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This review aims to discuss (1) the refinement of mammalian visual cortical circuits and
the maturation of visual functions they subserve in primary visual cortex (V1) and other
visual cortical areas, and (2) existing evidence supporting the notion of differential rates
of maturation of visual functions in different species. It is well known that different visual
functions and their underlying circuitry mature and attain adultlike characteristics at
different stages in postnatal development with varying growth rates. The developmental
timecourse and duration of refinement varies significantly both in V1 of various species
and among different visual cortical areas; while basic visual functions like spatial acuity
mature earlier requiring less time, higher form perception such as contour integration
is more complex and requires longer postnatal time to refine. This review will highlight
the importance of systematic comparative analysis of the differential rates of refinement
of visual circuitry and function as that may help reveal underlying key mechanisms
necessary for healthy visual development during infancy and adulthood. This type of
approach will help future studies to establish direct links between various developmental
aspects of different visual cortical areas in both human and animal models; thus
enhancing our understanding of vision related neurological disorders and their potential
therapeutic remedies.
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INTRODUCTION

Cortico-cortical networks undergo significant refinement and reorganization in the postnatal
period; humans (Huttenlocher, 1979; Burkhalter et al., 1993), monkeys (Barone et al., 1995;
Coogan and Van Essen, 1996; Batardière et al., 2002), cats (Price and Blakemore, 1985; Price,
1986; Dehay et al., 1988; Price and Zumbroich, 1989; Batardiere et al., 1998), ferrets (Durack and
Katz, 1996; Ruthazer and Stryker, 1996). Similarly, neuronal response properties in V1 and other
visual cortical areas mature throughout development (Bienenstock et al., 1982; Frégnac and Imbert,
1984; Zhang et al., 2005). As a result, visual functions also mature throughout the developmental
period (El-Shamayleh et al., 2010; Braddick and Atkinson, 2011). Although the developmental
sequence of when distinct visual functions emerge, when the critical period (CP) for damage is,
and when functions are adultlike are of great interest to developmental neuroscientists, they are
not completely understood.
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Neural circuit formation and functional maturation in
the developing brain follows a pattern of either hierarchical
maturation (Flechsig, 1901; Bourne and Rosa, 2006; Tierney
and Nelson, 2009; Okazawa et al., 2016) or synchronous
maturation (Law et al., 1988; Chapman et al., 1996; Rao
et al., 1997; Khalil and Levitt, 2013, 2014). Some aspects of
cortical circuitry, receptive field (RF) physiology, and visual
functions mature in a hierarchical fashion; humans (Tierney
and Nelson, 2009; Brown and Jernigan, 2012), monkeys (Zhang
et al., 2005, 2008; Zheng et al., 2007), while others develop
in a synchronous manner; ferrets (Khalil and Levitt, 2013,
2014). Furthermore, the developmental timeline of different
visual functions varies significantly among visual cortical areas
within a species (Sur and Leamey, 2001; Hooks and Chen,
2007; Empie et al., 2015; Atkinson, 2017), and across species
(Harwerth et al., 1986, 1990; Lewis and Maurer, 2005; Braddick
and Atkinson, 2011). The timeline for neural events in the
cortex of a P0 ferret is equivalent to gestational days G80
in macaque and G104 in humans (Clancy et al., 2001).
Normalization of different developmental trajectories among
species does not seem to eliminate the difference in the
rate of maturation of different visual functions (Finlay and
Darlington, 1995; Clancy et al., 2001; Finlay et al., 2001, 2011;
Nagarajan et al., 2010; Marchetto et al., 2019). Therefore,
the fact that different functions mature at different rates
may be attributed to species differences and how different
brain regions and their underlying mechanisms depend on
visual experience.

Although other reviews have focused on the development
of (1) Ocular dominance columns in ferrets, cats and
monkeys (Katz and Crowley, 2002), (2) RF properties of
neurons in mice and ferrets (Huberman et al., 2008), (3)
Visual cortical circuits in cats (Katz and Callaway, 1992),
and (4) Human visual function (Braddick and Atkinson,
2011), the present review comprehensively discusses the
overall development and maturation of visual cortical
circuits underlying function and behavior along with their
differential rates of refinement in different mammalian
species. We limit the scope of this discussion to human,
monkey, and ferret studies for the following reasons. We
emphasize human behavioral studies as great efforts have
been made to understand the normal development of visual
function as well as potential for visual dysfunction. Moreover,
anatomical and functional development of the visual cortex
has traditionally been studied in monkeys which has led to a
large body of literature. Similarly, the ferret has emerged as
a model organism in current visual developmental studies
due to a number of advantages that we discuss in this
review. Rodent models will not be extensively discussed as
they are primarily used to reveal molecular mechanisms
of visual developmental events (see reviews by Huberman
et al., 2008; Feldheim and O’Leary, 2010; Espinosa and
Stryker, 2012). The essential aspects of this discussion will be
summarized under the following sections: (1) Development
of visual cortical connections (2) Development of neuronal
response properties in visual cortex, and (3) Maturation
of visual function.

Development of Visual Cortical
Connections
Developmental remodeling of visual cortical circuits spans
over successive stages of postnatal development in various
species, (1) Corticocortical connections in ferrets (Durack
and Katz, 1996; Ruthazer and Stryker, 1996; Khalil and
Levitt, 2013, 2014); humans (Huttenlocher, 1979; Burkhalter
et al., 1993) (2) Intracortical connections in cats (Anderson
et al., 1988; Ghose et al., 1994; Horton and Hocking, 1996);
monkeys (Lund and Harper, 1991; Lund and Holbach,
1991; Lund et al., 1991), and (3) Interhemispheric circuits
in rats (Olavarria and Van Sluyters, 1985); hamsters (Norris
and Kalil, 1992). Different anatomical features of visual
cortical circuits are modified throughout development.
For instance, axon and bouton density of feedforward
projections from ferret area 17 to multiple cortical targets
decline during the period after eye opening (Khalil et al.,
2018). Similarly, the laminar distribution of feedback
projections in the visual cortex of infant monkeys changes
in the first 2 months of life, due to a decrease in the
proportion of supragranular neurons (Barone et al., 1995).
Importantly, the developmental refinement of cortical circuits
is thought to underlie the maturation of visual function
and behavior.

