
ORIGINAL RESEARCH
published: 02 September 2020
doi: 10.3389/fnsys.2020.00043

Frontiers in Systems Neuroscience | www.frontiersin.org 1 September 2020 | Volume 14 | Article 43

Edited by:

Raina Robeva,

Randolph–Macon College,

United States

Reviewed by:

Lina Yao,

University of New South Wales,

Australia

Xiang Li,

National Supercomputer Center,

China

*Correspondence:

Senhui Qiu

qiusenhui@mailbox.gxnu.edu.cn

Received: 29 March 2020

Accepted: 12 June 2020

Published: 02 September 2020

Citation:

Liu J, Wu G, Luo Y, Qiu S, Yang S,

Li W and Bi Y (2020) EEG-Based

Emotion Classification Using a Deep

Neural Network and Sparse

Autoencoder.

Front. Syst. Neurosci. 14:43.

doi: 10.3389/fnsys.2020.00043

EEG-Based Emotion Classification
Using a Deep Neural Network and
Sparse Autoencoder
Junxiu Liu 1,2, Guopei Wu 1,2, Yuling Luo 1,2, Senhui Qiu 1,2,3*, Su Yang 4, Wei Li 5,6 and Yifei Bi 7,8

1 School of Electronic Engineering, Guangxi Normal University, Guilin, China, 2Guangxi Key Lab of Multi-Source Information

Mining & Security, Guangxi Normal University, Guilin, China, 3Guangxi Key Laboratory of Wireless Wideband Communication

and Signal Processing, Guilin, China, 4Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool

University, Suzhou, China, 5 Academy for Engineering & Technology, Fudan University, Shanghai, China, 6Department of

Electronic Engineering, The University of York, York, United Kingdom, 7College of Foreign Languages, University of Shanghai

for Science and Technology, Shanghai, China, 8Department of Psychology, The University of York, York, United Kingdom

Emotion classification based on brain–computer interface (BCI) systems is an appealing

research topic. Recently, deep learning has been employed for the emotion classifications

of BCI systems and compared to traditional classification methods improved results

have been obtained. In this paper, a novel deep neural network is proposed for emotion

classification using EEG systems, which combines the Convolutional Neural Network

(CNN), Sparse Autoencoder (SAE), and Deep Neural Network (DNN) together. In the

proposed network, the features extracted by the CNN are first sent to SAE for encoding

and decoding. Then the data with reduced redundancy are used as the input features

of a DNN for classification task. The public datasets of DEAP and SEED are used for

testing. Experimental results show that the proposed network is more effective than

conventional CNN methods on the emotion recognitions. For the DEAP dataset, the

highest recognition accuracies of 89.49% and 92.86% are achieved for valence and

arousal, respectively. For the SEED dataset, however, the best recognition accuracy

reaches 96.77%. By combining the CNN, SAE, and DNN and training them separately,

the proposed network is shown as an efficient method with a faster convergence than

the conventional CNN.

Keywords: EEG, emotion recognition, convolutional neural network, sparse autoencoder, deep neural network

1. INTRODUCTION

The Brain–Computer Interface (BCI) directly connects human (or animal) brain activity with
artificial effectors (Kübler et al., 2009), which provides an interactive pathway between the human
brain and external devices for various applications. The process of such an interaction starts by
recording the brain activity through the signal processing and analysis to detect the users’ intent
(Tabar and Halici, 2016). BCI systems and their various implementations have been subjects
of ongoing study for decades, and one of the most appealing research directions is emotion
recognition due to its potential applications in numerous scenarios. Both non-physiological and
physiological signals could be employed for emotion detections. Non-physiological signals include
facial expression images (Lane et al., 1997), voice signals (Scherer, 1995), and body gesture
(Cheng and Liu, 2008). Compared to the non-physiological signals, physiological signals can
be detected by some wearable devices, such as an electroencephalogram (EEG) (Zheng, 2017),
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electromyogram (Hiraiwa et al., 1989), electrocardiogram
(Agrafioti et al., 2012), the galvanic skin response, blood volume
pressure, and a photoplethysmogram. Among these physiological
signals, EEG signals have been widely used for research into
emotion recognition (Chi et al., 2012; Huang et al., 2015; Li et al.,
2016; Liu et al., 2018c). Captured from the scalp by a number of
EEG electrodes, emotion could be reflected immediately by an
EEG signal once a subject receives the stimulations.

There are two conventional rules to follow when categorizing
human emotions, namely, the discrete basic emotion description
and the dimension approaches. According to the discrete basic
emotion description approach, emotions can be classified into
six basic emotions: sadness, joy, surprise, anger, disgust, and
fear (van den Broek, 2013). For the dimension approach, the
emotions can be classified into two (valence and arousal) or
three dimensions (valence, arousal, and dominance) (Zheng
and Lu, 2015). Among these dimensions, valence describes the
level of positivity or negativity of one person, and arousal
describes the level of excitement or apathy of emotion. The
scale of dominance ranges from submissive (without control)
to dominance (empowered). The emotion recognition is usually
based on the dimension approach because of its simplicity
compared to the discrete basic emotion description (Zheng and
Lu, 2015).

