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Animals rely on internal motivational states to make decisions. The role of motivational
salience in decision making is in early stages of mathematical understanding. Here,
we propose a reinforcement learning framework that relies on neural networks to learn
optimal ongoing behavior for dynamically changing motivation values. First, we show
that neural networks implementing Q-learning with motivational salience can navigate
in environment with dynamic rewards without adjustments in synaptic strengths when
the needs of an agent shift. In this setting, our networks may display elements of
addictive behaviors. Second, we use a similar framework in hierarchical manager-agent
system to implement a reinforcement learning algorithm with motivation that both infers
motivational states and behaves. Finally, we show that, when trained in the Pavlovian
conditioning setting, the responses of the neurons in our model resemble previously
published neuronal recordings in the ventral pallidum, a basal ganglia structure involved
in motivated behaviors. We conclude that motivation allows Q-learning networks to
quickly adapt their behavior to conditions when expected reward is modulated by
agent’s dynamic needs. Our approach addresses the algorithmic rationale of motivation
and makes a step toward better interpretability of behavioral data via inference of
motivational dynamics in the brain.

Keywords: machine learning, motivational salience, reinforcement learning, artificial intelligence, addiction,
hierarchical reinforcement learning

INTRODUCTION

Motivational salience is a cognitive process that motivates, or propels, an individual’s behavior
toward or away from a particular object, event, or outcome (Zhang et al., 2009). Such process
describes an a priori defined “wanting” of an outcome. It regulates behaviors toward particular
goals, adjusts the amounts of time and energy that an individual is willing to expend in pursuit of
each desired outcome, and sets the acceptable levels of related risk (Zhang et al., 2009; Berridge,
2012). Motivational salience, or, as we will call it here for brevity, motivation, describes animals’
a priori desire or aversion to receive a particular outcome, which should be contrasted with
liking or disliking of an outcome that is experienced a posteriori. Mathematically, motivation
can be viewed as a subjective modulation of the expected value of reward, determined before the
reward is received.

Behavior-based models of motivation emerged as a part of the broader effort to understand
reward-guided behaviors in humans and other animals [reviewed by Miller (2008)]. Motivational
levels in these models were described as the subjects’ drives toward certain outcomes (e.g., appetite
and thirst). To estimate the relative dynamics of different drives (not observable in experiment)
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psychologists offered human or animal subjects to
approach/avoid different combinations of stimuli and titrated
responses based on the valency/strength of these inputs
(Sears and Hovland, 1941; Miller et al., 1943). Such “conflict”
experiments resulted in detailed models of motivational
dynamics. Motivational drives can therefore be viewed as
temporarily varying representations of motivational salience.

