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Deciphering useful information from electrophysiological data recorded from the brain,

in-vivo or in-vitro, is dependent on the capability to analyse spike patterns efficiently

and accurately. The spike analysis mechanisms are heavily reliant on the clustering

algorithms that enable separation of spike trends based on their spatio-temporal

behaviors. Literature review report several clustering algorithms over decades focused

on different applications. Although spike analysis algorithms employ only a small

subset of clustering algorithms, however, not much work has been reported on the

compliance and suitability of such clustering algorithms for spike analysis. In our study,

we have attempted to comment on the suitability of available clustering algorithms

and performance capacity when exposed to spike analysis. In this regard, the study

reports a compatibility evaluation on algorithms previously employed in spike sorting

as well as the algorithms yet to be investigated for application in sorting neural spikes.

The performance of the algorithms is compared in terms of their accuracy, confusion

matrix and accepted validation indices. Three data sets comprising of easy, difficult,

and real spike similarity with known ground-truth are chosen for assessment, ensuring

a uniform testbed. The procedure also employs two feature-sets, principal component

analysis and wavelets. The report also presents a statistical score scheme to evaluate

the performance individually and overall. The open nature of the data sets, the clustering

algorithms and the evaluation criteria make the proposed evaluation framework widely

accessible to the research community. We believe that the study presents a reference

guide for emerging neuroscientists to select the most suitable algorithms for their spike

analysis requirements.

Keywords: extracellular, micro-electrode array, spike sorting, clustering, validation indices

1. INTRODUCTION

Recording electrophysiological activity of neuronal circuits is in practice for over a century
and has been facilitating numerous research interests (Hong and Lieber, 2019). An aggregate
of electrophysiological technique is Extracellular method employing electrodes to study neural
activity. The recordings can be acquired through in-vitro (non-invasive) or in-vivo (invasive)
methods. In early extracellular studies, neurophysiologists demonstrated the electrical activity in
larger neurons and axons (for example employed giant axons of width 0.5–1 mm dissected from
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squids) using electrodes of diameter 100 µm and length 10–20
mm. However, a refined method was formally demonstrated by
Hubel in 1957 using electrodes with much finer tips (1–10 µm
diameter) which could record neural activity from relatively
smaller nerves and axons (Hubel, 1957). Figure 1A shows in-
vitromethods which are in practice especially in pharmacological
studies (Jenkinson et al., 2017; Mulder et al., 2018), investigation
of neurotropic viral activity in mammalian and mosquito brain
(Gaburro et al., 2018a,b) or development of cures to neurological
dysfunctions by studying the behavior of collective network
activity (Md Ahsan Ul Bari and A., 2017; Gamble et al., 2018).
Similarly, Figure 1B shows in-vivo methods which are prevalent
in developing remedies for many neurological dysfunctions,
including treatment of paralysis through stimulation (Assad
et al., 2014; Liu et al., 2017).

Raw extracellular recordings comprise of low frequency
component (100–300 Hz, Quiroga et al., 2004) reflecting
transmembrane activity from a population of neurons referred to

FIGURE 1 | Spike sorting overview. (A) In vitro method 60 electrode MEA, schematic cross-section and example recordings (Gaburro et al., 2018a,b). (B) In vivo

method 32 electrode array, schematic cross-section and example recordings (Schjetnan and Luczak, 2011; Rossant et al., 2016). (C) Pool of spikes extracted from

the recordings, features extracted, and labeled ground-truth (Quiroga et al., 2004). (D) Example of cluster algorithms results addressed in the report for the data set in

(C), demonstrating diverse choices available for spike sorting.

as local field potential Figures 1A,B and short lived component
(3–3.2 ms, Prentice et al., 2011; Veerabhadrappa et al., 2017)
reflecting activity from a neuron or single units referred to as
action potentials Figures 1A,B or spikes (Gold et al., 2006).
To facilitate further analyses related to deciphering activities in
the brain, extracting and sorting of spikes referred to as spike
sorting is an essential process. Human operators were used to
manually sort the spikes by identifying the distinct shape of
action potentials (Meister et al., 1994) whereas some procedures
used a combination of clustering and human operators (Rossant
et al., 2016).

Advancements in neurophysiological research saw
introduction of multiple electrodes (tetrode) in 1983
(McNaughton et al., 1983; Hong and Lieber, 2019) for in-
vivo recording and array of microelectrodes (Meister et al.,
1994) for in-vitro studies. Meister et al. (1994) demonstrated
the use of microelectrode array comprising of 60 electrodes
to study retinal ganglion cells. Over the last three decades,
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neurophysiological studies have seen a significant rise in
development and application of dense microelectrodes (Hong
and Lieber, 2019). The order of simultaneous recording channels
on dense electrode arrays ranges from 32, 60, 512, 4,096 up
to 11,000 (Rossant et al., 2016; Jäckel et al., 2017; Gaburro
et al., 2018a; Hong and Lieber, 2019). As a consequence of
dense electrode array and longer recording duration, the data
generated by systems are fairly large, which could range from
several giga-bytes to tera-bytes, referred to as big-data in present
trends. Such neuronal recordings are often processed off-line
using spike sorting algorithms. Figure 1 shows an overview
of the spike sorting algorithm. In general, the spike sorting
procedures (Lewicki, 1998; Quiroga et al., 2004; Prentice et al.,
2011; Ekanadham et al., 2014; Rey et al., 2015; Niediek et al.,
2016; Rossant et al., 2016; Veerabhadrappa et al., 2017) involve
pre-filtering of raw voltage signals to remove field potential
(Figures 1A,B), detection and extraction of spike events using
standard thresholding techniques (Figure 1C), representation
of spike waveforms by features, such as wavelets (Quiroga et al.,
2004) or principal component analysis (PCA) (Rossant et al.,
2016), and identification of unique clusters (Figure 1D).

The results of clustering are extremely important for
deriving statistical analyses; inter-spike intervals (Li et al., 2018),
correlogram analysis (Harris et al., 2000), spike rates (Pillow
et al., 2013; Ekanadham et al., 2014; Veerabhadrappa et al.,
2016), and detection of bursting neurons (Lewicki, 1998; Rey
et al., 2015). Value of knowledge disseminated from many
experimental studies depends on the accuracy of results obtained
by spike sorting algorithms. For example, probabilities derived
from spike rates are employed in the identification of spike classes
contributing to overlapping spike events (Pillow et al., 2013;
Ekanadham et al., 2014; Veerabhadrappa et al., 2016). The spike
sorting procedures strongly depend on clustering algorithms as
a primary approach to distinguish spikes with minimal or no
human intervention (Pachitariu et al., 2016; Rossant et al., 2016).
The lack of accepted protocol has seen several dissimilarities
between clusters formed by human operators (Gray et al., 1995;
Harris et al., 2000; Rossant et al., 2016). In a previous study (Shan
et al., 2017), it is very well-established that the quality of initial
estimations will determine efforts required by human operators
to isolate the clusters satisfactorily.

