions (Crus I, Crus II, lobules IX/X) in
the cerebellar posterior lobe that show topographical relationship
with cortical association areas (Buckner et al., 2011; Wang
et al., 2013). Each region contains four domains of non-motor
functions (workingmemory, language, social, and emotional task
processing). Indeed, lesions in the posterior lobe result in the
cerebellar cognitive affective syndrome (CCAS), which includes
deficits in executive function, visual spatial processing, linguistic
skills and regulation of affect (Schmahmann, 2019).

The critical question arises whether the Kalman-filter
mechanism identified for the prediction in the motor part
of the cerebro-cerebellum (Tanaka et al., 2019) generalizes
to the cognitive/affective part of the cerebro-cerebellum. Our
dataset of MFs, PCs, and DNCs recorded during the motor
task cannot support or reject the predictive mechanism of the
cerebellum for cognitive/affective functions. Nevertheless, it is
possible to search for the same corticonuclear organization
(Figure 6B) in the non-motor part of the cerebro-cerebellum.
There are two requirements: (1) the main MFa input to the

cerebro-cerebellum is originated from a non-motor area and
relayed by PN, and (2) the filtering MFb input is originated
from a distinct cortical or subcortical source and relayed by
a non-PN nucleus that has significant collateral projection
to DN (Figure 6B). The requirement 2 is the key because
the requirement one is common for several cortical areas,
including prefrontal areas (Schmahmann and Pandya, 1997),
parietal association areas (Schmahmann and Pandya, 1989),
superior temporal areas (Schmahmann and Pandya, 1991),
occipitotemporal and parahippocampal areas (Schmahmann and
Pandya, 1993). There are only a few major sources of collateral
MF inputs to DN, the lateral reticular nucleus (LRN; Wu et al.,
1999) and the nucleus reticularis tegmenti pontis (NRTP; Gerrits
and Voogd, 1986) in the reticular formation. The LRN receives
main inputs from the spinal cord (Alstermark and Ekerot, 2013)
and additional inputs from the sensorimotor areas and the
red nucleus (Bruckmoser et al., 1969; Matsuyama and Drew,
1997). The NRTP receives inputs mainly from the sensorimotor
areas, the prefrontal areas and the parietal association areas
(Schmahmann et al., 2004). Overall, the Kalman-filter model
is at least compatible with the non-motor part of the cerebro-
cerebellum if the two inputs to non-motor parts of DN (Dum
and Strick, 2003) are proven to have different origins in
future studies.

REMAINING ISSUES ABOUT CEREBELLAR
INTERNAL MODELS

This review article has discussed physiological, behavioral, and
morphological evidence supporting the internal-forward-model
hypothesis of the cerebellum, with an emphasis on our recent
studies. This final section expands our speculation on a possible
computational role of the cerebro-cerebellar loops and raises
remaining unsolved issues on the functioning of the cerebellum
for a future study.

Possible Computational Role of
Cerebro-Cerebellar Loops
The cerebral cortex and the cerebellum have evolved together
as their volume has increased in a proportional manner (Rilling
and Insel, 1998), and form an anatomically closed connectivity
known as the cerebro-cerebellar loop (Kelly and Strick, 2003;
Bostan et al., 2013). These findings indicate that the evolutionally
conserved anatomical structure composed of the cerebral cortex
and the cerebellum plays a functionally relevant role, but to
the best of our knowledge, there appears no consensus about
its specific function. We below expand our speculation on
a computational role considering our findings and artificial
neural networks.

The cerebral cortex and the cerebellum have contrasting
anatomical structures. The cerebral cortex is characterized
by hierarchical recurrent connections composed of local
connections across cortical layers and lateral connections (for
a review see DeFelipe and Jones, 1988), so it is appropriate to
model the cerebral cortex, at least locally, as a recurrent neural
network. An artificial neural network model with recurrent
connections is known to be able to approximate any dynamical
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systems (Funahashi and Nakamura, 1993), so it is appropriate
to model a neural process that evolves over a period such as
a production of a motor sequence. A recurrent neural network
is also known to be difficult to train and control because it
may exhibit chaotic behavior (Sompolinsky et al., 1988; Sussillo
and Abbott, 2009; Laje and Buonomano, 2013; Ben-Shushan
and Tsodyks, 2017). On the other hand, the cerebellum consists
essentially of a feedforward connectivity from the MFs as an
input to the cerebellar nuclei as an output. An artificial neural
network model composed of more than two layers is known
to be able to approximate any continuous mapping (Cybenko,
1989; Funahashi, 1989; Hornik et al., 1989), which is a theoretical
basis of the universal cerebellar transform (Schmahmann, 2004).
Also, the MF inputs are considerably expanded by the GCs by
about one-thousand-fold and then converged into the DNCs
(Figure 1B). This divergence-convergence structure resembles
a shallow learning scheme in machine learning. A feedforward
neural network model is straightforward to train, but its
computation is limited to a static input-output function.