Early works on emotion recognition through analysing
EEG signal could be traced back to more than 50 years ago
(Fink, 1969). Many new methods on feature extraction and
classification have recently been proposed for emotion detection
(Petrantonakis and Hadjileontiadis, 2010). For the feature
extraction, two types of feature are commonly used to analyze
EEG signals: time-domain and frequency-domain features.
Time-domain features capture the temporal information
of signals, such as the fractal dimension (Hjorth, 1970),
Hjorth, and higher-order crossing features (Petrantonakis and
Hadjileontiadis, 2010). The frequency-domain features can
extract the useful information from the frequency perspective
under different frequency bands. For instance, the EEG signal
could be decomposed into δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz),
β (14–30 Hz), and γ bands (31–50 Hz) (Hjorth, 1970; Li and
Lu, 2009; Petrantonakis and Hadjileontiadis, 2010; Nie et al.,
2011), where the features can be extracted from each of them. In
addition, other features, such as Deep Forest (Zhou and Feng,
2017), Statistical Characteristics (SC), Differential Entropy (DE)
feature (Zheng et al., 2014), Pearson Correlation Coefficient
(PCC) feature (Lewis et al., 2007), and Principal Component
Analysis (PCA) (Subasi and Gursoy, 2010), are also used in
emotion recognitions.

In the meantime, various classification methods have been
used for emotion recognition, such as k-Nearest Neighbor
(Bahari and Janghorbani, 2013), Multi-Layer Perceptron (Orhan
et al., 2011). A Support Vector Machine (SVM) and Linear
Regression (LR) were used in Wang et al. (2019), but recognition
accuracy can be improved. In recent years, deep neural networks
(DNN) (Tripathi et al., 2017) has been developed into one
of the most effective and popular methods in many research
fields (Fu et al., 2017; Liu et al., 2018a,b, 2019; Luo et al.,
2018). Convolutional Neural Networks (CNN) are widely used in

computer vision, image classifications, visual tracking (Danelljan
et al., 2016), segmentation, and object detections (Girshick et al.,
2014). EEG emotion classification using the CNN method was
also explored in the approaches of Tripathi et al. (2017). Cascade
and parallel convolutional recurrent neural networks have been
used for EEG human-intended movements classification tasks
(Zhang et al., 2018). Additionally, before applying the CNN, EEG
data could be converted to image representation after feature
extraction (Tabar and Halici, 2016). However, the accuracy of
emotion recognition by using only CNN is not high. In the work
of Zhang et al. (2017), a deep learning framework consisting of
the sparse autoencoder (SAE) and logistic regression was used
to classify EEG emotion status. The sparse autoencoder was
employed for feature extraction, and logistic regression was used
to predict affective states. The SAE is an unsupervised machine
learning algorithm. By calculating the error between the output
of the SAE and original input, data could be reconstructed and
useful features could be extracted for classification task. However,
accuracy of that work is not high and there are no experiments for
comparing to verify the work of the SAE.

In this work, a novel network model combining the CNN,
SAE, and DNN to convert EEG time series into 2D images
for a good emotion classification performance is proposed. The
EEG signal is decomposed into several different bands. Based
on frequency, time, and location information, the 2D features
are extracted from EEG data. Then convolutional layers of the
CNN are trained and used for further extracting features. The
SAE is used for reconstructing data obtained from convolutional
layers, and the DNN is used for classification. Compared to
other approaches, the proposed neural network model, which
leverages the benefits of convolutional layers of the CNN and
sparsity of the SAE, demonstrates a good classification accuracy
and fast convergence. The procedure of the proposed method is
summarized in Figure 1. Original EEG data are pre-processed,
and features are extracted for deep learning model. After training
and testing on the model, final classification results are obtained.

The rest of this paper is organized as follows: the proposed
neural network model is presented in section 2. Datasets
and experimental results are provided in section 3. Section 4
summaries the work and discusses the future work.

2. DEEP LEARNING FRAMEWORK

In this section, fundamental principles and essential network
modules are presented. The novel model is also introduced
in detail.

2.1. Convolution Neural Network (CNN)
The features extracted from original EEG data are sent to
the CNN first. The CNN model includes several convolution-
pooling layer pairs and one output layer. Before sending to
the CNN, features are concatenated into image form which
is then convolved with several one-dimensional filters in
convolution layers. After the pooling layer, the data are further
subsampled to images with smaller size. Network weights and
filters in the convolution layers are learned through back-
propagation algorithm.
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FIGURE 1 | Emotion classification procedure in this work.