Neuronal correlates of motivation-related variables were
discovered in the ventral pallidum (VP). VP is a part of
the basal ganglia that receives the inputs from a number of
mesocorticolimbic areas (Kelley et al., 1982; Reep and Winans,
1982; Fuller et al., 1987; Grove, 1988; Martinez-Murillo et al.,
1988; Heimer et al., 1991; Maslowski-Cobuzzi and Napier, 1994;
Maurice et al., 1997; Berridge, 2012). As the major output of
the ventral basal ganglia (Saper and Loewy, 1980; Heimer et al.,
1987; Mogenson and Yang, 1991; Leung and Balleine, 2013),
it sends substantial projections to the lateral habenula (LHb),
dorsal and medial raphe nuclei (DR/MR), ventral tegmental
area (VTA), substantia nigra pars compacta and pars reticulata
(SNc and SNr), and mediodorsal thalamus (Haber and Knutson,
2010; Richard et al., 2016). Thus, the VP is a hub linking areas
involved in reward processing with motor output regions, and
is anatomically poised to mediate motivated behaviors. Indeed,
lesions in the VP induce aphagia and adipsia, the lack of
motivation to eat and drink, respectively (Morgane, 1961; Stellar
et al., 1979; Humphries and Prescott, 2010), and anhedonia, an
inability to feel pleasure (Berridge, 1996). An intact VP is also
necessary for drug seeking behaviors (McFarland and Kalivas,
2001; Harvey et al., 2002; Miller et al., 2006; Vijayaraghavan
et al., 2008) and for active avoidance and aversive learning
(Ishihara et al., 1991; Page et al., 1991; Root et al., 2013). Human
brain imaging studies indicate that the VP activities correlate
with motivational vigor (Pessiglione et al., 2007; Root, 2013;
Singh-Bains et al., 2016). In vivo single unit recording studies
in rodents and monkeys indicate that the VP neuron firing
correlates with motivational salience (Berridge and Schulkin,
1989; Tindell et al., 2004; Smith and Berridge, 2007; Tachibana
and Hikosaka, 2012; Jiang et al., 2015; Richard et al., 2016). In the
experiments in which sodium starvation was introduced in rats,
the responses of the VP neurons to the conditioned stimulus (CS)
associated with normally aversive sodium stimulus have changed
to match those to the CS associated with normally attractive
sucrose (Berridge, 2012). These observations suggest that the
VP is critically involved in “positive motivation,” including the
“liking” (the pleasurable impact of reward consumption) and the
“wanting” (the attractiveness of a stimuli or incentive salience)
aspects of behaviors (Berridge and Schulkin, 1989). It may also
be involved in “negative motivation”, the drive to avoid aversive
stimuli. In this study, we investigated the circuit mechanism of
representation of motivational information in VP networks.

Computational models for motivated behaviors are best
represented by reinforcement learning (RL) models. RL is the area
of machine learning and artificial intelligence that deals with the
strategies that rational agents can employ while navigating in
an environment to maximize future rewards (Sutton and Barto,
1998; Zhang et al., 2009). As such, RL models are successful
in predicting and explaining adaptive choice behaviors in both

human and animals, and have been successful in predicting
the causal changes in neuronal responses (Schultz et al., 1997;
Schultz, 1998; Dayan and Abbott, 2001; Lee et al., 2012). The
underlying RL theory has been widely adapted as a framework
for both interpreting experimental data and designing new
experiments (Schultz, 2007; Lee et al., 2012). Specifically, it is
successful in explaining how the brain adjusts the estimates
of future rewards and updates these expectations based on
experience (Schultz et al., 1997; Schultz, 1998; Dayan and Abbott,
2001; Lee et al., 2012).

Motivation has been approached in RL from multiple
angles. In the research on intrinsic motivation the agents were
additionally rewarded for exercising “curiosity” to try new
strategies useful for prospective goals (Chentanez et al., 2005;
Singh et al., 2010; Kulkarni et al., 2016). In multi-objective
RL (MORL), motivations affected the available actions favoring
particular behaviors to prioritize certain objectives [reviewed
in Liu et al. (2014)]. In both intrinsic motivation and MORL,
the concepts of motivation were introduced to achieve certain
computational flexibility with no focus on building a plausible
model of the human/animal decision-making.

RL models are mostly concerned with the learning aspect
of behavior. However, fluctuations in physiological states can
profoundly affect behavior. Recent suggestions include using
time-varying multiobjective reward functions in biological
context (Koulakov, 2018; Palm and Schwenker, 2019). Modeling
such factors is thus an important goal in computational
neuroscience and is in the early stages of mathematical
description (Berridge, 2012; Berridge and Robinson, 2016). In
this study, we develop a computational network model of
motivational salience in the context of RL. Since RL relies on
future rewards to generate behavior, and these rewards are
modulated by motivational states, complete understanding of
complex behavioral choices is impossible without incorporating
motivation. We compare the results of our model to the
previously published mouse data obtained in the classical
conditioning paradigm (Stephenson-Jones et al., 2020), in which
recordings from the VP neurons are available. We show that
our motivated RL model both learns to correctly predict
motivation-dependent rewards/punishment and generates neural
responses consistent with the responses of the VP neurons. In
particular, we show that, similarly to real neurons, RL neural
networks contain two oppositely-tuned populations of neurons
responsive to rewards and punishment. In the model, these
two populations form a recurrent network that helps maintain
motivation-dependent variables when inputs are missing. Our
RL-based model is both consistent with previously published
experimental data and suggests a hypothesis for the structure
of connectivity in the VP networks. We show that networks
with motivation can adapt their behavior to changes in reward
functions without relearning network weights and can do so
without prespecified goals. We demonstrate how our network
model can form the basis of the hierarchical RL system. Overall,
we argue that neural networks implementing motivational
salience in the brain may enable compact representation of
dynamic behaviors accommodating to the shifts in the needs
of agents.
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RESULTS