Many clustering algorithms have been debated, evaluated
and compared as the best choice for automatic spike sorting.
Researchers agree that to date there is no accepted clustering
procedure to sort spikes (Pillow et al., 2013; Ekanadham et al.,
2014; Rey et al., 2015). It has also been argued whether there is
a need for spike sorting algorithms and how future extracellular
processing could be shaped (Rey et al., 2015). The disagreement
between procedures could be arising from volatility of data
being investigated, recording equipment, background noise, the
activity of culture (in-vitro) (Shoham et al., 2003; Choi et al.,
2006; Paralikar et al., 2009; Pillow et al., 2013; Takekawa et al.,
2014). Further, owing to the nature of large data sets, dependency
on the robustness of clustering algorithms and feature selection
process has increased (Harris et al., 2000; Quiroga et al., 2004;
Prentice et al., 2011; Ekanadham et al., 2014; Rossant et al., 2016;
Veerabhadrappa et al., 2017).

As opposed to questioning the necessity of spike sorting,
considering the above facts, it is in our best interest to address the
challenge via a contemporary approach. One similar approach
was discussed by Shan et al. (2017) where procedures were
customized depending on the brain region under investigation.
The idea of our study is to cover an essential portion of
the groundwork that can assist in contemporary spike sorting
procedures. Figure 1D demonstrates an example of the diverse
nature of algorithms where some algorithms returned less than
10 clusters, while some returned over 10, indicating that no two
results of clustering algorithms match. Among the algorithms
exceeding 10 clusters, ordering points to identify clustering
structure (OPTICS) returned the lowest clusters equivalent to
24. In a worst-case graph_entropy generated clusters over 150.
Thus evaluation is necessary to determine choices of algorithms
available for spike sorting. Results presented in the report helps
researchers involved in the processing of extracellular data to
select an appropriate clustering algorithm. Some review articles
have criticized that when a new algorithm is introduced, the
results are often biased and ad-hoc quantitative metrics are
used to compare performances between peer algorithms or its
predecessor (Amancio et al., 2014). The quality of a clustering
algorithm should instead be evaluated using accuracy (Amancio
et al., 2014).

There is no preconceived hypothesis to accept or reject a
clustering outcome. Instead, cluster results must be accepted
through exploratory methods (Kaufman and Rousseeuw, 2008b).
The current study aims to present completely unbiased
evaluations. All materials such as data sets, clustering algorithms,
feature extraction processes and evaluation criteria employed in
this study are open source. Supplementary resource presented
in Appendix C lists all the algorithms used in our study and
accessible for cross-verification. We assessed the performance
of 27 algorithms (Figure 2) which covers almost all of the
underlying clustering theories. The algorithms are paired with
two most widely adopted feature extraction methods (Rey et al.,
2015); PCA (Harris et al., 2000; Shoham et al., 2003; Pachitariu
et al., 2016; Rossant et al., 2016) and wavelet decomposition
of spike waveforms (Hulata et al., 2002; Quiroga et al., 2004;
Takekawa et al., 2010; Niediek et al., 2016). As a standardized
approach, we employ the data sets made available by Quiroga
et al. (2004). The ground-truth associated with the data sets
(Harris et al., 2016) provides information about the noise level,
number of channels, number of spikes, number of overlapping
spikes, number of spike waveform classes and time of spike origin
thereby, establishing a standard platform to assess the results of
clustering algorithms.

Our study employs internal and external validation indices to
evaluate the performance of cluster algorithms. Here, internal
indices satisfy quantitative criteria (Zhang et al., 2018) and
external indices satisfies qualitative criteria (Hullermeier et al.,
2011) addressing evaluation concerns raised in previous reviews
(Amancio et al., 2014). Furthermore, to complement the results
of indices we employed two additional qualitative measures
accuracy and confusion matrices which are alternative to some
popular methods such as false negatives and false positives,
previously employed in the evaluation of spike sorting algorithm
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FIGURE 2 | Evolution of novel clustering algorithms since 1967. The shaded region indicates the methodology; supervised or unsupervised for the clusters

considered in the context, and the colored text indicates the category of the clustering algorithm.

(Harris et al., 2000). The results and analysis are presented in
terms of supervised and unsupervised approach, consistency of
an algorithm across different sets of data and features.

The experiments conducted in this study demonstrates the
competency of clustering algorithm across six feature-sets. We
have explored how indices vary across different feature-sets
and their impact on the decision of identifying good clusters.
The evaluation comprising of qualitative and quantitative
aspects provide readers with a comprehensive understanding of
algorithms used in the study. Although the results presented in
our report uses extracellular data, it will also benefit people across
various research communities. The technique offers a different
dimension to evaluate the performance of clustering algorithms
where results from all algorithm-features pair are compared
during analysis. For ease of following acronyms in the article, a
list of abbreviations is provided in Appendix A.

2. EVOLUTION OF CLUSTERING
ALGORITHMS

Since 1967, it is recorded that more than 60 novel and
numerous ad-hoc clustering algorithms have been introduced
for applications in myriad domains of data analysis. However,
relatively few algorithms have been debated across spike-
sorting community (Shoham et al., 2003; Rey et al., 2015).
Figure 2 highlights the evolution of clustering since the
introduction of K-means in 1967. Based on the methodology,
the algorithms can be either supervised or unsupervised.
A supervised clustering requires users to perceive prior
knowledge about the possible partitions. For example, K-means
requires users to specify the partition level (Xu and Wunsch,
2009). Appropriate cluster partition can be selected either by
visually observing the feature space or, evaluating validation
score using internal indices (Kaufman and Rousseeuw, 2008b;
Buccino et al., 2018). For example, the clusters generated
by the mixture of Gaussians algorithm is evaluated using
calinski − harabaz before an appropriate cluster is considered
(Buccino et al., 2018). Unsupervised algorithms are pre-set
with decision-making parameters. For example, the algorithm

superparamagnetic clustering (SPC) (Blatt et al., 1996) is pre-
set with the nearest neighbor distances, the number of Monte-
Carlo spins and the cluster decision is made by evaluating
paramagnetism using a pre-set range of temperature (Quiroga
et al., 2004). Algorithms also employ internal indices to
evaluate the best clustering outcome. For example, Klustakwik
automatically evaluates the clusters using best ellipsoidal error
rate while an in-built cost function checks for best score
(Rossant et al., 2016).