In our experiments, data extracted from EEG signal are from
four typical frequency bands, which include α (1–7 Hz), β

(8–13 Hz), θ (14–30 Hz), and γ bands (30–45 Hz), using a
Butterworth band-pass filter. After that, data are reformed into
two-dimensional features, such as PCC, which are the input
for CNN. Detailed methods of this procedure is presented in
sections 3.3 and 3.4. It is worth noting that the two-dimensional
features contain not only the frequency but also spatial location
information of each electrode (Tabar and Halici, 2016). To
preserve this information, one-dimensional filtering is applied in
this work instead of two-dimensional filtering.

The CNN structure is relatively straightforward. Input vector
is two-dimensional feature, which can be given by

x =









x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .

xm1 xm2 . . . xmn









, (1)

where m × n is the shape of input vector x. The input
two-dimensional feature is convolved with filters Wk at the
convolution layer, which is given by

Wk =









W11

W21

. . .

Wi1









, (2)

where i is length ofWk and i<m in Equation (1). After the image
convolution, output map is formed and the feature map at the
given layer is obtained by

f (α) = f (Wk × x+ bk), (3)

where Wk ∈ Ri×1 is the weight matrix and bk is the bias value,
k denotes the filter, for k = 1, 2, . . . , n and n denotes the
total number of filtering in convolutional layer. The activation
function is f , which is a rectified linear unit (ReLU) function

in this work. Compared with the traditional neural network
activation functions, such as sigmoid and tanh, ReLU is more
efficient in avoiding gradient disappearance. ReLU function is
defined by

f (α) = ReLU(α) = ln(1+ eα), (4)

where α is defined in Equation (3). At the max-pooling layer, the
feature map is down sampled through the max-pooling function.
Max-pooling is used because it is found that the maximum
value from the selected values of a given feature map could be
effectively extracted using this function.

After the last pooling layer, a fully connected layer follows
in which output data from pooling layer is flattened. After
that, fully connected layers named DNN are followed. In DNN,
the activation function of each layer is also ReLU. For the
output layer, because there are two classification tasks, including
binary classification and multi-class classification, sigmoid and
softmax are used, respectively. For the binary-classification task,
Adadelta is used as an optimizer, and loss is calculated by binary
crossentropy, which is given by

loss = −

N
∑

n= 1

ŷilogyi + (1− ŷi)log(1− ŷi), (5)

where N is number of samples, yi is the value, which is a form of
one-hot code, and ŷi is the output from the output layer where
sigmoid is used. For multi-class classification, such as three-class
classification, Adam is used as an optimizer, and loss is calculated
by categorical crossentropy, which is given by

loss = −

N
∑

n= 1

ŷi1logyi1 + ŷi2logyi2 + ŷi3logyi3, (6)

where N is number of samples, yi1, yi2, yi3 are values of the label,
which is also a form of one-hot code, and ŷi1, ŷi2, and ŷi3 are three
outputs from the output layer where softmax is used. Parameters
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FIGURE 2 | The autoencoder includes one input, one hidden, and one output

layer.

in the model are updated by using back-propagation algorithm.
The error between the desired output and the actual output is
computed and the gradient descent method is applied to update
parameters in order to minimize the error. Functions to update
the weight and bias are shown by

Wk = Wk − η
∂E

∂Wk
, (7)

bk = bk − η
∂E

∂bk
, (8)

where Wk is the weight matrix, bk is the bias, and η represents
the learning rate, E is the error. E is equal to loss in Equations
(5) and (6). The results obtained from this CNN will be used as a
benchmark for the performance comparison in section 3.

2.2. Sparse Autoencoder (SAE)
An autoencoder is a network including one input, one hidden,
and one output layer, which is used to preserve the essence of
the input data as much as possible and remove the potential
noise in an unsupervised manner. The output data are therefore
simplified, and important information from the input data are
retained, which is beneficial for classification.

The structure of autoencoder is shown in Figure 2. The whole
data processing is divided into encoding and decoding phases.
In the encoding phase, the dimension of input data are reduced
in one layer. When the decoded data arrives at the hidden layer,
the dimension of input data reaches the same as the number of
neurons predefined for this layer. The encoding function of the
hidden layer, h, is defined by

h = encoder(x) = f (Wk × x+ bk), (9)

whereWk ∈ R m×n is the weight matrix between input layer and
the next layer. As defined previously in CNN, bk is also the bias

vector, and f represents the output function. The output function
used in this part is ReLU, which is similar to the activation of
the CNN. Differently from the encoding phase, in the decoding
phase, the same number of neurons in output layers should be
set as that of layers in encoding phase, in order to guarantee
the output data has the same dimension as the input data. The
decoding function is shown by

y = decoder(x) = g(Wk × x+ bk), (10)

where Wk ∈ R n×m. After encoding and decoding phases,
the model is trained, and the parameters could be obtained by
minimizing the cost function, which is defined by

min
∑

∣

∣E(xi, yi)
∣

∣ , (11)

where yi is output data and xi is original input data. When the
network is trained, output values are reconstructed, and the shape
of which is equal to that of input data. Parameters of the model
could be updated according to

Wk = Wk − η
∂E(xi, yi)

∂Wk
, (12)

bk = bk − η
∂E(xi, yi)

∂bk
, (13)

where η denotes the learning rate of the network. E is an error in
the SAE. For details of optimizer and E, they are the same as that
in section 2.1 in binary-classification task.