Berridge’s Model of Motivation in
Reinforcement Learning Framework
The goal of this work is to analyze the mathematical/algorithmic
implications of motivational salience, and to explore its neuronal
substrates. Motivation can be defined as a need-dependent
modulation of the expected subjective value of an anticipated
reward, depending on an animal’s intrinsic conditions (Zhang
et al., 2009). Thus, rats, which are normally repelled by high levels
of salt in their food, may become attracted to a salt-containing
solution following the reduced-sodium diet (Berridge, 2012). To
model this observation, the subjective value of reward r̃ may be
considered as not being absolute, but rather modulated by an
internal variable reflecting the level of motivation (Berridge and
Schulkin, 1989), which we will call here µ. The subjective value of
the reward r̃ based on the motivation µ and the physical reward
magnitude r can be expressed by equation r̃ = r̃(r, µ).

In the simplest example, the subjective value of a reward
associated with salt may be given by r̃ = µ · r. Baseline
motivation toward salt can be defined by µ = −1, leading to the
negative subjective reward value of r̃ = −r ≤ 0. Thus, normally,
the presence of salt in the rats’ diet is undesired. In the reduced-
sodium condition, the motivation is changed to µ = +1 leading
to the positive subjective reward value of r̃ = +r ≥ 0. Thus
salt-containing diet becomes attractive. In reality, the function
r̃(...) defining the impact of motivation on a subjective value of
reward may be more complex (Zhang et al., 2009) including the
dependence on multiple factors described by a motivation vector
Eµ. Individual components of this vector describe various needs
experienced by the organism, such as thirst (e.g., µ1), hunger
(µ2), etc. The scalar subjective value r̃ of the reward includes all
physical rewards and relies on vectors of physical reward amounts
Er and an agent’s motivations Eµ:

r̃ = r̃(Er, Eµ) (1)

In this work, we explore how motivation vector Eµ affects
behaviors through modulating physical reward values Er. We also
investigate brain circuits that may implement such computations.

Our model is based on the Q-learning (Watkins and Dayan,
1992) – a fundamental RL algorithm for choosing optimal
strategies to maximize rewards (Sutton and Barto, 1998). In the
Q-learning, an agent estimates the sum of future rewards (Q-
function), which depends on the agent’s current state Est , such
as position in the environment, and potential choices of action
at . The agent picks an action at to maximize the Q-function. If
motivation is taken into account, the expected subjective values
of the reward r̃t change with the motivational vector Eµt , and the
Q-function depends on three parameters:

Q(Est, at, Eµt) = E

[
∞∑

τ=0

r̃(Est+τ, Eµt+τ|at)γ
τ

]
(2)

Here 0 < γ ≤ 1 is the discounting factor that balances the
preference between short-term and long-term rewards. To

learn motivation-dependent Q-functions, agents in our model
use the Time Difference (TD) method (Sutton and Barto,
1998) as follows. When perfectly learned, a Q-function satisfies
the recursive relationship known as the Bellman equation
(Sutton and Barto, 1998):

Q(Est, at, Eµt) = r̃(Est, Eµt)+ γ max
at+1

Q(Est+1, at+1, Eµt+1) (3)

For incompletely learned Q-functions, the equation above is not
exact. To update the values of the Q-function, agents compute the
discrepancy between the sides of the Bellman equation, termed
the TD error:

δ = r̃(Est, Eµt)+ γ max
at+1

Q(Est+1, at+1, Eµt+1)− Q(Est, at, Eµt) (4)

Learning motivation-dependent Q-functions may become
computationally costly: in addition to sampling possible states
Est and actions at , agents with motivation have to compute the
Q-function values for a variety of motivations Eµt . To avoid
separate learning of the Q-function values for each possible
combination of the input parameters, we approximate the
Q-functions with artificial neural networks and use the TD errors
as a training signal.