Ferret as a Model for Visual Cortical Development
The ferret has emerged as a promising model system in
the study and characterization of visual circuit and function,
particularly for early developmental mechanisms. This can be
mainly attributed to the fact that ferrets are born at an early
stage of brain development with delayed eye opening, which
does not occur until about postnatal day 30 (Linden et al.,
1981; Walsh and Guillery, 1985). The period after eye opening
is critical for sculpting visual cortical circuits as the onset of
visual experience is thought to play a major role in this process
(Khalil and Levitt, 2013, 2014; Khalil et al., 2018). They have
a sensory system which is similar to that of the cat, but being
born developmentally earlier like mice and rats, many events
critical in shaping cell-circuit assemblies, synaptogenesis, axonal
targeting, laminar and sub-laminar specialization of neurons,
and remodeling of cortico-cortical circuits take place postnatally
(Jackson et al., 1989; Wong, 1999; Katz and Crowley, 2002;
Reillo and Borrell, 2012). Figure 1 depicts major developmental
milestones in the ferret visual cortex. Early events such as
timing of cortical neurogenesis and layer formation in area
17 (Jackson et al., 1989), as well formation and refinement of
thalamocortical projections are well documented (Johnson and
Casagrande, 1993). Similarly, late events that ensue after eye-
opening and depend on visual experience, include the refinement
of horizontal projections in area 17 (Ruthazer and Stryker,
1996), as well as remodeling of corticocortical feedforward
(Khalil et al., 2018) and feedback circuits in ferret visual cortex
(Khalil and Levitt, 2014).

In addition to being important for studying developmental
events, ferrets are also useful subjects for comparative
studies. Comparative studies can reveal which physiological
or anatomical aspects are present in all mammals, and
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FIGURE 1 | Timeline depicting major developmental milestones in the ferret visual cortex. The timeline of different developmental events in the ferret visual system,
subdivided into five parts: (a) cortical neurogenesis and layer formation in area 17. The timing, progression and duration of neurogenesis and laminar differentiation
are represented by horizontal bars, where VN and LD denote ventricular neurogenesis and laminar differentiation, respectively. Embryonic day 22 (E22) marks the
earliest occurrence of neurogenesis in layer VI followed by other cortical layers over the next few weeks. In cortical layers II/III neurogenesis is not completed until
postnatal day 14 (P14) and cortical folding is not complete until about postnatal day 30 (P30); (b) Formation and refinement of thalamocortical projections. LGN cells
are born by E21 and axons first arrive in the visual cortex by E27. Ingrowth into layer IV occurs around P10 with the developmental projections of retino-geniculate
fibers appearing as early as E27 and lasting until P14. Cortical patches are visible as early as P16. Formation of ocular dominance columns takes place around P37
and CP begins approximately around P35 (∼75 days after conception); (c) Formation of corticothalamic projections. Early projections from the cortex to the
thalamus are formed by neurons in cortical layer V soon after birth, and subsequently followed by neurons in layer VI a week later; (d) Refinement of intracortical
circuitry. At the onset of visual responsiveness in the cortex, one third of neurons show orientation selective responses, and the mature adult like pattern is not
attained until around P45. Orientation map is formed by around P31 and clustered horizontal connections appear as early as around P27; (e) Cortical maturation.
Developmental timecourse for several critical events such as neuronal migration, gliogenesis, synaptogenesis, oligodendrocyte formation and myelination in
corticogenesis. The refinement of feedforward projections from area 17 to extrastriate cortex, and feedback projections from extrastriate areas to area 17 begins
around P35, which is soon after eye opening (P30). Adapted from “Development and plasticity of cortical areas and networks” by Sur and Leamey (2001), Nature
Reviews Neuroscience, 2(4), page 252. Copyright 2001 by Springer Nature.

which are unique to a particular species, For instance, it
has been shown that the arrangement of ocular dominance
domains in the ferret visual cortex exhibits a high degree
of regional variation in size and shape, compared to that
in primates and cats (Anderson et al., 1988; Horton and
Hocking, 1996; White et al., 1999). This has been shown to
result from the asymmetries in the crossed and uncrossed
retinal pathways. Importantly, the late date of eye opening
provides a long window of investigative access to the
changes in emerging brain functions due to the onset of
visual experience.

Patterns of Visual Cortical Development (Hierarchical
Versus Synchronous)
Neural circuits underlying the maturation of visual functions
are programmed to follow a hierarchical or synchronous pattern
of maturation that is species dependent. While hierarchical
maturation refers to the sequential development of basic

physiological properties or anatomical circuits followed by the
maturation of complex ones (Tierney and Nelson, 2009; Okazawa
et al., 2016), synchronous maturation involves concurrent
development of a given functional or anatomical aspect
in multiple cortical areas (Law et al., 1988; Khalil and
Levitt, 2013, 2014). To clarify why certain aspects of visual
cortical circuits mature hierarchically and others develop in
a synchronous manner, it is important to understand the
nature of the interaction among various visual areas and the
continuously changing connectivity patterns both within and
among species during early postnatal development. Depending
on the complexity of the visual function and the progressive
interaction between multiple visual areas, neural circuits may
prefer to adapt to one maturation pattern over the other. This
preference of neural circuits may largely depend on feedforward
and feedback mechanisms that facilitate the formation and
rearrangement of visual pathways underlying function. The
adaptation of neural circuits to a specific maturation pattern
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might have gradually evolved in different visual areas and various
species over time.

One of the earliest reports supporting the notion of
hierarchical development revealed that cortical connections
linking somatosensory, primary motor, auditory and visual
cortical regions were the very first to undergo myelination
during the early stages of postnatal life in humans (Flechsig,
1901). Similarly, primate studies have suggested that feedforward
and feedback connections may not develop and refine at the
same rate. For instance, in macaques, there are clear differences
in the rate of refinement of the laminar organization of
corticocortical projecting neurons from V1 to V4 that are
fully developed to adultlike level prenatally, whereas feedback
pathways from V4 to V2 undergo extensive reorganization
(Batardière et al., 2002). Also, in macaques, the laminar
distribution of feedforward neurons from V1 to V2 is essentially
adultlike during the early postnatal weeks of life, with
further refinement of these projections occurring between 1
to 2 months postnatal (Baldwin et al., 2012). It seems that
in human infants, feedforward pathways also refine earlier
than feedback pathways (Burkhalter, 1993; Burkhalter et al.,
1993). Therefore, the fact that the developmental refinement of
feedforward pathways occurs before that of feedback pathways
in humans and non-human primates suggests that it is an
evolutionarily conserved mechanism which is adaptive in these
highly visual species.