2.1. Cluster Groups
Clustering algorithms can loosely be categorized into seven
groups based on the underlying principle concepts. Since their
introduction, several algorithms evolved through enhancement
and augmentation of new features catering to emerging needs
in data analysis. Clustering algorithms are often revised to fit
better to a problem being investigated and later generalized to be
applicable for another domain. For simplicity in understanding,
we broadly classify the algorithms as Partitional, Hierarchical,
Probabilistic, Graph-theory, Fuzzy logic, Density-based, and
Learning-based (Xu and Wunsch, 2009; Xu and Tian, 2015).

2.1.1. Partitional
Partitional clustering tends to sub-divide the entire feature
vectors to form clusters based on the density of points around
median or centroid. One of the early uses of partitional
based clustering in spike sorting was K-means, introduced by
Salganicoff et al. (1988) in 1988. K-means and K-medoids
are two algorithms considered in our study. Other popular
algorithms from the same family are partitioning around
medoids (PAM), Clustering Large Applications (CLARA), and
Clustering Large Applications based on Randomized Search
(CLARANS) (Kaufman and Rousseeuw, 2008c). K-means has
also been at the center of two recently published algorithms
(Pachitariu et al., 2016; Caro-Martín et al., 2018).

2.1.2. Hierarchical
Hierarchical clustering algorithms use a dendrogram or binary
tree structure based on the separation between points. The
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tree runs from highest order through to successively sub-
dividing the feature points until all N points in the feature-
set are completely isolated. All the techniques presented in the
report uses Euclidean distance for establishing the separation
between points. An appropriate subdivision level of the tree
representing clusters is dependent on the underlying supervised
or unsupervised nature of the algorithm. Fee et al. (1996) in
1996 introduced the hierarchical clustering algorithm to sort
spikes. The evaluation presented in report considers ISO-SPLIT
Magland and Barnett (2015) [considered for Mountain sort
Chung et al. (2017)], Cluster Affinity Search Technique (CAST)
Ben-Dor et al. (1999), Howe et al. (2010) Divisive Analysis
(DIANA) Kaufman and Rousseeuw (2008a), clustering using
representatives (CURE) Guha et al. (1998), Chameleon Karypis
et al. (1999), Agglomerative, robust clustering (ROCK) Guha
et al. (1999), Novikov (2019) and Balanced Iterative Reducing
and Clustering using Hierarchies (BIRCH) Zhang et al. (1996)
for evaluation.

2.1.3. Probabilistic
Probabilistic clustering algorithms are prevalent in spike sorting.
The rationale tends to maximize the posterior distribution based
on the likelihood of a data-point/vector belonging to a class,
thereby targeting the spike sorting as a non-parametric problem.
Several combinations based on Expectation Maximization (EM)
(Dempster et al., 1977; McLachlan and Krishnan, 2007),
variational bayesian (Attias, 2013) andMultivariate t-distribution
(Shoham et al., 2003) (also referred to as t-distribution) with
mixture model (Law et al., 2004) or Gaussian mixture models
(GMM) (Jin et al., 2005) have been explored in the past. Lewicki’s
Lewicki (1994) model introduced in 1994 incorporates iterative
approach on the theory of maximum likelihood of a spike
waveform being an instance of a class. Further, the bayesian-
based clustering algorithmwas introduced for template matching
in 1998 (Lewicki, 1998). Harris et al. (2000) employed Chi-
Square distributions to distinguish spike waveforms. A model
based on multivariate T-distributions was introduced by Shoham
et al. (2003) and Shan et al. (2017). GMM based approach was
introduced to spike sorting by Sahani et al. (1998). Takekawa
and Fukai (2009) in his study explored variational bayesian
inference gaussian mixture model (VBGMM) and expectation
maximization based gaussian mixture model (EMGMM) based
clustering algorithm.

Clustering algorithm based on EM was also explored through
Klustakwik. Records suggests the existence of Klustakwik, since
2002, as part of MClust toolbox (Wild et al., 2012) and template-
matching version mentioned by Blanche et al. (2004), an
unsupervised version was documented by Kadir et al. (2014).
The klusta suite with graphical user interface and other statistical
functionality is documented by Rossant et al. (2016). GMM
with Kalman filter employing probabilistic learning and hidden
markov model was documented by Calabrese and Paninski
(2011). Dirichlet process was explored by Gasthaus et al. (2009).
MixtureModel, which uses dirichlet process to iteratively identify
distribution in the data and forms clusters, was documented
by Carlson et al. (2013). The evaluation presented in report

considers Klustakwik, VBGMM (Bishop, 2006) and EMGMM
(Bishop, 2006) for evaluation.

2.1.4. Graph-Based
The Graph-based algorithms are also equally popular in bio-
medical signal processing, especially clustering cancer data
(Howe et al., 2010), gene expression classification (Sharan
and Shamir, 2000) or protein label classification (Kenley and
Cho, 2011), to mention a few. Wave_clus (Quiroga et al.,
2004) and Combinato Niediek et al. (2016) built around SPC
(Blatt et al., 1996), follows a similar technique incorporating
Minimal Spanning Tree (MST) and K-nearest neighbour (KNN)
Wave_clus is a very popular algorithm and its graphical
user interface provides comprehensive details of spike sorting
process. The evaluation presented in report considers Cluster
Identificaton using Connectivity Kernels (CLICK) (Sharan and
Shamir, 2000; Shamir et al., 2005), clique (Palla et al., 2005; Price
et al., 2013), divisive projected clustering (DPClus) (Altaf-Ul-
Amin et al., 2006; Price et al., 2013), graph-entropy (Kenley and
Cho, 2011; Price et al., 2013), core-attachment method clustering
(CoAch) (Wu et al., 2009; Price et al., 2013), influence power
based clustering algorithm (IPCA) (Li et al., 2008; Price et al.,
2013), spectral clustering (Shi and Malik, 2000; Pedregosa et al.,
2011), and molecular complex detection (MCODE) (Bader and
Hogue, 2003; Price et al., 2013).

2.1.5. Fuzzy Logic
Fuzzy C-Means (FCM) is one of the popular clustering
employing Fuzzy logic. The logic of FCM derives from the
concept of both partitional and probabilistic clustering. Partitions
are formed by constantly reducing the cost function. The fuzzy
theory was introduced into spike sorting by Zouridakis and Tam
(2000). The evaluation presented in the report considers just
FCM for evaluation.

2.1.6. Density-Based
As the name suggests, the theory is constructed around the
density of data points, and the cluster shape is not a confined
factor. Density Based Clustering of Applications with Noise
(DBSCAN) is a popular clustering algorithm in this family.
The clustering result is decided by two parameters; a minimum
number of points Minpts that must be included in a cluster and
Eps, the epsilon value which specifies radius to form clusters.
Knowledge of Minpts and Eps is arbitrary (the best outcome
is performed through several trials by varying the parameters)
and hence makes the process supervised. A similar clustering
algorithm OPTICS was employed in spike sorting by Prentice
et al. Prentice et al. (2011). Early use of Mean-shift Fukunaga
and Hostetler (1975) clustering algorithm in spike sorting was
introduced by Swindale and Spacek (2014), in the form of
gradient ascent clustering. The evaluation presented in report
considers OPTICS, DBSCAN, and Mean-shift.