In our model, we adjust the conventional TD learning
approaches to the tasks where future rewards are modulated
by motivation. The new set of variables Eµ reflecting various
components of motivation evolves in accordance with its own
rules. Below we use our model to evaluate the behavioral
implications of motivational modulation of rewards, and to
infer motivational state/dynamics of behaving agents. We further
show consistency of our model with neuronal activations
recorded in the ventral pallidum (VP) in our previous work
(Stephenson-Jones et al., 2020).

Four Demands Task
To introduce networks with motivation, we considered the
example of Four Demands task (Figure 1). An agent navigates in
a 6 × 6 square grid world separated into four 3 × 3 subdivisions
(rooms) (Figure 1A). The environment was inspired by the
work of Sutton et al. (1999); however, the task is different, as
described below.

In each room, the agent receives one and only one type
of reward rn(xt, yt), where n = 1..4 (Figure 1B). The value of
each reward component equals to 1 in a corresponding room
(Figure 1B, red color), and to 0 elsewhere (Figure 1B, white
color). These rewards can be viewed as four different resources,
such as water, food; an ability to sleep, and play a game.
Motivation is described in this system by a 4D vector Eµ defining
affinity of the agent for each of these resources. When the agent
enters a room number n, the agent receives the reward defined
by its subjective value r̃ = (Eµ · Er) = µn and the corresponding
component of the motivation vector is reset to zero µn → 0
(Figure 1C) assuming that the agent is sated w.r.t the current
reward type, and that such satiation happens fast compared
to building up motivation toward a reward type. At the same
time, motivations in the other three rooms are increased by one,
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FIGURE 1 | The Four Demands task. (A) An agent inhabits a 6 × 6
environment separated into four rooms. Each room is associated with its own
reward and motivation (water, food, sleep, and play). (B) Components of
physical reward values (color coded: red = 1, white = 0). The subjective
reward value is a scalar product between the motivation vector and the
physical reward value vector as illustrated. (C) Possible components of the 4D
motivation vector as functions of time. Arrows indicate some of the transitions
between the rooms. When the agent enters a room, its motivation is reset to
zero. When the agent does not receive a non-zero perceived reward available
in the room, the motivation increases by 1 at each time step until saturation at
θ. (D–F) Potential strategies in our model: one-room binge (D), two-room
binge (E), and migration (F).

i.e., µothers → µothers + 1, which reflects additional “wanting”
of the resources induced by the “growing appetite.” After a
prolonged period of building up appetite, the motivation toward a
resource saturates at a fixed maximum value of θ, which becomes
a parameter of this model. Behavior of the agent is determined
by this parameter. Such a model is consistent with previous
studies suggesting that, in the absence of stimuli, corresponding
drives increase at idiosyncratic paces until eventual saturation
(Miller, 2008).

What are the potential behaviors of the agent? Assume, for
simplicity, that the maximum allowed motivation θ is large
and does not influence our results. If the agent always stays
in the same room (one-room binge strategy, Figure 1D), the
subjective values of the rewards received by the agent consist
of a sequence of zeros and ones, i.e., 0, 1, 0, 1, . . . This is

because, in our model, after the motivation is set to zero, it is
increased by one on the next time step. The average subjective
value of the reward rate 〈r̃〉 = E