An open question remains as to why it is adaptive for
feedforward connections to mature earlier than feedback
connections. At the outset, feedforward and feedback
connections in the visual cortex show strong differences in
their anatomical features and connectivity patterns (Markov
et al., 2014). Furthermore, two major claims have been made
in this respect. Firstly, it is contended that feedforward
connections are arranged in a topological fashion, whereas
feedback connections are more diffusely organized both in
terms of spatial extent of parent neurons along with their
terminals and the frequency at which axonal bifurcation occurs.
Secondly, feedback pathways are large in number and follow
a path that crosses more hierarchical levels than feedforward
pathways (Markov et al., 2014). Differences in the organizational
principles and structural regularities of feedforward and
feedback pathways result in physiological differences whereby
feedforward signals generate RF properties, and feedback signals
provide a modulatory influence (Hupé et al., 1998; Ekstrom
et al., 2008). Furthermore, it is suggested that activation of
feedforward pathways can give rise to quick and spontaneous
characterization with little perceptual detail, whereas features
of visual perception are provided by repetitive engagement of
feedback connections (Hupé et al., 1998; Ekstrom et al., 2008;
Markov et al., 2014). These functional differences between
feedforward and feedback pathways are thought to reflect
interactions that occur between prediction errors ascending
the hierarchy and predictions descending the hierarchy,
contributing to the differential rate of refinement of neural
circuits (Markov et al., 2014). Previous reports also suggest
that feedforward and feedback pathways are highly segregated
and not restricted to the supragranular or infragranular layers,

respectively (Barone et al., 2000; Markov et al., 2014). However,
differences in the proportion of the parent cell bodies of
feedforward and feedback pathways in the supragranular
and infragranular layers may be another contributing factor
leading to early adaptive maturation of feedforward pathways
(Barone et al., 2000). Other evidence supporting the notion
of hierarchical development of visual cortical circuits showed
that V1 and area MT in monkeys refine earlier in time than
other extrastriate areas, whereby V1 significantly influences
the maturation of the dorsal stream and area MT supports
ventral stream development (Mundinano et al., 2015). Early
maturation and refinement of motion sensitive visual areas in
monkeys highlights the important role of motion detection in
the development of normal vision.

In contrast, there are reports which demonstrate concurrent
development in the visual cortex. For instance, in ferrets,
feedback neurons projecting from extrastriate areas to area
17 are already present prior to eye opening and refinement
of the topography of feedback projections in these visual
cortical areas occur in a synchronous manner (Khalil and
Levitt, 2014). Additional evidence in ferrets reveals that
multiple aspects of feedforward projections from area 17
to extrastriate visual areas refines at a similar rate (Khalil
et al., 2018). The authors reported a steady decline in
bouton density of feedforward projecting neurons from area
17 to areas 18, 19, and 21 from 4–8 weeks postnatally,
suggesting a mechanism where feedforward circuits linking
V1 to extrastriate areas reorganizes in a synchronous fashion.
One possible explanation for the synchronous refinement of
interareal circuits in the ferret visual cortex could be the
delayed eye opening in this altricial species which is around
P30 (Linden et al., 1981; Walsh and Guillery, 1985). This may
cause the maturation of these cortical circuits in ferrets to
be largely dependent on intrinsic activity, whereas plasticity
dependent mechanisms driven by visual activity emerge shortly
afterward (Ruthazer and Stryker, 1996; Sengpiel and Kind,
2002; Roy et al., 2018, 2020). Furthermore, this pattern of
refinement may also be functionally crucial for the concurrent
establishment of RF properties in multiple cortical areas
mediated via feedforward projections, and the integration
of inputs carried out by feedback circuits. Interestingly, the
early development of feedforward projections in kittens seems
to follow a hierarchical scheme whereby axon terminals
of feedforward projecting neurons from area 17 are found
first in area 18 and then in other extrastriate areas (Price
and Zumbroich, 1989). In contrast, physiological studies in
kittens have shown that the development of RF properties
of neurons in area 17 and other extrastriate areas develop
in parallel (Price et al., 1988). Therefore, it seems that
although some aspects of feedforward circuits from area 17
to extrastriate cortex in cats develop in a hierarchal manner,
RF properties of neurons across multiple visual areas can in
fact develop concurrently. Given the shared similarities in the
visual system of cats and ferrets, it would be intriguing to
reveal whether the refinement of receptive field properties in
multiple visual cortical areas of the ferret likewise ensue in a
synchronous manner.
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Developmental Refinement of Local Circuitry
A conspicuous feature of the neocortex is the horizontal
arrangement of neurons within cortical areas (da Costa and
Martin, 2010). Horizontal connections in primary visual cortex of
carnivores such as cats and ferrets preferentially link neurons in
cortical columns that have similar orientation preference (Hirsch
and Gilbert, 1991; Ruthazer and Stryker, 1996; Bosking et al.,
1997). Different anatomical features of horizontal connections
have been shown to change throughout development. For
instance, in cat area 17, the axon collaterals of horizontally
projecting layer 2/3 and layer 5 pyramidal neurons reorganize
during early stages of development (Callaway and Katz, 1990).
Similarly, remodeling of axon collaterals of horizontal projections
in ferret area 17 follows a similar developmental pattern to
that seen in the cat (Durack and Katz, 1996) whereby patchy
regions of axon branches first appeared by P34 followed by
adultlike cluster formation seen at P45 (Durack and Katz, 1996;
Sur and Leamey, 2001). Moreover, developmental changes of
clustered connections occur synchronously with the maturation
of orientation-selective responses (Chapman and Stryker, 1993).
Previous experiments directly relating patterns of excitatory
synaptic connectivity to visual response properties in mice V1
have revealed that the reorganization of intracortical connections
between layer 2/3 excitatory neurons occur after the initial
establishment of feedforward inputs from layer IV or the
visual thalamus (Ko et al., 2013). Furthermore, the authors
suggest that synaptic refinement in mouse V1 is due to the
elimination and formation of connections, as well as changes
in the strength of existing neural connections. The anatomical
specificity of long-range horizontal connections in ferrets results
through an activity-dependent process (Ruthazer and Stryker,
1996). Spontaneous activity within the cortical network serves
in the initial establishment of these connections which later
undergoes fine tuning. Additionally, horizontal connections have
been shown to modulate long-range excitatory and inhibitory
synaptic interactions between orientation columns in ferret area
17 (Weliky et al., 1995).