In order to increase the generalization of the network and
improve the training efficiency of the proposed network, a sparse
constraint on the activity of the hidden representations is added
in this work. Sparse constraint helps suppress activation of
neurons in the hidden layer, and useful features can be extracted
by autoencoder. Thus, the cost function in sparse autoencoder is
described by

Jsparse(W, b) = J(W, b)+ β

m
∑

j= 1

KL(ρ||ρ̂j), (14)

where ρ̂j is the average activation of hidden unit j, ρ is the sparsity
level, and β is the weight of the sparsity penalty term. KL is
the Kullback–Leibler divergence, which ensures the sparsity of
neurons in hidden layer. KL is defined by

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ)

1− ρ

1− ρ̂j
, (15)

ρ̂j =
1

m

m
∑

i= 1

fj(x
i), (16)

where m denotes the number of samples at unite j in the hidden
layer, and fj denotes the activation of hidden neuron j.
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2.3. Combined CNN-SAE-DNN
EEG signal is quite sensitive to a variety of factors during
acquisition, such as environmental interference and the
emotional fluctuations of humans. Therefore, EEG signals may
be mixed with a variety of noise, which would undoubtedly
influence the required brain patterns and the experimental
results. In addition, in some experiments, subjects were unable
to perform the emotion collection task successfully and the
experimental results were deviated greatly. In order to overcome
these problems, a deep learning network structure is proposed
in this work. The structure of the proposed network is shown in
Figure 3.

As shown by Figure 3, in the proposed network, the CNN
structure consists of two convolutional layers and one max-
pooling layer. Dropout connects to each convolutional layer.
The SAE consists of one encode, one hidden, and one decode
layer. In the DNN, there are three fully connected layers used
for classification. Given features, such as PCC for input of the
proposed network, the output of max-pooling layer is used as the
input for the SAE. Finally, the output of the SAE is used as the
input of the DNN for classification.

The training procedure is that the CNN with one fully-
connected output layer are trained for some epochs using all
samples and all features, and the output layer is abandoned after
training. Then, by sending features to input the trained CNN, the
output of the max-pooling layer can be obtained. The output is
flattened to one-dimension data, and it is set as the input of SAE.
After unsupervised learning of the SAE, data are reconstructed.
The reconstructed data are divided for training and testing in the
DNN, i.e., the CNN and SAE are trained separately. Thus, before
data are classified in the DNN, training in the CNN and SAE can
be seen as a part of feature extraction. It should be noticed that
the DNN used for finally classification is not the fully-connected
output layer abandoned from the CNN in the first step. The DNN
is never trained before output of the SAE is obtained as input data
for the DNN.

Another CNN with the same parameters and structure as the
whole proposed network is set as comparison in order to test the
performance of the proposed network fairly. When adding more
layers into this CNN, accuracy does not improve and leads to an
overfitting problem. For experiments on this CNN, features are
split directly into 80% for training and the rest for testing.

FIGURE 3 | The proposed network includes the CNN, SAE, and DNN; the CNN and SAE are used for feature extraction, and the DNN is used for classification.
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3. DATASETS AND EXPERIMENTS

In this section, two datasets of DEAP (Koelstra et al., 2012) and
SEED (Zheng and Lu, 2015) are used to evaluate the proposed
network model. Data processing methods and experiment results
are presented.

3.1. Emotional EEG Datasets
The DEAP dataset was collected from 32 subjects when
they were watching 40 sets of 1-min music and video
clips. The age of the subjects ranges between 19 and 37
years old, and half of them were males. During the 40
trials for each subject, various signals were recorded as 40-
channel data, including EEG, electromyograms, breathing zone,
plethysmographs, temperature, and so on (Koelstra et al., 2012).
The EEG signal was recorded at 512 Hz. The data was segmented
into trials of 60 s, and a bandpass frequency filter was applied
after that. After each trial, the participants were asked to do a self-
assessment about their emotional levels, including four different
scales, such as valence, arousal, dominance, and liking.