[
r̃
]

corresponding to this strategy
is therefore 〈r̃〉one−room−binge = 1/2. The average subjective value
of the reward rate can be increased, if the agent jumps from
room to room at each time step. This is what we call a two-
room binge strategy (Figure 1E). In this case, the sequence of
subjective values of the rewards received by the agent is described
by the sequence of ones, and the average subjective reward rate is
〈r̃〉two−room−binge = 1. Two-room binging therefore outperforms
the one-room binge strategy. Finally, the agent can migrate by
moving in a cycle through all four rooms (Figure 1F). In this
case, the agent spends three steps in each room and the overall
period of migration is 12 steps. During three steps spent in a
single room, an agent receives the rewards subjectively valued
as 9 (the agent left this room nine steps ago), 0, and 1. The
average subjective reward rate per iteration is 〈r̃〉migration = 10/3.
Thus, migration strategy is more beneficial for the agent than
both of the binging strategies. Migration, however, is affected
by the maximum allowed motivation value θ. When θ < 9,
the benefits of migration strategy are reduced. For θ = 1, for
example, migration yields the subjective reward rate of just
〈r̃〉migration |θ=1 = 2/3, which is below the yield of the two-room
binging. Thus, our model is expected to display various behaviors
depending on θ .

We trained a simple feedforward neural network (Figure 2A)
to generate behaviors using the state vector and the 4D vector of
motivations as inputs. The network computed the Q-values for
five possible actions (up, down, left, right, stay) using TD method
and backpropagating the TD error δ (the details are provided in
the “Materials and Methods” section). The binary 36D (6 × 6)
one-hot state vector represented the agent’s position (“1000. . .”
for the leftmost square in the top row, “0100. . .” for the second
square in the top row, etc.). We trained the network 41 times for
different values of the maximum allowed motivation value θ. As
expected, the behavior displayed by the network depended on this
parameter. The phase diagram of the agent’s behaviors (Figure 2B
blue circles) shows that the agent has successfully discovered
the migration and two-room binge strategies for high and low
values of θ correspondingly (blue circles indicating the agents’
subjective reward rates match the reward rates of corresponding
optimal strategies, indicated with the dashed lines in Figure 2B.
For intermediate values of θ (1.7 < θ < 3), the network has
discovered a delayed two-room binging strategy, in which it spent
an extra step in one of the rooms.

Does knowing motivation help learning optimal strategies? To
address this question, we performed a similar set of simulations,
except the motivation input to the network was replaced with
zeros (Eµ∗ = 0). Although the information about the “true”
motivation vector Eµ was not available to the agent, the dynamics
of the “true” vector Eµ was computed in the simulation as
described before and affected the subjective reward values r̃ =
(Eµ · Er) 6= (Eµ∗ · Er). This way, the rewards in this simulation
matched the rewards in the previous simulation, corresponding
to the same optimal strategies. Although the input to such
“non-motivated” networks was sufficient to recover the optimal
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FIGURE 2 | (A) The architecture of the 3-layer fully connected network
computing the Q-function Q(a|Es, Eµ). (B) The average subjective reward rate
received by the network trained with maximum allowed motivation value θ

(blue circles – motivation is provided as an input to the network; yellow –
motivation affects the reward as usual, but is not provided to the network;
orange – random walk). The regions of θ corresponding to different optimal
strategies, learned by the motivated agent, are shown by different gray areas
in the plot. These areas represent the phase diagram of the optimal behaviors
displayed by the motivated agent. The dashed lines indicate the expected
subjective reward values associated with these strategies: top – migration;
middle – two-room delay binge; bottom – two-room binge. For small/large
values of θ, the motivated network displays two-room binge/migration
behaviors, respectively. Under the same conditions, the non-motivated
network mostly displays two-room binge behavior. (C) A single network
trained in minibatches for various values of θ, which in this case was a
separate, 41st input to the network. Different curves correspond to different
values of θ. For θ = 4..10/θ = 2, 3/θ = 1, the model exhibits the
migration/two-room delay binge/two-room binge strategies depicted in
(E–G) respectively (dot with the circle denotes staying at the same location
one extra step). (D) For the novel input θ = 15 that was not used in training,
the model displays a new strategy, delayed migration.

strategies, in most of the simulations, the agents exercised two-
room binging (Figure 2B, yellow circles). The migration strategy,
despite being optimal in most simulations, was successfully
learned only by a single agent out of 41. Moreover, the
performance of the non-motivated networks was worse than that
of the random walk (Figure 2B, orange circles) in 13 simulations
out of 41, corresponding to large values of θ.