Development of Neuronal Response Properties in
Visual Cortex
In the adult brain, neurons in the visual cortex respond to
stimuli in a circumscribed region in visual space referred to
as the receptive field center (RF). Visual stimuli presented in
the surrounding region (surround) do not elicit a response,
but can suppress or facilitate a cell’s response to simultaneous
presentation of visual stimuli in its RF center (Hubel and Wiesel,
1965; Maffei and Fiorentini, 1976; Levitt and Lund, 1997; Sengpiel
et al., 1997; Angelucci et al., 2002, 2017; Nurminen et al., 2018).
The distinction between the receptive field center and surround
allows researchers to understand how the information from
multiple stimuli is encoded in the responses of individual neurons
(Fitzpatrick, 2000). Consequently, center–surround interactions
could potentially explain the phenomenon in which context
modifies stimulus detectability. For instance, inhibitory effects
are thought to be the basis for perceptual “pop-out”, curvature
detection, and illusory contours (von der Heydt and Peterhans,
1989; Knierim and Van Essen, 1992; Lamme, 1995). Facilitatory

surround effects have been linked to the processing of contour
integration (Field et al., 1993; Kapadia et al., 1995). Cortical
circuits implicated in mediating these contextual effects include
long-range horizontal connections (Gilbert et al., 1996), and
feedback projections arising from higher order areas that
terminate in area 17 (Angelucci et al., 2002). Crucially, horizontal
and feedback circuits that underlie these contextual effects
contribute to global integration of visual signals.

The emergence of mature RF tuning properties during
development is thought to arise from the refinement of
cortical circuits that underlie these tuning properties. Converging
evidence suggests that the developmental timecourse varies
markedly for different response properties of visual cortical
neurons. Moreover, the variability in development is reflective
of the maturational state of cortical circuits that presumably
mediate specific neuronal response properties. The functional
maturation of the mammalian visual system appears to be slower
in higher-order visual areas than in V1. Moreover, the maturation
of neuronal response properties in the visual cortex is dependent
on the maturation of cells at lower levels of the visual system
(Boothe et al., 1988; Daw, 2005). The maturation of RF tuning
properties during development underlies the improvement in
visual performance by higher order mammals like humans and
monkeys (Tanaka and Fujita, 2000; Daw, 2005). Previous findings
have shown that the maturity of RF properties of neurons can
partially account for the improvement of behavioral performance
in macaques (Kiorpes et al., 2003). Neural processing of
photoreceptors underlying behavioral performance revealed a
nominal improvement in visual performance up to 4 weeks of
age, with extensive changes in behavioral performance observed
over the ages 5 weeks to 12.5 months after visual performance has
become asymptotic (Kiorpes et al., 2003). Additionally, changes
in the response properties of V1 neurons early in development
contribute minimally to the improvement of visual sensitivity
that takes place from 5 weeks until 24 months. Therefore,
although the maturation of RF properties in V1 contributes to the
behavioral improvement in visual function, other immaturities
in extrastriate cortical circuits are likely to place limitations on
visual performance.

Differential Development of Basic and Complex
Neuronal Response Properties
Generally, complex neuronal response properties in higher order
visual areas require a relatively protracted period of maturation
in comparison to basic response properties in lower order
visual areas which mature early in life and require less time
to mature. For instance, in the ferret, basic RF properties such
as orientation selectivity of cells in area 17 are immature at
birth, but improve in the days after eye-opening and become
adultlike at 42 days postnatal (Chapman and Stryker, 1993;
McKay et al., 2001; Usrey et al., 2003). Similarly, in macaque
V1, cells sensitive to a basic RF property such as binocular
disparity are found immediately after birth, several weeks before
the onset of stereopsis with spatial frequency response and
response amplitude gradually developing over the first 4 weeks
of age (Chino et al., 1997). Additionally, previous findings in
macaques have shown the presence of adult-like RF center
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and surround interactions in V1 as early as postnatal day 14,
however, RF surrounds of V2 neurons were not detectable
until 4–8 weeks of age, and the interactions between RF center
and surround in V2 neurons were immature (Kiorpes et al.,
2003; Zhang et al., 2005). This suggests that neural circuits
underlying the RF centers and surrounds undergo refinement
at different rates. Differences in the rate of maturation of
RF properties are more evident as we proceed toward more
complex functions that are processed in higher order visual
areas. A recent study discussing the development of selectivity
to visual texture between areas V2 and V4 in macaque monkeys
demonstrated the existence of a stronger response to higher
order features of texture perception in V4 region, suggesting
a gradual maturation of RF features in a hierarchical fashion
(Okazawa et al., 2016). Interestingly, in ferret area 17, complex RF
properties such as cross-orientation suppression and surround
suppression are both present early in development, at the time
of eye opening and change nominally with visual experience.
Thus, it seems that although basic response properties of neurons
often develop and mature before complex neuronal response
properties, there are exceptions to this rule that depend to a
large extent on the species. Furthermore, RF tuning properties
of a neuron in primates and carnivores have been shown
to correlate with the local structure of functional maps. For
instance, neurons in primary visual cortex that lie in iso-
orientation domains essentially have homogenous orientation
preference, however, neurons that lie in pinwheel centers have
a variety of preferences (Nauhaus et al., 2008). The location
of a neuron within the orientation map greatly influences the
fine tuning of orientation bandwidth such that fine-tuned cells
are mostly found in regions of high homogeneity, whereas
regions of rapid orientation change have cells corresponding
to broader tuning. Given that the developmental timing and
onset of local map structure differs between basic and complex
response properties, both within and across species, it is possible
then that differences in the local map structure could alter
the rate of refinement of RF properties. This in turn could
explain known differences in the rate of development of RF
properties among species.