The EEG signal is downsampled into 128 Hz for the
experiments in this work, where the frequency of EEG data are
from 4.0 to 45.0 Hz. Valence and arousal are the two scales chosen
for this work. Each of them ranges from one (low) to nine (high),
and scales are divided into two parts to construct our binary-
classification tasks. Similarly to the work in Koelstra et al. (2012),
valence is divided into high (ranging from five to nine) and low
valence (range from one to five) according to the valence scale,
and according to the arousal scale, arousal is divided into high
(ranging from five to nine) and low arousal (ranging from one
to five).

The SEED dataset was collected from 15 subjects (sevenmales)
when they were asked to watch 15 film clips. The duration of each
film clip was about 4 min, and each film as easily understood
in order to elicit emotion of 15 subjects participating in the
experiments effectively. There were 15 trials for each subject and
each trial lasted for 305 s consisting of a hint of start for 5 s, a
movie clip for 4 min, a self-assessment for 45 s, and a rest for
15 s. EEG data in SEED dataset was collected from 62 electrodes,
which includes more information than the DEAP dataset. After
collection, EEG data was downsampled to 200 Hz and applied
with a bandpass filter from 0 to 75 Hz.

Similar to the DEAP dataset, in this dataset, the data are
applied with a frequency filter from 4.0 to 45.0 Hz in order
to equitably evaluate the proposed network. Negative, positive,
and neutral are emotion labels in this dataset that represent the
subjects’ emotion states during each experiment. Label value of
negative, positive and neutral is −1, 1, and 0, respectively. Thus,
labels in the SEED dataset include three categories.

3.2. Experiment Setting
In order to test the efficacy of the proposed network, the CNN
model and the proposed network are trained by using data
obtained from two time windows of different lengths; in total,
four groups of experiments were conducted. For experiments
in the CNN used for comparison, after feature extraction of
EEG data, 80% samples are used as training data and the rest

samples are used as test data among all of the data. Average
accuracy is calculated from accuracies of the last 10 epochs in
each experiment. For the proposed network, before training data
and testing data were divided, the CNN and SAE in the proposed
network were trained using features. After that, features are
sent to the input of the CNN, and the output data of SAE is
obtained. The output data after feature extraction were divided
into 80% for training and 20% for testing in the DNN. In this
work, Keras and Tensorflow (Abadi et al., 2016) ere used for the
proposed network implementation. For detailed free parameters
in the proposed network, they are described in sections
3.3 and 3.4, respectively.

3.3. Experiments on the DEAP Dataset
Length of data in the DEAP dataset is 63 s, and the first 3
s are removed in the experiments. Then band pass filtering is
then applied. Among 40 channels, EEG data are contained in
32 channels, which are chosen for experiments. After that, EEG
signals are decomposed into α (1–7 Hz), β (8–13 Hz), θ (14–30
Hz), and γ bands (30–45 Hz). After band pass filtering, signal
windowing on four frequency bands is applied. EEG signals
are divided into short time frames in order to facilitate signal
processing, thus time windows with different overlaps are applied
to EEG data in order to increase samples for training. Two
window sizes, 8 and 12 s, are used for evaluating the proposed
network. From the start of each recorded EEG signal, data are
segmented by a sliding time window with an overlap for each
frequency band. For each trial of 60 s, 14 segments are obtained
using an 8-s time window moving every 4 s, and seven segments
are obtained using a 12-s time window moving every 8 s. Finally,
from a total of 32 participants, 17,920 (14 segments × 40 trials
× 32 participants) and 8,960 (seven segments × 40 trials × 32
participants) samples are obtained using time windows of 8 and
12 s, respectively. Segment labels are the same as the label of the
original sample.

After that, three different features, namely PCC, PCA, and
SC, are extracted to evaluate the proposed network. For PCC-
based features, PCC of data in every two channels are calculated,
and a 32 × 32 PCC matrix is constructed for one sample. For
PCA-based features, dimension of data from each channel is
reduced into 32, and features with the shape of 32 × 32 are
obtained. For SC-based features, four different characteristics
are extracted, including variance, mean, kurtosis, and skewness.
These statistical characteristics of data are calculated together,
and a 32× 4 matrix is finally obtained. In the proposed work, the
features are separately extracted in each of the frequency bands
(α, β , θ , and γ bands). According to the work in Wang et al.
(2018) and other similar researches, data of four frequency bands
are used together in order to get the best results. After data are
processed, for the data obtained using a time window of 8 s, the
shapes of the above three different feature matrixes are 17,920 ×
4 × 32 × 32, 17,920 × 4 × 32 × 32, and 17,920 × 4 × 32 × 4,
respectively. For data obtained using a time window of 12 s, they
are 8,960 × 4 × 32 × 32, 8,960 × 4 × 32 × 32, and 8,960 × 4
× 32 × 4, respectively. Detailed configuration of the proposed
network for DEAP dataset is shown by Figure 4. For SC, input
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FIGURE 4 | Configuration of the proposed network for the DEAP dataset.

shape is 32 × 4. These features are two-dimensional, which are
suitable inputs for the CNN and the proposed network.