2.1.7. Learning-Based Clustering
Learning-based algorithms such as Self-organizing Maps require
prior understanding or initial ground-truth in the form of
training sets to train their weights Öhberg et al. (1996). A
network is initially trained using the ground-truth followed by
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the data classification. Neural networks are perfect examples of
such algorithms (Veerabhadrappa et al., 2015). Since the raw
extracellular data does not possess any ground-truth information,
training of a neural network is not possible. Henceforth, Neural-
Network based clustering has not been considered in our study.
Some of the notable classifiers are: (a) Leader-follower algorithm,
(b) Support Vector Machines and (c) Growing Neural Gas.

2.2. Criteria for Choosing Cluster
Algorithms in the Current Review
With such a wide range of algorithms reported, the selection
of a particular algorithm is usually subjective Kaufman and
Rousseeuw (2008b). Some of the algorithms widely adopted for
the purpose of spike sorting are K-means (Pachitariu et al.,
2016; Caro-Martín et al., 2018), GMM (Souza et al., 2019),
SPC (Blatt et al., 1996; Rey et al., 2015; Niediek et al., 2016),
Klustakwik (Rossant et al., 2016), and methods based on
statistical aggregations such as t-distributions or chi2 distribution
(Harris et al., 2000; Shan et al., 2017). We reviewed 58 algorithms
out of which 27 are presented in the report. The requirements for
choosing algorithms is as follows:

• An algorithm is introduced to specifically overcome
drawbacks or, was proposed as a better alternative approach.
For example (a) Chameleon was introduced to overcome the
drawbacks of CURE and ROCK; which ignored to address
interconnectivity and close relation between pairs of similar
clusters Karypis et al. (1999), (b) EM based algorithm was
introduced as an alternative to K-means, and FCM (Shoham
et al., 2003), (c) Wave_clus employing SPC was introduced
as an alternative to handle outlier insensitivity of K-means
(Blatt et al., 1996), and (d) Affinity Propagation (AF_Prop)
was introduced as an alternative to K-means and hierarchical
clustering algorithms (Frey and Dueck, 2007). Under the
above conditions, all the algorithms were considered to
understand their differences and advantages to spike sorting.

• Similarly, semantic edge weighting concepts of graphs
offered specific advantages in classifying protein-protein
interactions (Price et al., 2013). The graph-based algorithms
clustering in quest (clique), DPClus, graph-entropy, CoAch,
IPCA, and MCODE were selected (Price et al., 2013) to
assess their performance in clustering extracellular action
potential features.

• Algorithms exclusively employed in spike sorting such as
Mean-shift, ISO-SPLIT, OPTICS, EMGMM, VBGMM, SPC,
and Klustakwik (details in section 2.1).

• When variants of clustering algorithms such as PAM, CLARA,
CLARANS which share relation with K-means and K-
medoids, the former have not been considered (Kaufman and
Rousseeuw, 2008b).

• Kernel variants of clustering algorithms (K-means, FCM) are
not considered because, it is already established that in a linear
distribution of features, the resulting outcomes between their
convention versions (Kim et al., 2005) is not significantly
different.Moreover, since our study employs static parameters,
i.e., a fixed number of partitions and feature vectors (details in
section 3.2) the necessity of kernel version becomes redundant

(Girolami, 2002; Kim et al., 2005). It is also reported that on
average kernel-based clustering algorithms can provide only
15% better performance than their conventional versions; for
detailed evaluation results and data specifics, we advise the
readers to refer to Kim et al. (2005).

• In a strong argument, the article (Ankerst et al., 1999)
introduces OPTICS as a better alternative to algorithms
such as BANG, CURE, K-means, K-medoids, PAM, CLARA,
CLARANS, DBSCAN, density-based clustering (DenClue),
clique, BIRCH, and WaveCluster covering up most families
of clustering. Hence, in the current study one from each
family is selected; CURE, DBSCAN, BIRCH (details of families
is discussed in section 2.1 and reason for K-means and K-
medoids already stated above) to compare their performance
against OPTICS.

• Generic conditions such as (a) publicly accessible (b)
application in biomedical signal processing (c) application
in spike sorting (d) at least one algorithm possibly from a
family (e) readily available in its novelty version and, (f)
application of the algorithm is non-trivial. Figure 2 shows
popular clustering algorithms which are considered in the
report and their immediate relatives, which are not considered
but may have a similar impact.

3. MATERIALS AND METHODS

3.1. Data Sets
Our study employs three sets of data (two synthetic and a real
data set) with ground-truth (Quiroga, 2009). The data sets are
chosen such that it facilitates the analyses and evaluating the
capacity of a clustering algorithm to distinguish between spike
shapes. Hence from Table 1 the data set with Low similarity
indicates that the spike shapes were relatively easier to distinguish
compared to High similarity. Further, a real data set represents
an example of the spike shape similarity that could be expected
in real recordings, compensating any disparity that may exist in
synthetic data.

Synthetic data sets represented voltage recordings from a
single channel of an extracellular recording. During the synthesis
of each data set, three different spike shapes were randomly
chosen from a pool of 594 spike waveforms acquired from the
neocortex and basal ganglia (Quiroga, 2009). We initially band-
pass filtered the data sets to remove any field potential and noise,
as shown in Figure 1A. Considering the main focus of the study,
we ignore the initial spike detection process, thereby, readily
available spike times from the ground-truth were used to extract
spike waveforms. For each spike time, 20 samples to the left and
44 samples to the right were extracted from filtered voltage to
form a spike waveform. The peaks of all the waveforms were
aligned at 20th sample constructing a pool of waveforms, as
shown in Figure 1C.

Real data set is a collection of waveforms recorded from
the temporal lobe of an epileptic patient (Quiroga, 2019) which
comprised of four different classes of spike shapes. No additional
processing was necessary as the spike waveforms were already
extracted and ready for analysis.
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TABLE 1 | Details of labels used in the report for referring to a data set and its

corresponding feature-set.