Role of Visual Experience and Effect of Deprivation
During the Development of Neuronal Response
Properties
An important question in developmental neuroscience is
how early sensory experience contributes to the functional
development and maturation of an adult brain. Visual experience
differentially affects neuronal response properties, even among
different species. Direct dependence of brain regions and their
underlying mechanisms on visual experience may contribute to
the observed differences in RF maturation among species. For
example, spatial frequency tuning increases independently of
visual experience in cats during the first 3 weeks of life, but is
required for further improvement (Derrington and Fuchs, 1981).
Direction selectivity in area 17 necessitates visual experience
for even basic development in ferrets but not mice (Li et al.,
2006; Rochefort et al., 2011). Cross-orientation suppression and
surround suppression are present at eye opening in ferrets,

thus suggesting that visual experience is not necessary for
their emergence but is necessary for sustaining these functions
(Popović et al., 2018). In preterm monkeys with light exposure,
synapse formation proceeds normally, but for further fine tuning
of RF properties visual experience is necessary (Bourgeois et al.,
1989; Yuste et al., 1992; Anderson et al., 1993; Bourgeois and
Rakic, 1996; Callaway, 1998; DeAngelis et al., 1999). Equally
important is the role of experience in the form of a light-evoked
signal or spontaneously generated neural signal in the overall
development of the visual system (Ruthazer and Aizenman,
2010). Developmental events in the early phase of life depend
on spontaneous neuronal activity before the period of eye
opening and in certain instances rely on light passing through
unopened eyelids (Krug et al., 2001; Colonnese et al., 2010;
Xu et al., 2011; Ackman et al., 2012). A recent innovative
study in ferrets demonstrated that visual development progresses
through neural activity occurring before and at eye opening (Roy
et al., 2020). Visual stimulation through closed and opening
eyelids serves in shaping the neuronal response properties and
provides instructive signals for cortical circuit formation (Roy
et al., 2020). Collectively, these data suggest that differences
exist in the type of experience or duration that differs among
species, but even within a species among different response
properties (Aboitiz et al., 2018). Nonetheless, little effort has
been made to relate these differences to the behavioral ecology
of a species, which is likely to play a major role in how
visual experience differentially affects the refinement of neuronal
response properties (Pallas, 2017).

Earlier studies in cats discussing the effect of light on the
maturation of RF properties of cells in area 17 have shown
that cells in dark reared animals were immature for orientation
selectivity and direction preference stimuli (Blakemore and
Van Sluyters, 1975; Buisseret and Imbert, 1976; Bonds, 1979).
A comparison of the RF of neurons in the visual cortex of
normal animals with those of dark-reared animals showed
a significant increase in the number of orientation selective
neurons in both normal and dark reared animals from 3 to
5 weeks of age. However, this is followed by a decrease in the
number of orientation selective cells in dark reared animals
after 5 weeks of age (Buisseret and Imbert, 1976). This suggests
that the RF properties of orientation selective cells are present
in both normal and dark reared cats until about 3,4 weeks
of age (Sherk and Stryker, 1976), with the orientation map
undergoing developmental changes in dark reared animals up
to 3 weeks of age followed by subsequent degeneration after
5 weeks. This demonstrates that experience is necessary for the
maintenance of responsiveness and selectivity of neurons (Crair
et al., 1998). Therefore, it appears that differential maturation
of RFs in the visual cortex may arise from both experience-
independent mechanisms that have differentially evolved in
various species, or through a channel of sensory experience in
the early stages of life. Spontaneous neural activity underlying
the sequence of developmental events in the early phase
of life shapes the initial emergence of lower order visual
functions, but more importantly orchestrates the onset and
maintenance of higher form perceptions via permissive and
instructive processes.
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FIGURE 2 | Timecourse illustrating visual function development in the ferret, monkey and human. A schematic illustrating the developmental timing of different visual
functions reflecting relative onset and duration of maturation in different species. Eye opening in ferrets is around P30, and at birth in monkeys and humans. Cortex
responds to visual stimuli as early as P20 in ferret whereas it is present at birth in both monkeys and humans. Unlike in both monkeys and humans, development of
direction preference requires visual experience in the ferret. Orientation selectivity in ferret is present at the onset of visual experience by P20 and is fully mature by
P45. Monkeys can detect motion direction discrimination responses as early as 3–5 weeks postnatally and these complex form cues continue to mature up to
3 years of age. In ferrets and humans, spatial frequency appears at a later stage of postnatal development, whereas, it is present at a relatively earlier timepoint of
about 2 months of age in the monkey.

Maturation of Visual Function
Visual function at birth is relatively poor in human and
non-human primates and gradually matures in the following
months or years. Behavioral assessment of visual function
in infants reveals that receptive field properties of neurons
appear more developed than a behaviorally elicited response
(Kiorpes et al., 2003; Kiorpes and Movshon, 2004b). The first
study focused on the development of visual function was
in infants looking at four different patterns; shift, search,
compensation and focal patterns (Tronick and Clanton, 1971),
however, the initial ground work in this field leading to the
observation of infant’s basic perceptual abilities, preferential
looking and visual discriminative abilities was already achieved
in the fifties (Fantz, 1958, 1961, 1964). Extensive research
has been carried out on the behavioral development of visual
functions in humans (Teller, 1984, 1997; Braddick et al., 1986;
Slater et al., 1988; Atkinson and Braddick, 1992; Parrish et al.,
2005; Wattam-Bell et al., 2010; Braddick and Atkinson, 2011)
and to a lesser extent in non-human primates (Boothe et al.,
1988; Kiorpes et al., 2003; Kiorpes and Movshon, 2004a,b; El-
Shamayleh et al., 2010). Given that behavioral development is
largely studied in humans and non-human primates, this section
focuses on well-studied basic functions such as orientation and
direction preference, spatial and temporal contrast sensitivity,
and visual acuity in these species. Likewise, there are ample data

documenting developmental changes in complex functions such
as global motion sensitivity, and contour integration perception
in these species.