As shown in Figure 4, for the DEAP dataset, two
convolutional layers and one max-pooling layer are applied
for the proposed network. Kernel size is set to 3 × 1, and
pooling size is set to 3 × 3. The input data shape is 32 × 32.
The numbers of kernels in convolutional layer are set to 32
and 64, respectively. In the SAE, the numbers of neurons in
encode, hidden, and decode layers are set to 512, 128, and
512, respectively. In the DNN, the numbers of three fully
connected layers are set to 512, 256, and 2, respectively. In the
proposed network, the training epochs, batch size, and learning
rate in the CNN are set to 50, 128, and 0.01. Epoch, batch
size, and learning rate in the SAE are set to 100, 64, and 0.01,
respectively. For those of the DNN, they are set to 100, 128, and
0.01, respectively.

In the proposed network, the training epochs are carried out
in convolutional layers, and the SAE for features extraction,
training, and testing epochs are carried out in the DNN for
classification. Another CNN with the same parameters and
structure as the proposed network served as a baseline method to
evaluate the performance of the proposed network. The epoch,
batch size, and learning rate of this CNN were set to 100, 128,
and 0.01. Parameters in this CNN were the same as that of the
proposed network. The data results of the experiments using a
time window of 8 s are shown by Table 1.

From Table 1, among all features extracted from EEG data,
we can see the PCC feature was demonstrated to be better

TABLE 1 | Average accuracies comparisons of the DEAP dataset using different

features extracted from the data with a length of 8 s between two networks.

Network Labels PCC (%) PCA (%) SC (%)

CNN Valence

Arousal

78.80

82.25

73.32

72.76

71.10

73.04

Proposed network Valence

Arousal

89.49

92.86

75.59

85.87

81.93

82.94

than most of the other features on both the CNN and
the proposed network. The proposed network can reach a
recognition accuracy of 92.86% on arousal by using PCC.
Moreover, recognition accuracies of most experiments on the
proposed network are better than the CNN (3.27–13.11%
improvement). As described previously, this is due to the
inclusion of SAE, which can not only reconstruct data from
convolutional layers and pooling layer but can also extract
features further and make the data easier to be recognized than
the CNN.

Training for loss of SAE is shown in Figure 5; data
reconstruction is achieved when the loss does not change sharply,
and data reconstruction is fast during the training process of
SAE. For other extracted features (except PCC), the recognition
accuracy of each method is better than the work in Zhang et al.
(2016a) (81.21% for valence and 81.26% for arousal).

Figures 6, 7 show the accuracies of the CNN and the
proposed network. Red lines in figures denote the average
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accuracy of the last 10 epochs. It can be seen that the
accuracy of the CNN gradually converges. For the proposed

FIGURE 5 | Change of loss when data are reconstructed in the SAE on the

DEAP dataset.

network, the accuracy converges rapidly at the beginning
of the epoch after fewer than 10 epochs. This is because
features are easy to recognize using output data obtained
from the SAE before they are classified by the DNN. For
features extracted by the PCC and other methods, the
accuracy of a proposed network has a faster convergence
than CNN.

Similarly, results using data obtained from a time window of
12 s are shown in Table 2. From Table 2, we can see that the
accuracy obtained using data with a length of 12 s is lower than

TABLE 2 | Average accuracy comparisons on the DEAP dataset using different

features extracted from data with a length of 12 s between two networks.

Network Labels PCC (%) PCA (%) SC (%)

CNN Valence

Arousal

75.13

76.12

67.23

69.20

66.09

69.48

Proposed network Valence

Arousal

82.16

85.47

76.34

79.11

73.41

75.44

FIGURE 6 | Accuracy comparison of two networks on valence using data with a length of 8 s on the DEAP dataset in which (A) is result of the CNN and (B) the result

of the proposed network.

FIGURE 7 | Accuracy comparison of two networks on arousal using data with a length of 8 s on the DEAP dataset in which (A) is result of the CNN and (B) the result

of the proposed network.
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FIGURE 8 | Accuracy comparison of two networks on valence using data with a length of 12 s on DEAP dataset in which (A) is the result of the CNN and (B) the

result of the proposed network.

FIGURE 9 | Accuracy comparison of two networks on arousal using data with a length of 12 s on the DEAP dataset in which (A) is the result of the CNN and (B) the

result of the proposed network.

that of 8 s. It ismore difficult to collect emotion informationwhen
the stimulation time is increasing. Most studies related to the
classification of EEG data was focused on a short length of time.
In this experiment, higher classification accuracy is achieved on
data of 12 s than that of shorter length in other studies; this is like
the work in Zhang et al. (2017), which exhibits the effectiveness
of the proposed network.

Accuracies for classification on data of 12 s on both CNN
and the proposed network are shown by Figures 8, 9. It
can be found that higher recognition accuracy is obtained
by the proposed network. Moreover, the classification
accuracy of the proposed network has a faster convergence in
each experiment.