Labels Data set from

repository

(*.mat) (Quiroga et al.,

2004)

Similarity

between

spike shapes

Number

of spikes

M

Number

of spike

classes

Eks C_Easy1_noise_01 Low 3,522 3

Epca C_Easy1_noise_01 3,522 3

Dks C_Difficult1_noise_01 High 3,448 3

Dpca C_Difficult1_noise_01 3,448 3

Uks time_CSC4 Original 9,193 4

Upca time_CSC5 9,193 4

The extracted spike waveforms are then processed using PCA
and wavelets decomposition to represent raw data into widely
used feature vectors. The process undertaken to create features
vectors is as follows:

3.2. Feature Vector Estimation
3.2.1. PCA Features
Our study adopts PCA feature extraction process similar to the
technique documented by Harris et al. (2000). Pooled spike
waveforms from each data set were subjected to PCA, and
three components with the largest variance (covering 95%)
were extracted. Each waveform was then projected on to each
of the extracted components constructing a three-dimensional
feature-set F.

3.2.2. Wavelet Features
The wavelet features were estimated by following the process
mentioned by Quiroga et al. (2004). The waveform set was
initially decomposed using Haar wavelets and employing discrete
wavelet decomposition up to five levels. The wavelets are
then subjected to Kolmogrov–Smirnoff test to examine their
normality. Ten features with the highest deviation from normal
were extracted, constructing a 10-dimensional feature-set F.

3.3. Graph Generation
The graph-based clustering algorithms require a graph as input
with nodes and weights. In our study, all the feature-sets
are subjected to KNN algorithm. A KNN tree is constructed
assuming the number of nearest neighbors K, in the tree to be
11. The input graph is a text file (∗.txt) comprising of a list of all
nearest neighbors such that two data points represented nodes
and their relevant Euclidean distance as weights.

3.4. Clusters Estimation
The clustering algorithms discussed in the report tend to divide
each feature-set F into k clusters. The result of a clustering
algorithm EC is a vector comprised of integer labels representing
a spike class. A supervised clustering procedure S requires
the users to specify the number of possible n partitions as
described in Equation (1). The n in Equation (1) was selected
as 3 and 4 for synthetic and real data set respectively. For a
supervised clustering algorithm, clusters EC were estimated using

Equation (1). For an unsupervised clustering algorithm U, the
clusters EC were estimated using Equation (2). Euclidean distance
was used as a standardmethod to evaluate the separation between
points. Additional information on setting parameters specific
to an algorithm is mentioned in the supplementary resource
(Appendix C).

EC = S(F, n) (1)

EC = U(F) (2)

4. CLUSTERING PERFORMANCE
QUANTIFICATION

Quantification of clustering is critical to explore the usefulness
and compatibility of these algorithms for spike sorting and
analysis. Performance quantification also helps to understand
which feature-sets lead to better clustering accuracy for any
algorithm. In the present study, quantification of clustering is
performed using clustering accuracy as well as selected internal
and external validation indices. The confusion matrix is adopted
to observe the overall class assignment, and elements of the
matrix contribute toward3 accuracy estimation (Amancio et al.,
2014). Accuracy derived in relation with the ground-truth
information measures an algorithms capacity to assign the spikes
into its right class appropriately.

In the clustering and classifier world, accuracy is regarded
as a reliable method to define quality (Amancio et al., 2014).
Nevertheless, to compute accuracy and confusion matrix,
ground-truth information is essential. Here, we first establish
confusion matrix which accounts for each label l in ground-truth.
For any feature-set, if EC represents the outcome of a clustering
procedure then, the ground-truth label l associated with the
feature-set is matched with label c in EC. The combination of l
and c with maximum matches represents the best match. This
procedure will treat l to be equivalent to c, forcing to occupy
the diagonal of the confusion matrix. If label l also matches with
a different label in EC, the subsequent match counts will form
the remaining array in the confusion matrix. This ensures the
condition when l 6= c, their counts will occupy on either side of
the confusion matrix, respectively. When there are no additional
matches, its relevant element will remain zero. Furthermore, if
there are too many clusters formed by a clustering procedure,
consequently, this results in additional labels which cannot be fit
into the confusion matrix and hence discarded. Thus ensuring
that the confusion matrix is formed only for labels in the
ground-truth. The confusion matrix diagonal represents counts
of all true match, and the remaining elements indicate the level
of confusion.

Accuracy is simply the ratio of number of spike samples
that were accurately sorted without confusion (i.e., diagonal of
confusion matrix) to the total number of spikes M. Accuracy of
each cluster outcome with respect to its original ground-truth is
estimated using Equation (3).

Accuracy =

∑

diag(ConfM)

M
(3)
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FIGURE 3 | Relation between indices values and distribution plot of clusters in each feature-set. (A) Three tabulated rows show indices generated by each of the

internal validation criterion considered in the context. Indicies in (A) corresponds to the associated ground-truth of each feature-set. (B) Distribution of clusters for

each dimension in any feature-set. Note that PCA constitutes only three component feature-set as opposed to ten-dimensional feature-set of the wavelet

decomposition. We will refer to the overlapped region in (B) as ambiguity, which relates to the similarity between spike shapes. This ambiguity distinguishes the

performance of clustering algorithms, and it is also harder even for naked eye (human operators) to judge the allocation of feature points to a cluster.

4.1. External Index
The methodology of external indices is similar to accuracy
discussed above. If E, represents an external validation criterion,
then, the external index E of any algorithm about a data set is
estimated using Equation (4). The external validation method
simply compares the labels generated by an algorithm EC and data
set ground-truth labelsG.We employed Jaccard and Rand indices
in our study.

E = E(G, EC) (4)

Analogous to external indices, Figure 4 details the indices
produced by each algorithm across all feature-sets. The external
index produces a zero for a worst-case (when certain algorithm
fails to produce any cluster) and a one for ideal-case (ground-
truth). Any, corresponding intermediate values relate to the
quality of the clustering algorithm. For collective evaluation

of algorithms performance across feature-sets, we compute the
inverted root mean squared error ˆRMSE. The root mean squared
error (RMS) is initially estimated as shown in Equation 5, and
then inverted to obtain ˆRMSE (Equation 6).

RMSEa =

√

√

√

√

∑

F

(

gf − ea,f

)2

N
(5)

ˆRMSEa = 1− RMSEa (6)

where, N is total number feature-sets under consideration that
is 6, a ∈ A, a collection of cluster algorithms, f ∈ F, set of
features, gf represents ground− truth for any feature-set f which
is equivalent to 1; ideal-case and ea,f represents external indices

for an algorithm a and feature-set f . A graph of ˆRMSE across all
algorithms is shown in Figure 6B.
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FIGURE 4 | Result of external indices. (A) Rand indices, annotations (I, II) refers to a case of confusion whether to be categorized as either good performance or bad

performance and annotation III refers to another case where only one cluster was generated (section 5 discusses all annotated cases in detail). (B) Jaccard indices.

Index value of zero indicates no cluster was produced.