Developmental Timeline of Visual Functions Among
Species
Figure 2 is a schematic we constructed to summarize the
timecourse of visual function development in the ferret, monkey
and human, based on physiological and behavioral data. The
developmental timeline of different visual functions along with
their period of maturation varies significantly among visual
cortical areas and species (Sur and Leamey, 2001; Katz and
Crowley, 2002; Hooks and Chen, 2007; Khalil and Levitt, 2014;
Empie et al., 2015; Atkinson, 2017; Khalil et al., 2018). As shown
in Figure 2, higher form perception such as contour integration
develops and matures substantially later than relatively simple
functions such as spatial acuity and contrast sensitivity in both
human and non-human primates (El-Shamayleh et al., 2010).
In humans, contour integration is undetectable in children
younger than 3 years of age (Kovács et al., 1999), and in
monkeys, the ability to perform a contour integration task
develops late as well (Kiorpes and Bassin, 2003). Various aspects
of visual perception develop at different rates and behavioral
sensitivity to various perceptual inputs throughout development
is an indication of time course-dependent refinement of
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these mechanisms. Neural limitations imposed on the visual
system during development may include anatomical and
physiological factors that are not fully mature and are important
in the regulation of sensory information. The refinement
of a neural circuit in a visual pathway can influence the
rate of maturation of different visual functions, establishing
the important relationship between behavioral and neuronal
phenomena (Teller, 1984).

Differential Rates of Maturation of Basic and Higher
Order Visual Functions
In humans, the progressive enhancement of visual functions
such as visual acuity, orientation preference, contrast sensitivity,
and motion detection is necessary for the development of
higher order visual functions that require complex cognitive
processing. Interestingly, none of these basic visual functions
attain adultlike characteristics at the initial stages of development
(Siu and Murphy, 2018). For instance, in humans, although
orientation-selective cortical responses start to develop in early
infancy, first appearing around 6 weeks of age (Braddick
et al., 1986), mature orientation discrimination abilities require
several months of visual experience before reaching adult levels.
Likewise, the development of visual acuity in the macaque
monkey requires 9 months after birth to fully mature, which
in humans it takes approximately 5 years to reach similar
adult levels (Teller, 1997). Physiological evidence suggests that
spatial contrast sensitivity in macaque monkeys is fairly mature
in newborns compared to a behaviorally elicited response
(Kiorpes et al., 2003). Fundamental characteristics of spatial
vision are established early in life and infant monkeys can
detect gratings soon after birth, reaching mature levels of
acuity and contrast sensitivity by the time they are one
year of age (Boothe et al., 1988; Kiorpes, 1992). Given
that many aspects of visual circuits in V1 attain adultlike
characteristics in the first 8 weeks of life suggests that
full maturation of RF properties partially accounts for the
behavioral development (Kiorpes and Movshon, 2004a; Movshon
et al., 2005). One caveat is feedback circuits in monkeys that
continues to reorganize and refine up to 4 months of age
(Kennedy and Burkhalter, 2004).

Higher order visual functions involving more complex form
cues exhibit delayed maturation, requiring longer postnatal time
to become adult like. Figure 3 reproduced from Kiorpes (2015)
is a comparative timecourse of the development of basic versus
complex visual functions in monkeys. As shown in Figure 3,
the onset of basic visual functions such as spatial contrast
sensitivity and vernier acuity is near birth. In contrast, complex
visual functions like global form discrimination and contour
integration are not measurable until about 10–20 weeks after
birth. Research has shown that some features of visual texture
perception are associated with lower order visual functions,
whereas others are linked to higher form perception. For
example, juvenile monkeys in early visual development can
access texture form cues, and this may be due to the fact that
intermediate-level form vision develops in concert with basic
spatial vision (El-Shamayleh et al., 2010). However, sensitivity
to luminance-defined form was delayed in the maturation

process compared to both texture- and contrast-defined forms
(El-Shamayleh et al., 2010). Similarly, human studies have
suggested that infants as early as 2–5 months of age were
able to detect global texture patterns (Norcia et al., 2005;
Arcand et al., 2007), and by 3 months of age were able to
identify texture patterns characterized by differences in stimulus
orientation, size and contrast (Atkinson and Braddick, 1992;
Sireteanu and Rieth, 1992). Different aspects of form vision
develop over different time courses, together with processes
that rely on evaluating local image content developing prior to
those requiring global connectivity of multiple visual elements
across a greater spatial extent (El-Shamayleh et al., 2010). For
example, monkeys are unable to detect global structure patterns
before 12 weeks of age (Kiorpes and Movshon, 2003) and are
not capable of identifying extended contours before 20 weeks
of age (Kiorpes and Bassin, 2003). These complex form cues
continue to mature over the first 18–24 months after birth
(El-Shamayleh et al., 2010).

Development of Orientation Selectivity and Direction
Preference
Orientation sensitivity is one of the first visual functions to
appear after birth in humans, monkeys and ferrets. In humans,
some orientation discrimination capabilities are present at birth
and orientation-selective responses are first detected around
6 weeks of age (Braddick et al., 1986). However, if lower reversal
frequencies are used, the response could be recorded as early
as 3 weeks after birth (Atkinson and Braddick, 1992). The
response dynamics of orientation-selective neurons depends on
intracortical interactions that continues to develop at least over
the first 6 months of postnatal life (Braddick and Atkinson,
2011). Despite the fact that orientation-specific cortical responses
develop in early infancy, mature orientation discrimination
abilities require several months before becoming adult like in
nature (Atkinson et al., 1988; Slater et al., 1988).