The results in this subsection demonstrate that accuracies
can reach 92.86% for data of 8 s and 85.47% for data of 12 s.
When the same feature is used for comparison, the proposed
network is more powerful in classifying the EEG emotion data
than the CNN. Finally, the proposed network has a quicker
convergence speed.

3.4. Experiments on SEED Dataset
There are a total of 675 trials in the SEED dataset. According to
the work in Zheng and Lu (2015), the first sample of each subject
was chosen, and a total of 225 samples were then obtained. Due
to the different data length of each channel, the 80 s data segment
was chosen to reduce the influence of unstable signals at the
beginning and end of the whole signal; finally, data with the shape
of 16,000 × 225 × 62 were obtained. Moreover, the data were
processed as the same way as in the DEAP dataset: each sample
was divided into different frames with different time windows.
Two time windows, 8 and 12 s, were also used in the SEED
dataset. A total of 19 and nine segments were obtained separately
from data using a time window of 8 s moving every 4 s and a time
window of 12 s moving every 8 s for each sample, respectively.
Thus, in a total of 225 trials, 4,275 (19 segments × 15 trials × 15
participants) and 2,025 (9 segments× 15 trials× 15 participants)
samples were obtained, respectively.

The detailed configuration of the proposed network for the
SEED dataset is shown in Figure 10. The amount of data
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FIGURE 10 | Configuration of the proposed network for the SEED dataset.

TABLE 3 | Average accuracy comparisons on SEED dataset using different

features extracted from data with a length of 8 s between two networks.

Network Data

length

(s)

PCC (%) PCA (%) SC (%)

CNN 8

12

93.71

91.53

77.66

70.59

83.32

75.48

Proposed network 8

12

96.77

94.62

88.90

70.62

87.73

79.09

extracted from this dataset is much less than from the DEAP
dataset, and the two classifiers used on this dataset are thus
a little different. For PCC, input data are 62 × 62, and the
numbers of kernels are separately set to eight and 16 in two
convolutional layers. In the SAE and DNN, the number of each
layer is set the same as that on the DEAP dataset except that
the number of the output layer is set to three because this is
a three-classification task on a SEED dataset. After training in
the CNN and SAE for feature extraction, the DNN is used for
the final classification. Similarly to the DEAP dataset, the same
features are extracted for the SEED dataset. For PCA and SC, the
input shape is 62 × 62 and 62 × 4, respectively. For the CNN
used for comparison, parameters are also set as the same as the
proposed network.

The experiment results of data obtained from time windows
of 8 and 12 s are shown in Table 3. The accuracy under

FIGURE 11 | Change of loss when data are reconstructed by the SAE on the

SEED dataset.

this dataset is higher than the DEAP dataset. The highest
average accuracy could reach 96.77%, which is better than the
work in Wang et al. (2018), 90.2%. For the data obtained
from time window of 12 s, the best accuracy could reach
94.62%, which shows that PCC-based features exhibit a better
performance than others. The reconstruction of data by the SAE
due to the change in loss on the SEED dataset is shown by
Figure 11. Loss drops immediately following several epochs, i.e.,
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the data reconstruction can be achieved quickly when the SAE is
being trained.

Accuracies under different features extracted from data of
8 and 12 s are depicted in Figures 12, 13. It is shown that
recognition accuracies of the proposed network are better
than the CNN for almost all features, especially the PCC-
based features. The proposed network can achieve faster
convergence on classification accuracy than the CNN on the
SEED dataset. Experiments on these two datasets shows that
the proposed network performs better than original the CNN in
emotion recognition.

Moreover, EEG data divided by a fixed time window with
different overlaps on the SEED dataset are tested. Besides a time
window of 8 s with an overlap of 4 s, overlaps of 6 and 8 s are
also tested. Due to the highest accuracy, PCC-based features are
used in these experiments, and classification results are displayed
in Figure 14.

As seen in Figure 14, recognition accuracy could reach
the highest value while the overlap is 4 s. The shorter the

overlap is, the more similar the neighboring data segments are,
i.e., features could be learned better when similar information
is included in each trial. However, when the overlap is
too short, the number of data segments increases, which
requires longer time for training. In this experiment, data
with a length of 8 s and overlap of 4 s could achieve the
best result.

In a short summary, the best recognition could reach
96.77% on the three-class classification. The proposed network
is demonstrates to be more powerful in classifying EEG
emotion data than the CNN on the SEED dataset. For the
data with the same length, length of overlap has an impact
on recognition accuracy where 4-s overlap obtained the best
performance. In addition to this, the proposed network is
also compared with other research works using the DEAP
and SEED datasets, and the results can be seen in Table 4.
For complexity analysis, the number of parameters are 7.55 ×

105 and 7.50 × 105 for the networks used for DEAP and
SEED, respectively.