4.2. Internal Index
Although accuracy measure using confusion matrix adopted in
the current study is self-explanatory and reliable, however in the
absence of ground-truth, becomes irrelevant. In such a scenario,
internal indices establish an alternative approach to validate the
quality of the clusters estimated. A complete comparison of
internal indices is discussed by Zhang et al. (2018). Three internal
indices; Ball-Hall (BH) (Ball and Hall, 1965), Trace W (TrW)
(Milligan and Cooper, 1985), and Davies-Bouldin (DB) (Davies

and Bouldin, 1979) regarded as reliable in extracellular data
analysis are selected in the current study. Selection of these three
internal indices is based on their consistent behavior through
the evaluation. The internal validation method tends to find
the barycentre of a cluster by calculating the mean squared
distance from the center to clustered points. If I, represents an
internal validity criterion then, corresponding internal indices,
I of a clustering outcome EC and feature F was estimated using
Equation (7).
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FIGURE 5 | Each plot contains normalized values of three internal indices for each of six feature-set across all algorithms. Results of each internal indices criteria I

were normalized Î with reference to indices of ground-truth labels using Equation (8). The normalization rule is such that a score of one indicates ground-truth and as

score moves away from one toward zero indicating a drop in performance.

I = I(F, EC) (7)

For a better understanding of the ambiguity/confusion associated
within a feature-set, we use internal indices as established
in Figure 3. From the figure, it is clear that the DB
criterion can clearly distinguish the features-sets with a
consistent gradient, whereas, the indices of BH and TrW vary
depending on the spike count associated with the feature-
sets. It should be noted that TrW evaluates indices on an
entirely different scale; the values of which are generally ranging
in thousands.

Consequently, the range of values produced by each internal
validation criteria across the algorithms is very different.
For better approximation and uniformity in analysis, we
have normalized all the values. Normalized indices compiled
by algorithms across all feature-sets are shown in Figure 5.
Normalization is performed for each pair of internal indices
criteria and feature-set. For example, if IBH,Dks represent internal
index values produced by BH criterion for the feature-set
Dks across all clustering algorithms. Then normalized values
of ÎBH,Dks is estimated using Equation (8). The reference
value r in Equation (8) is set to index value of ground-truth,
IBH,Dks(ground− truth). For collective evaluation, all normalized
values are consolidated in Figure 6A. The corresponding

values of Î will be referenced as normalized internal indices
(NII), hereafter.

∀ i in I, Î = 1 −
|r − i|

(max (I) −min (I))
(8)

The interpretation of validation index to select an appropriate
clustermay vary from one criterion to another. The cluster results
must be selected only while comparing indices values within
a feature-set and, bounded by the rules of underlying indices
methodology. Approximately five different selection rules have
been short-listed, minimum score, maximum score, maximum
second derivative, minimum second derivative and maximum
difference to left (Zhang et al., 2018). In the current study, DB
uses lowest indices scores, BH and TrW uses maximum second
difference scores. The following assumption is adopted only as
an indicator, to compare indices across data sets, and this should
not be used as a method to select cluster result. When comparing
the indices values in Figure 3, DB criteria tends to provide
more valid information where indices of Epca is low indicating
that Epca provides better chances to form appropriate clusters
and the same can also be observed in Figure 3B. Likewise, DB
indices for Dpca is relatively high, implying that the clusters
in the feature-set are not very distinct. Further, BH and TrW
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FIGURE 6 | Consolidated results (A) normalized internal indices and (B) external indices.

also provide equally valid information except that their values
are not very much comparable across other feature-sets. This
is because the number of data points M (spikes count) in the
feature-sets impacts the indices score; Table 1 shows M for each
feature-set. Henceforth, the future discussions will refer to NII Î,
Figure 5.

5. EVALUATION AND DISCUSSION

The paper presents an unbiased performance evaluation of 26
clustering algorithms (section 2.1 and Figure 2) via four different

evaluation techniques (section 4; internal indices (Figure 5),
external indices (Figure 4), accuracy and confusion matrix
(Figure 7). R package ClusterCrit was employed for estimating
the selected internal and external cluster indices Desgraupes
(2014). Data employed in the evaluation provided enough
evidence (ground-truth) to ensure a fair process was followed.
Three sets of data were employed, and two feature-sets from
each data were extracted using PCA and wavelet decomposition.
For ease of comparison between external and internal indices,
the results (range of values) of all three internal indices were
normalized to be between zero for the worst-case and one for the
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FIGURE 7 | Confusion matrix; relating the performance of an algorithm evaluated using accuracy and false positives. (A) Ground-truth: 100% (B) K-medoids, Epca:

99.54% and Dpca:35.61%, (C) Chameleon, Epca:86.08% and Dpca:41.53%, (D) OPTICS, Epca:10.27% and Dpca:3.28%, (E) DBSCAN, Epca:33.3% and

Dpca:33.3%.

ideal-case using Equation 8. The future analysis and discussions
will refer to NII (Î, Equation 8).

Ideally, when comparing evaluations, the expectation is that
the indices estimated from results of clustering algorithms
should match the indices of ground-truth. However, results vary
due to ambiguity associated with data and unique processes
of a clustering algorithm. From the ambiguity distribution
plot in Figure 3, it can be established that feature-sets Eks
and Epca possess minimum ambiguity, Dpca represents a
difficult degree and remaining feature-sets fall between extreme
ends of ambiguity. Attributes of external and internal indices
demonstrate the effectiveness of our evaluation process. This
process tends to provide an acceptable method for the researchers
to incorporate internal indices particularly in the absence
of ground-truth effectively. For a generic overview, refer to
consolidated results in Figure 6.

In the early stages, we explored feature-set consistency with
the available ground-truth to understand the performances of
clustering algorithms. Consistency of algorithms across all 6
feature-sets was evaluated by computing ˆRMSE (Equation 6). The
algorithms were ranked based on ˆRMSE as shown in Figure 6B.
The ranks were further divided into compatibility category as
ideal, most-compatible, compatible, average, least-compatible and
non-compatible. Outcomes of only Rand was considered when
computing ˆRMSE because Jaccard failed to produce results for
more than two algorithms. It is believed that incorporating Rand
and Jaccard to estimate ˆRMSE does not affect algorithms in
most-compatible category however, some rankings swap places in
categories average and after.

In the absence of ground-truth the NII will aid in better
analysis of clusters. The NII of cluster results and ground-
truth are compared with each other to observe the effectiveness.
For algorithms categorized as most-compatible in Figure 6B, the
corresponding NII outcomes in Figure 5 match close to that

of ground-truth, and their associated variances in Figure 6A

is also minimal. Evidence of this trend can be confirmed
through external indices in Figure 4, which complement the
high performance of algorithms as illustrated by indices values
close to ground-truth. Confusion matrix examples of K-medoids
and Chameleon from Figures 7B,C further substantiates the
previous observations of most-compatible algorithms. As with
least-compatible or non-compatible algorithms, the results in
Figure 5 show a strong deviation from ground-truth and from
Figure 4 it is evident that the performance of most algorithms
has dropped significantly. As an example, Figures 7D,E confirms
the poor performance of DBSCAN and OPTICS. For comparison
of clustering algorithm performances, a summary of results
is presented in Figure 6 and Table 2 which exhibits a strong
agreement between all the evaluation techniques employed in
the comparison.