Although studies focusing on the development of direction
preference in cats and ferrets have mostly resulted in
physiological data (Blakemore and Van Sluyters, 1975;
Buisseret and Imbert, 1976; Weliky et al., 1996; Li et al.,
2006; Van Hooser et al., 2012; Roy et al., 2018), behavioral
development of direction preference has largely been studied in
humans and non-human primates (Wattam-Bell, 1991, 1992,
1996; Hatta et al., 1998). In the macaque monkey, orientation
selectivity is present at birth, but direction preference develops
to adult levels over the first 4 weeks of postnatal life (Hatta
et al., 1998). Similarly, orientation selectivity and direction
preference in humans are already present at the time of birth
with responses related to direction preference slightly lagging
behind orientation selective responses (Wattam-Bell, 1991).
In humans, preferential looking toward a random-dot field in
opposite directions of motion revealed a relatively earlier onset of
directional preference at around 7 weeks postnatal (Wattam-Bell,
1992, 1996). It appears that motion based sensitivity for direction
develops relatively later than overall direction selectivity.
Furthermore, it was shown that an infant’s initial responses to
direction preference was limited to a very narrow range of low
velocities, and this range increases throughout development for
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FIGURE 3 | Developmental timecourse for basic and complex visual functions in monkeys. Basic visual functions: (A). Spatial contrast sensitivity: (B). Vernier acuity;
and complex visual functions: (C). Development of sensitivity to global structure in concentric Glass patterns: (D). Development of ability to link Gabor elements to
form a coherent contour as a function of the density of background noise, shown as a function of age. Smooth curves in each panel are Naka-Rushton functions fit
to each dataset; the inverted filled triangles along the abscissa indicate the semi-saturation point for the functions, which provide a quantitative metric for the relative
maturation of each visual function. Note the relatively late maturation of Vernier acuity compared with the other spatial vision metrics. Reproduced from “Visual
development in primates: Neural mechanisms and critical periods” L, Kiorpes (2015), Developmental Neurobiology, 75(10), page 11. Copyright 2015 by John Wiley
and Sons.

higher velocities (Wattam-Bell, 1992; Braddick and Atkinson,
2011). The increase in the range of high speed velocities might
possibly reflect the concurrent refinement of intracortical
circuitry needed to recognize these large displacements, as the
spatial extent of these circuits increases throughout development.
In contrast, the limited spatial extent of intracortical circuitry
early on in development is sufficient to support low-speed
velocity responses which rely on fine displacements. While
there is no study examining the effects of impoverished visual
experience such as dark-rearing on direction selective responses
in primates, quantitative psychophysical analysis in humans
have demonstrated that individuals with poor visual experience
in both eyes tend to exhibit a higher threshold of motion
detection compared to those who have experienced good vision
in one or both eyes, suggesting that experience may be a crucial
factor for direction selectivity in primates as in carnivores
(Ellemberg et al., 2002).

Development of Spatial and Temporal Contrast
Sensitivity
Spatial contrast sensitivity including peak contrast sensitivity and
spatial resolution are poor in both humans and monkeys at birth.
Assessment of spatial contrast sensitivity in monkeys has revealed
rapid development during the first 10–20 weeks, followed by a
gradual more protracted period of development to adult levels
over the remainder of the year (Boothe et al., 1988). A similar
event occurs in humans whereby infants aged 5–12 weeks show
rapid improvement in contrast sensitivity between 5 weeks and
8–12 weeks (Atkinson et al., 1977; Banks and Salapatek, 1978).
Additionally, both visual acuity and contrast sensitivity follow
a similar developmental timeline in human and non-human
primates, attaining adultlike characteristics between 3 and 7 years
in humans, and between 9 and 12 months of age in monkeys
(Boothe et al., 1988; Kiorpes, 1992; Teller, 1997; Ellemberg et al.,
1999; Skoczenski and Norcia, 2002; Stavros and Kiorpes, 2008).
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However, visual acuity in humans is fully matured to adult
levels between 5 to 15 years of age, while the development
of contrast sensitivity lags behind and reaches adult levels
between the ages of 8 to 19 years (Leat et al., 2009). Grating
acuity in newborn monkeys was significantly more mature
than vernier acuity despite the fact that vernier acuity has a
faster rate of development and both these functions become
adultlike at the same time, around 40 weeks of age (Kiorpes,
1992). In humans, grating acuity matures more gradually and
attains adult values at about 4–6 years of age (Mayer and
Dobson, 1982; Carkeet et al., 1997; Ellemberg et al., 1999;
Skoczenski and Norcia, 2002).

Moreover, temporal contrast sensitivity appears to mature
ahead of spatial contrast sensitivity in both human (Ellemberg
et al., 1999), and non-human primates, when adult levels are
reached by about 6 months of age (Stavros and Kiorpes,
2008). Previous studies in humans and monkeys have
suggested that late developmental changes such as actual
loss of synapses in the visual cortex and behavioral differences
could significantly contribute to the difference in the rate
of maturation of visual acuity and contrast sensitivity
(Mayer and Dobson, 1982; Leat et al., 2009). The observed
difference in the sequence of maturation of spatial and
temporal contrast sensitivity suggests their development is
subserved by different neural mechanisms. Young infant
monkeys show reduced sensitivity for all temporal frequencies,
but sensitivity to high and low frequencies developed at
different rates. On the other hand, temporal contrast sensitivity
showed no significant change with age (Stavros and Kiorpes,
2008). Differential development of the magnocellular and
parvocellular pathways could contribute to this difference as
the magnocellular pathway controls the detection of low spatial,
high temporal frequencies, while the parvocellular pathways
regulate the detection of high spatial, low temporal frequencies
(Stavros and Kiorpes, 2008).

Development of Global Visual Functions
Global motion sensitivity, a complex visual function that depends
on extrastriate cortical processing requires considerable postnatal
time to mature. It is important to distinguish between low-level
mechanisms that provide local motion signals from higher-level
mechanisms that integrate motion information across space
and time. For instance, young monkeys are sensitive to global
motion as early as 3–5 weeks postnatally, however, the complete
maturation of this visual function continues up to 3 years of
age (Kiorpes and Movshon, 2004a). Similarly, the use of glass
patterns and random dot kinematograms (RDK) to reveal global
form and motion sensitivity in young monkeys has shown that
sensitivity to coherent motion in RDKs was measurable earlier
than sensitivity to glass patterns. However, adult performance on
both tasks was reached at a similar age (Kiorpes et al., 2012).
Interestingly, a recent behavioral study in ferrets has established a
relationship between motion integration performance of neurons
in area PSS and motion integration capacity, demonstrating that
ferrets are capable of perceptual motion and form integration,
known to be complex visual functions that are typically associated
with higher-order visual areas such as MT in monkeys and PSS
in ferrets (Dunn-Weiss et al., 2019). Therefore, the ferret is a

suitable model system for visual psychophysics, and is amenable
to experimental testing involving higher-level visual functions.