Such relative success of the random walk strategy at the large
values of θ can be explained by the fact that eventually random
walk brings an agent to each of the rooms. When the maximum
allowed motivation θ is large, regardless of how long an agent
did not visit a room, the motivation in it continues to increase
by one at every time step allowing a random walk agent to
eventually harvest a subjectively large reward. At the same time,
non-motivated agents learned the two-room binging strategy: it is
an easy strategy to learn, as it requires considering only one step
ahead, and minimizes the TD error (the network can perfectly
predict the reward on the next step). More optimal strategies,
such as the migration strategy, require considering many steps
ahead thus necessitating an association between current action
and reward in distant future, known as the temporal credit
assignment problem. In motivated agents, motivation provides
explicit cues about the expected subjective reward value dynamics
and thus may help solving the temporal credit assignment
problem. At the same time, non-motivated agents do not have
access to the cues about the subjective reward value dynamics
and fall short of building long-range associations between their
actions and resulting reward. Therefore, non-motivated agents
may only learn the few-step strategies, such as the two-room
binging, where they can easily predict the next reward. We
therefore conclude that motivation may facilitate learning by
providing additional cues for temporal credit assignment in
the reward dynamics. Overall, we suggest that motivation is
helpful in generating prolonged multi-step behaviors, such as the
migration strategy.

In the previously described example, different networks
were trained for each value of motivation maximum θ. Can
a single network learn all of these strategies within a fixed
set of weights, and switch its behaviors when parameter
θ changes? To address this question, we trained a single
network to behave in trials with different maximum values
of motivation, θ. To indicate to the network the current
value of θ in each trial, we explicitly provided the network
with an additional input, indicating the value of θ (see
section “Materials and Methods” for more details). We
show (Figure 2C) that the network has indeed learned the
optimal policies, corresponding to each motivational schedule
(Figures 2E–G). Moreover, it can switch between different
behavioral strategies immediately without the need to relearn
them, based on the external input. We therefore propose
that motivation may constitute a mechanism allowing neural
networks to switch between different behaviors, satisfying an
agent’s changing requirements, without the need for changes in
synaptic strengths.

In previous work, conceptualization of incentive motivational
salience stated that the value of cues can be dynamically
modulated in novel motivational states without the opportunity
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for new learning about cues or rewards in that new state (Zhang
et al., 2009). To observe whether our network model accounts
for this finding, we have evaluated our network (trained for
the maximum allowed motivation values of 1–10) with the
new maximum motivation value of 15. The network model has
not encountered such motivation value during training, and
has to extrapolate its knowledge of the environment/motivation
dynamics to behave optimally in such setting. We found that
the network has executed the new “delayed migration” strategy
where it went in circles through all four rooms with an extra
“stop” for two iterations in one of the rooms (Figure 2D).
Such strategy yielded the average subjective reward value of
47/14 = 3.36 exceeding the yield of the usual “migration” strategy
(10/3 = 3.33) described previously. Thus, our deep network
model learned to generalize the relationship between motivation
and reward, and was able to extrapolate its behavior to a
novel motivational context (zero-shot learning) via developing
a new strategy – in line with the previous conceptualization of
motivational salience.

Overall, we suggest that neural networks with motivation
are suited to quickly learn a compact representation
of various behaviors and have the flexibility to switch
between them quickly when the needs of an agent shift.
Such changes in behavior can be accomplished without
relearning the synaptic strengths. This feature gives neural
networks with motivation an advantage compared to
standard RL models which have to relearn behaviors when
agent’s needs change.