Further, to strengthen the analogy between internal and
external validation indices we will refer to index-consistency,
consistency among internal indices Figure 5. Observing the
results from Figures 6B, 5, most-compatible algorithms are
characterized by stronger index-consistency. As the rank of
algorithms moves toward least-compatible, consistency between
their corresponding NII tends to vary, resulting with a drop
in index-consistency caused by disagreement among internal
indices (example: DBSCAN, ROCK and CURE from Figure 6A

shows results with maximum variation). Observe from Figure 5

and Table 2, the NII of most-compatible algorithms are fairly
consistent across all internal indices. For Chameleon, a barely
negligible inconsistency can be observed. However, a noticeable
difference can be observed with average algorithms. Finally, for
OPTICS and DBSCAN, the variation of results among NII is
high. This also shows that relying on just one validation method
may not provide accurate outcomes. As an example, observe that
NII outcomes of CLICK, Klustakwik and EMGMM for Dpca
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TABLE 2 | A summarized version of clustering algorithms performance comparison.

Algorithms Epca Dpca

Rand Accuracy DB BH TrW Rand Accuracy DB BH TrW

Ground-truth 1 100 1 1 1 1 100 1 1 1

K-medoids 0.993 99.545 0.999 0.994 0.995 0.586 35.614 0.797 0.794 0.523

K-means 0.993 99.545 0.999 0.994 0.995 0.582 37.12 0.798 0.795 0.523

Agglomerative 0.987 99.034 0.999 0.993 0.993 0.576 46.635 0.795 0.802 0.559

ISO-SPLIT 0.995 99.63 0.99 0.992 0.99 0.501 35.904 0.751 0.829 0.591

BIRCH 0.986 98.949 0.99 0.99 0.99 0.558 45.852 0.788 0.793 0.537

Chameleon 0.913 86.087 0.883 0.976 0.998 0.607 41.531 0.793 0.731 0.459

CAST 0.977 96.848 0.839 0.52 0.981 0.55 32.221 0.945 0.885 0.521

FCM 0.993 99.545 0.99 0.99 0.99 0.562 37.674 0.81 0.804 0.533

VBGMM 0.963 94.207 0.728 0.750 0.990 0.656 34.106 0.884 0.841 0.427

EMGMM 0.962 94.207 0.503 0.675 0.974 0.648 37.035 0.96 0.96 0.470

SPC 0.673 11.64 0.982 0.907 0.909 0.642 16.502 0.728 0.646 0.222

Mean-shift 0.666 0.454 0.984 0.907 0.908 0.666 0.087 0.663 0.646 0.152

DPClus 0.832 85.178 0.956 0.754 0.719 0.593 49.70 0.86 0.84 0.604

Klustakwik 0.964 94.633 0.853 0.627 0.959 0.337 33.671 0.930 0.353 0.851

CLICK 0.819 64.65 0.798 0.792 0.998 0.62 31.235 0.963 0.765 0.531

DIANA 0.76 65.84 0.774 0.418 0.689 0.673 39.9 0.83 0.8 0.574

AF_Prop 0.7 20.13 0.95 0.9 0.924 0.67 8.613 0.767 0.653 0.207

OPTICS 0.678 10.278 0.033 0.945 0.967 0.664 3.828 0.344 0.714 0.586

CoAch 0.672 3.946 0.883 0.915 0.92 0.66 3.248 0.816 0.657 0.198

IPCA 0.669 1.7 0.898 0.912 0.916 0.667 1.711 0.8 0.653 0.177

graph-entropy 0.66 1.277 0.964 0.9 0.911 0.666 0.754 0.761 0.646 0.155

MCODE 0.626 2.356 0.821 0.915 0.746 0.623 1.856 0.903 0.657 0.528

clique 0.589 7.609 0.89 0.914 0.564 0.612 6.728 0.84 0.652 0.661

CURE 0.761 35.29 0.968 0.838 0.673 0.335 0.2 0.721 0.83 0.871

ROCK 0.965 64.082 0.994 0.9 0.948 0.346 0.29 0.723 0.654 0.92

DBSCAN 0.33 33.33 0.966 0.092 0.091 0.333 33.33 0.655 0.936 0.847

The outcomes for two different data sets representing the best condition Epca and worst condition Dpca are compared in the following table. The performance is evaluated in terms

of rand index, accuracy and NII. The result for remaining of the feature-sets is available in supplementary resource (Appendix B). Note: the results of jaccard is dropped in the table

because few algorithms did not generate an index value.

match the indices of ground-truth, which could be misleading. It
is very clear from the Table 2 that less inconsistency in internal
indices leads to better accuracy. The accuracy and confusion
matrix tend to agree with the above observations.

A summary of the above observation and discussion reveals
that when a feature-set exhibits higher levels of ambiguity or
when an algorithm fails to deliver a good performance, the
scenario will always result in a disagreement between internal
indices. This disagreement will result in higher variances,
and the phenomenon can be used as an indication of an
incompatible algorithm.

At this stage, we would like to discuss some of the
shortcomings of external indices (Rand) and possible
ways of cross-verifying to accept or reject a clustering
result appropriately. The external indices criterion fails to
rank clustering results appropriately. This is a condition
generally observed with unsupervised approaches where a
clustering procedure forms many clusters, resulting in many
unnecessary labels. This results in unfairly ranking of algorithms,
least-compatible algorithms may end up being ranked above

most-compatible algorithms. A concerning phenomenon
could be observed in Figure 4A (annotated I), the results
generated by least-compatible algorithms (CoAch, IPCA, and
graph-entropy) for Eks, Epca, Dks, and Dpca have a score of
0.66. A similar score can also be observed from the results
generated by most-compatible algorithms (K-medoids, K-means,
Agglomerative, BIRCH, Chameleon, and FCM) for Upca, and
by compatible algorithms (EMGMM, Mean-shift and SPC)
for Dpca respectively (Figure 4A annotated II). The score of
0.66 is considered fairly good in many scenarios, which in
this case, the results of I could be misleading. Furthermore,
observe the confusion matrix of Dpca for different algorithms
and their related indices values (Figure 7). Comparing I and
II, it is clear that performances of Chameleon and K-medoids
are ranked lower than that of OPTICS where, in reality,
Chameleon and K-medoids provide a reliable and acceptable
result. It would be practically impossible for a human operator
to resolve the inconsistency of OPTICS cluster results. Jaccard
however, either fails to generate result in this phenomenon
or generates acceptable low indices score. Internal indices
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scores would be appropriate to approach the phenomenon.
Irrespective of ambiguity levels associated with a feature-set,
the index-consistency is a good indicator of performance.
Additionally, internal variances among NII for least-compatible
algorithms is higher compared to those of amost-compatible. The
phenomenon can be better observed by comparing NII results
for Epca and Dpca (Figure 5). The index-consistency among NII
for least-compatible algorithm is not evident in highly ambiguous
feature-set Dpca. On the other hand, index-consistency among
NII is evident for most-compatible as can be observed for lower
ambiguous feature-set Epca.