Behavioral studies in humans have similarly documented the
protracted period of maturation of global visual functions. Global
motion responses are more prevalent than global form responses
in 4 month olds, although the activation patterns were different
in infants compared to adults (Wattam-Bell et al., 2010), These
findings are therefore in line with previous studies suggesting
that dorsal stream function matures earlier than the ventral
stream. Texture-defined form sensitivity continues to mature
up to age 10,11 years (Parrish et al., 2005). However, there
is no significant improvement in global motion sensitivity, as
measured by coherence threshold, between age 3 years and adult
(Parrish et al., 2005). These results suggest that certain aspects
of both global motion and texture defined form develop at
different times in children. Collectively, behavioral data on the
development of sensitivity to form and motion suggests that
motion sensitivity may appear and mature earlier in humans
and non-human primates than form sensitivity. In addition,
behavioral data revealing earlier maturation of motion sensitivity,
presumably reflecting dorsal stream functioning, is consistent
with anatomical data (Condé et al., 1996; Bourne and Rosa, 2006).

Development of Contour Integration Perception
The visual system’s ability to group discrete elements with similar
orientation into a continuous contour that can be detected
is known as contour integration (Field et al., 1993). Neural
correlates of contour integration include horizontal connections
and feedback connections (Taylor et al., 2014; Pak et al., 2020).
Earlier studies based on computational network models proposed
to understand illusory contour responses suggest that neurons
in higher order visual areas such as V2 might pool orientation
selective feedforward inputs from lower order areas like V1
(Mignard and Malpeli, 1991). Furthermore, activated neurons
in higher order visual areas such as V2 can provide feature
specific feedback signal to neurons in V1, facilitating contour
completion by effectively modulating V1 targets via recurrent
activity (Mignard and Malpeli, 1991). A recent study in monkeys
demonstrated the crucial role of top-down feedback from higher
order area V4 to lower order area V1, effectively modulating the
strength of local connectivity in V1 during a contour detection
task (Liang et al., 2017). Therefore, there appears to be a
strong association between higher and lower order visual areas,
effectively synchronizing feedforward and feedback interactions
across V1 and extrastriate visual areas, thereby facilitating
contour completion. Furthermore, it seems that feedback and
lateral connections interact more closely to mediate grouping of
elements necessary for contour perception.

Behavioral evidence supporting mechanisms of contour
detection suggest that this function is present in the early
stages of development (Field et al., 1993; Kovács et al., 1999;
Hipp et al., 2014; Taylor et al., 2014), however, full maturation
of this function requires years of visual experience. Kovács
et al. (1999) reported that children younger than 3 years
of age were unable to identify a coherent contour defined
by a circular ring of gabor patches embedded in noise, and
their ability to perform the task improved into their teenage
years. The authors attribute this early inability to functional
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immaturities in terms of their spatial range and not so much
to the lack of long-range spatial interactions. Furthermore,
studies investigating visual segmentation of oriented textures
by infants showed that significant differences were observed
between 10 and 16 weeks of age (Atkinson and Braddick, 1992).
Differential responsiveness to random versus organized textures
emerges no later than 2–5 months of age, and responsiveness
to orientation-defined contours emerges around 6–13 months
of age (Norcia et al., 2005). Other human studies revealed that
development of sensitivity to global structure of glass patterns
emerges around 6 years of age, however, these threshold patterns
were found to be more adultlike at 9 years of age (Lewis et al.,
2004; Palomares et al., 2012). In monkeys, the ability to perform
a contour integration task develops late in postnatal life. Juvenile
monkeys were first able to perform contour integration around
5–6 months of age when acuity development is complete and
continues to mature well into the second postnatal year (Kiorpes
and Bassin, 2003). Young monkeys were shown to discriminate
the orientation of texture defined form around 6 weeks postnatal,
and their behavioral sensitivity showed adultlike characteristics
around 40 weeks of age (El-Shamayleh et al., 2010). Collectively,
these studies suggest that although some aspects of contour
integration perception emerge early in life both in humans and
non-human primates, the full maturation of this complex visual
functions requires a protracted period of development.

Full maturation of contour integration abilities results from
developmental remodeling of cortical circuits that mediate
contour detection and integration. Analysis of human brains
ranging from 24 weeks of gestation to 5 years of age has
revealed that although the basic anatomical structure of V1 is
seen very early in development, however, anatomical features
of vertical and horizontal connections in the visual cortex
continue to refine throughout development (Burkhalter et al.,
1993). Horizontal connections are actively involved in linking
columns with collinear orientations suggesting that considerable
development of contour detection capabilities that occur during
the early postnatal period is due to the refinement of horizontal
connections. This is primarily because horizontal connections
are known to pool visual information over longer distances
by effective integration of a greater area of visual space
(Taylor et al., 2014).

CONCLUSION

In the present review, we provided a comprehensive discussion
on the development of visual cortical circuits and function in
three mammalian species (ferret, monkey, and human), in an
effort to highlight the importance of comparative analysis of the
differential rates of development. This is immediately relevant
to our understanding of human visual perception as it may

help reveal common mechanisms necessary for healthy visual
development during infancy and adulthood. Although a large
volume of experimental data suggests that basic RF properties
and visual functions across species mature earlier than complex
ones, few studies have focused on revealing mechanisms that
can explain the differential rate of development among species,
and how response properties evolved to serve species-specific
adaptive behavior. It is clear that rudimentary RFs are generated
early in life through interactions between molecular cues and
spontaneous activity, while visual experience fine tunes circuits
to improve the selectivity of neuronal response properties.
However, further studies are needed to establish why visual
experience differentially affects the development of neuronal
response properties and functions among species. This will likely
require an integrated view of visual system development and
evolution of adaptive behavior in mammals.
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