We here speculate a computational possibility that the
cerebellum copies the dynamics of the cerebral cortex and
then predicts the state of the cerebral cortex for fast and
stable operations in motor control and cognitive processing
(Figure 7). There are some advantages and disadvantages of
recurrent and feedforward neural networks, and we propose
that the recurrent neural networks of the cerebral cortex and
the feedforward neural networks of the cerebellum complement
each other. Recurrent connections in a neural network
provide computational flexibility to model a dynamical system
(Funahashi and Nakamura, 1993) but cause a chaotic instability
due to dependence on previous activities and random noises
(Sompolinsky et al., 1988). Therefore, a sequence production
solely by a recurrent neural network can be unstable against
small fluctuations in activities and unwanted noises (Jaeger and
Haas, 2004). A feedforward neural network, on the other hand,
is stable because its output depends not on previous inputs but
only current inputs and a fluctuation at one point of time does
not propagate over time. Our recent results demonstrated that
the cerebellar circuit could perform the predictive computation
of an internal forward model, so we propose that the cerebellum
tames computationally flexible but chaotic dynamics of cortical
recurrent neural network by predicting the expected activity
of the cerebral cortex. In line with our proposal, the FORCE
learning algorithm generates stable patterns of activity in a
recurrent neural network by adding feedback connections from
the output unit to recurrent units (Sussillo and Abbott, 2009). In
our proposed scheme, the feedforward network of the cerebellum
continuously monitors and predicts the activities of the recurrent
network of the cerebral cortex. The recurrent network, in turn,
stabilizes its activities and corrects any deviations by comparing
the current activity in the recurrent network and the predicted
activity from the cerebellar feedforward network. Therefore, an
internal model allows fast and robust computation not only
in motor control but also in recurrent neural networks in the
cerebral cortex.

Whereas recurrent and feedforward neural networks differ
from each other in their formulation, they are in fact equivalent

because recurrent neural networks can be transformed into
feedforward neural networks by a proper redefinition. A
standard algorithm for training a recurrent neural network,
backpropagation-through-time, exploits the fact that a recurrent
neural network can be regarded as a temporally unfolded
feedforward neural network (Werbos, 1990). Also, it was shown
that a proper redefinition of units can transform a recurrent
neural network into a feedforward neural network, known
as a method of matrix decomposition (Schur decomposition)
in matrix algebra (Goldman, 2009). Therefore, recurrent and
feedforward neural networks possess the same ability in terms
of computation.

Our computational scheme requires that a part of the
cerebro-cerebellum and a part of the cerebral cortex connected by
a cerebro-cerebellar loop should perform the same computation
so that the cerebellum can predict activity patterns of the cerebral
cortex. We, therefore, speculate that the computational role of
the cerebellum is to copy the function of the cerebral cortex
for predicting and stabilizing the dynamics of the cerebral
cortex. Results from a recent imaging study are in line with this
speculation; activities of layer 5 pyramidal cells in the neocortex
and those of GCs in the cerebellar cortex share task-encoding
characteristics acquired during learning, indicating that a key
function of cerebro-cerebellar loop is the propagation of shared
neural dynamics (Wagner et al., 2019). A tentative computational
scheme posits that dynamics learned by a recurrent neural
network are transferred to a feedforward neural network, and
then the feedforward neural network stabilizes the dynamics
of the recurrent neural network by predicting the dynamics.
An additional merit of feedforward neural network is single-
shot, fast computation; a recurrent neural network requires
multiple, iterative steps for computing a transition from xt
to x(t+t1) (Figure 7, top), which could be computed in a
single step in a feedforward network (Figure 7, bottom). Our
speculation discussed here is mainly motivated by the results of
artificial neural networks; however, given the recent productive
interactions between deep neural networks and the primate
visual system, it is not unreasonable to incorporate ideas
developed in artificial neural networks to understanding the
biological nervous system.We hope that this speculative function
proposed here will guide the future computational study on the
role of cerebro-cerebellar loops.

Future Problems
Our recent study arguably demonstrated that the cerebellar
output (activities of DCs) at current time was predictive about the
cerebellar input (activities of MFs) at a future time, supporting
the hypothesis that the cerebellum performs the computation
of an internal forward model (Tanaka et al., 2019). The dataset
analyzed in this study was recorded when the monkey was
over-trained for the movement task for years and there was no
sign of learning in performance. Hence, our study demonstrated
one aspect of forward model, namely the predictive activity, but
not another aspect of forward model, namely motor learning.
Electrophysiological recording of single units usually requires
averages to remove trial variance, so it is not ideal for analyzing
activity changes in an individual trial before, during, and after
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FIGURE 7 | Proposed mechanism of predictive stabilization of cortical dynamics through the cerebro-cerebellar loop. The dynamics of the cerebral cortex and the
cerebellum are modeled as a recurrent neural network (top row) and a feedforward neural network (bottom row), respectively. The cerebellum receives a current
cortical state at time t and projects back a future cortical state at time t+t1 through the cerebro-cerebellar loop. In this proposed mechanism, the cerebellar prediction
guides and stabilizes the recurrent dynamics of the cerebral cortex, thereby realizing fast and robust information processing.

learning. This is particularly problematic when we want to
address the circuit-level analysis where cells from multiple
populations need to be recorded simultaneously. Fortunately,
new recording techniques such as calcium imaging are available
to track learning-related changes in the activities of multiple
neurons (Wagner et al., 2019). We hope that the new approach
will reveal the contribution of the internal-forward-model to the
motor-learning shortly.

We would like to conclude this review article by enlisting two
unanswered questions that we think important for promoting
a better understanding of the computational functions and the
neural mechanisms of the cerebellum. First, how is a predictive
activity computed in the cerebellum utilized in the cerebral
cortex? Our previous study reported that MF activities, the input
to the cerebellum, shared response properties with the activity of
neurons in motor areas, implying that activities of the cortical
neurons are copied into the cerebellum as an input (Tomatsu
et al., 2016). On the other hand, it remains to be examined
how the cerebellar output influences the activities of the cortical
neurons. Second, how do linear dynamics in the cerebellar circuit
approximate the nonlinear dynamics of the musculoskeletal
system? Biological motor control must face with the large degrees
of freedom of the body and corresponding nonlinear dynamics,
and we know little about how such dynamics is solved in the
brain. We hope that future studies will take a challenge in

addressing these questions toward the goal of understanding the
functions and the neural mechanisms of the cerebellum.
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