Another shortcoming of indices is when a clustering algorithm
returns a cluster where all data points have the same label. An
example of such criteria could be observed from Figures 7C,D,
having rand indices of 0.33 (Figure 4A annotated III). For
instance, there are N possible clusters in the data-points, in the
context of this shortcoming, the validation index returns a value
1/N. Although internal indices and NII intend to distinguish
good and bad algorithms, DBSCAN and ROCK tend to violate
this rule. The raw internal indices closely matched ground-truth.
From the Table 2 it can be observed for DBSCAN and ROCK,
some of the NII are close to 1, in other words index-consistency
failed to recognize the poor performance. Other popular indices
such as “calinski-harabasz” (Buccino et al., 2018) previously
employed in the absence of ground-truth did not show any
improvements. It is of best interest to avoid these two algorithms
specifically for spike sorting.

Overall, the consolidated results in Figure 6 demonstrate that
supervised algorithms are mostly consistent and reliable, which
is reflected in their stronger index-consistency characteristic.
From the above discussions, results and in terms of feature-
set consistency it is clear that supervised algorithms performed
better despite higher ambiguity levels. Amongst the unsupervised
clustering algorithms the performances of Chameleon, FCM
and CAST are fairly competitive, and outperformed clustering
algorithms specifically tried for spike sorting; SPC, VBGMM,
EMGMM, Klustakwik, and OPTICS. The NII outcomes indicate
that majority of probabilistic-based clustering algorithms have
similar performances. Fuzzy models performed better than
Probabilistic models and that the density-based models such as
DBSCAN and OPTICS are not suitable for spike sorting.

Further, Shan et al. in their recent work confirmed the
fact that when features demonstrate clear isolation K-means or
partition-based clustering perform better than a probabilistic
or a gaussian-based model (Shan et al., 2017). Our evaluation
also revealed that algorithms which belonged tomost-compatible
and the compatible categories performed better when spikes are
distinguishable (Epca and Eks). However, a serious limitation
is when the spikes are not distinguishable (Dpca and Dks),
the performance of most algorithms drop, human operators
cannot perform a reliable sorting and validation indices may not
provide appropriate result. In a review (Lewicki, 1998), Lewicki
advises that software-based spike sorting is necessary to avoid
biases, improved decision-making and faster processing. The
processing time limitations of human operators can be resolved
using a software approach. Moreover, the biases and decision
making limitations of clustering algorithms can be resolved by

cross verifying the clustering results using multiple algorithms.
Comparing the results of Dpca and Dks, wavelet decomposition
or signal transformation method can extract better features,
thereby mitigating limitations. Our current evaluations suggest
that partitional clustering would be a better approach for
initial estimation. Then, depending on the requirement, the
experimenters could opt for human operators to performmanual
clustering followed by probabilisticmodels to improve the quality
of sorting.

6. FUTURE DIRECTION OF SPIKE
SORTING

In the current testbed, the maximum number of spike classes
were four but, in a real scenario, classes of waveforms could vary
between 1 to approximately 20 per channel (Pedreira et al., 2012).
Data sets with such higher complexity are available to download
from http://bioweb.me/CPGJNM2012-dataset (Pedreira et al.,
2012; Rey et al., 2015).

None of the algorithms discussed above is entirely reliable. It
should be carefully considered whether or not these drawbacks
have a significant impact on data under analysis. Researchers
should employ a cross-verification method to accept or reject the
clusters. Because the raw extracellular data has no ground-truth,
spike sorting process should include multiple internal indices
to assess the performance outcomes. As was claimed in the
introduction that not all clustering algorithms are suitable for all
types of data, but there are some algorithms which are reasonably
consistent across a range of feature-sets. For initial estimation,
cross-verification phase or where human-intervention based trial
and error approach could employ either of K-medoids, K-means
and gaussian mixture models. Additionally, for improvised
approach, validation indices and confusion matrix could be
effectively used to evaluate the choice of a clustering algorithm.
In an event where big-data is concerned and expect a minimal
human intervention, our evaluation recommends ISO-SPLIT,
FCM, Chameleon and CLICK, as reliable options. The result
also shows that a majority of algorithms have responded better
for feature-set generated using wavelets. On the other hand,
PCA has edged an advantage for larger data sets. In summary,
it is clear that supervised procedures perform better than
unsupervised procedures.

Klustakwik and Kilo-sort which employ phy suit by far has
been a revolution through its versatile user interface, very
well received amongst the researchers and has been developed
as an open-source platform. The software application can
automatically process multiple channels; particularly popular
with probe type electrode arrays. Its unique graphical user
interface combines necessary information to evaluate an
experiment in terms of correlogram, time-series data, cluster
results, clustered spikes and similarity report. The adjacency
matrix and probe information for in-vivo type recordings are
available. For in-vitro type recording the validity of information
available form adjacency matrix is still open to debate. The
adjacency matrix and probe information are not available for in-
vitro microelectrode array recordings to be readily applicable in
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klusta suite. It is also not suitable for CMOS type microelectrode
arrays where the channel count is high, which could also result in
extensive adjacency matrix.

Similar platforms such as Spike2 (Ortiz-Rosario et al., 2017),
tridesclous (upgrade over its less successful predecessors Spike-O-
matic and Open Electrophy) and Spyke also provide interactive
graphical user interface. The main highlight of tridesclous is
its flexibility in the choice of clustering technique. The users
could choose from K-means, GMM, Agglomerative, DBSCAN or
OPTICS Pouzat and Garcia. Spyke also uses template matching
algorithm (Spacek et al., 2009) for clustering which is based on
Klustakwik clustering algorithm (Blanche et al., 2004).

There is a need for Klusta-suit type platform which
also accommodate reliable clustering algorithms, multiple
choice of feature selection processes and provide the
user with validation indices to best approximate the
outcome. CMOS type microelectrode arrays are gaining
popularity, and the data acquisition technique may get
more sophisticated. Thus a robust processing system
with interactive cluster merging and a numerically aided
mechanism to guide human operators is needed for future spike
sorting algorithms.
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