FIGURE 12 | Accuracy comparison of two networks using data with length of 8 s on the SEED dataset in which (A) is the result of the CNN and (B) the result of the

proposed network.

FIGURE 13 | Accuracy comparison of two networks using data with a length of 12 s on the SEED dataset in which (A) is the result of the CNN and (B) the result of

the proposed network.
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FIGURE 14 | Accuracy comparison of two networks using features extracted from different lengths of overlap on the SEED dataset in which (A) is the result of the

CNN and (B) the result of the proposed network.

Table 4 shows the results of García et al. (2016) achieved
88.3% on valence and 90.6% on arousal. However, data used for
experiments are limited, and the classification model is a better
fit for classifying small amounts of data with high dimensions.
The approach of Koelstra et al. (2012) used a Gaussian Bayes
classifier, and experiment results proved that EEG signals are
effective in emotion recognition of the DEAP dataset. The recent
study (Tripathi et al., 2017) used extracted data for classification,
and better accuracy results were obtained by using the CNN,
where the classification accuracy of valence and arousal is 81.4
and 73.4%, respectively. The approaches of García et al. (2016)
and Wang et al. (2018) used DE-based features and dynamical
graph convolutional neural networks, and the accuracy achieved
93.7%. In the approach of Wang et al. (2019), BLSTM and other
machine learning classifiers, such as SVM and LR were used
for emotion recognition. BLSTM achieved the best accuracy of
94.96% on the SEED dataset, which is better than SVM and LR. In
the approach of Soroush et al. (2019), phase space dynamics were
introduced to classify emotions, achieving 87.42% on arousal
and 84.59% on valence, respectively. A sparse discriminative
ensemble was used for feature extraction inUllah et al. (2019) and
achieved 82.81% on valence and 74.53% on arousal, respectively.
In this work, both the DEAP and SEED datasets are used
for experiments, where accuracies achieve 89.49% and 92.86%
in valence and arousal on the DEAP dataset, respectively,
and 96.77% on the SEED dataset. Results demonstrate that
the proposed network is more powerful than the CNN and
other approaches.

4. DISCUSSION AND CONCLUSION

There are some points worth discussing. First, the proposed
model can be trained using an end-to-end method, which
is different from this work. The end-to-end training
method was tested, and it obtained a similar performance.
However, the training model can be further investigated

TABLE 4 | Performance comparisons with other approaches.

Classification methods DEAP dataset SEED

dataset

(%)
Valence

(%)

Arousal

(%)

CNN + statistical methods (Tripathi et al., 2017) 81.4 73.4 /

Gaussian Bayes (Koelstra et al., 2012) 57.6 62.0 /

Deep SAE + RSP (Zhang et al., 2017) 73.1 80.8 /

BDGLS + DE (Wang et al., 2018) / / 93.7

DGCNN + DE (Zhang et al., 2016) / / 90.4

GP + LVM (García et al., 2016) 88.3 90.6 /

BLSTM + DE (Wang et al., 2019) / / 94.96

Physe Space Dynamics (Soroush et al., 2019) 84.6 87.4 /

SDEL + PCA (Ullah et al., 2019) 82.8 74.5 /

This work [PCC] 89.49 92.86 96.77

and optimized in a future work. Second, labels are used
in feature extraction. It should be noted that many feature
extraction algorithms use labels such Relief and ReliefF (Kira
and Rendell, 1992), where feature weights are calculated
according to samples in the same and different classes.
Label information has been used in the feature extraction
process (Bohgaki et al., 2014; Zhang et al., 2016b). Third,
constructing an autoencoder-like structure is another method
of emotion recognition, and this can be investigated in a
future work.

In this work, a new deep network is proposed to classify EEG
signals for emotion recognition. The CNN and the proposed
network are applied for two different datasets, i.e., the DEAP
and SEED datasets. In the proposed network, the CNN and
SAE are trained for feature extraction in which, by combining
supervised learning of the CNN and unsupervised learning of
the SAE, more useful features are extracted. Experimental results
show that the proposed network achieves a better performance
than the CNN and other approaches. It also shows that when
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embedding an SAE structure into a CNN, the accuracy is better
compared to a CNN with the same parameters and structure as
the proposed network. In the proposed network, three different
features are extracted for classifications. Results showed that,
by using PCC-based features, the average recognition accuracy
of the proposed network can reach 89.49% on valence and
92.86% on arousal for DEAP and 96.77% for SEED, where
the proposed network has a faster convergence speed. In
addition, overlap length also affects the performance, and results
under the SEED dataset showed that data of 8 s with an
overlap of 4 s can achieve the best result. It is also found
that the data processed by the SAE is easily classified in the
proposed network, which indicates that the SAE is effective in
extracting features from EEG data. Future works will consider
using the SAE and other classifiers to further improve the
classification performance.
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