Four Demands Network With “Addiction”
We then tested the behavior of our network in the Four
Demands task in which one of the rooms and its associated
motivation is different from others. We show below that agents
controlled by such a network learns to displays some elements
of addictive behavior. Smoking cessation leads to a short-term
increase in the number of cravings per day, followed by a
longer-term reduction in craving rate (O’Connell et al., 1998).
To mimic this feature and to model the nicotine addiction in
our network, we changed the schedule of motivation dynamics
in one of the rooms (Figure 3A). In this example, in the first
three rooms, the motivation values were limited by θ1..3 = 1.
In the fourth room – the “smoking” room – the motivation
could increase to its maximum value of θ4 = 10. We did
not include the gradual reduction in the rate of cravings due
to smoking “cessation” into our model for simplicity. After
training, the agent spent most of the time in the close proximity
of the “smoking” room periodically entering it to receive a
relatively high level of reward (Figures 3B–F). Overall, the
behavior of the agent depended on the value of the discounting
factor γ defining the relative values of future rewards. In cases
of the small γ, the agent did not wait until its motivation
for “smoking” reached its maximum value of µ4 = 10, and
immediately reentered the “smoking” room after leaving it. This
behavior can be explained by the fact that corresponding small
values of the discounting factor γ = 0.5 devalued the rewards
in distant future, therefore making it unreasonable for the agent
to wait for high values of µ4. For larger γ, the agent performed

FIGURE 3 | Addiction model. (A) Motivation schedule for model of addiction.
In the first three rooms, motivations are allowed to grow up to the value of
θ = 1. In the fourth (“smoking”) room, the motivation may grow to the value of
θ = 10. (B–F) Strategies learned by the network for various values of the
discounting factor γ, defining the relative values of the future rewards.
Intermediate value of γ = 0.9 yields different behaviors (D,E).

longer excursions outside the ‘smoking’ room. The resulting
variability of the binging strategies (Figure 3) goes in line with
individual differences in craving rates and behaviors reported
in smoking addiction literature (Ikard et al., 1969; McKennell,
1970; Shiffman, 1993). Overall, the networks with motivational
salience can display a variety of behavioral features for different
motivation dynamics, such as addiction. These features emerge
from varying the dynamics of motivation as a function of
time. We suggest that RL models of motivation, such as the
one described above, may be useful in modeling real-world
behaviors, including potential explanations for the mechanisms
of addiction.

Transport Network
Our next goal is to present an example of a somewhat
more complex task, in which motivational salience can help
formulate hierarchical behavior. We now consider an example
of an agent navigating in a system of roads connecting N
cities (Figures 4A–D). The goal of the agent is to visit a
certain subset of the cities, referred to as targets. The visiting
order is not important, but the agent is supposed to utilize
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FIGURE 4 | The transport network. An agent (black dot) navigates in a
network of roads connecting the cities – each associated with its own binary
motivation. The subjective reward value is equal to the value of the motivation
vector Eµ at the position of the agent, less the distance traveled. When the
agent visits a city with non-zero motivation (red circle), the motivation toward
this city is reset to zero. The task continues until Eµ = 0. (A–D) The steps of
the agent through the network (black arrows), the corresponding motivation
vectors, and subjective reward values.

the route of minimal length. This problem is similar to the
vehicle routing problem (Dantzig and Ramser, 1959), although
we do not require the agent to return to the city of origin
for simplicity.

We trained a neural network that receives the agent’s state
(position) and the motivation vector as inputs and computes
the Q-values for all available actions (connected cities) for the
given position (Figure 5A). In every city, the agent receives
a reward equal to the value of the motivation vector at the
position of the agent. The network is also punished at every
link between cities in proportion to the length of this link.
To model a real-life agent that balances reward maximization
and policy complexity (Parush et al., 2011), we approximated
the Q-values using a simple one-hidden-layer neural network,
and selected actions using softmax policy (Parush et al., 2011)
over these Q-values. We trained the agent’s network using
TD method by backpropagating reward prediction error (δ)
signal. Trained neural networks produced behaviors that closely
match the shortest path solution (Figure 5B). Examples of
the trained agent behaviors are shown in Figures 5B–E. In
82% of the test examples, the agent traveled the shortest
path (Figures 5B,C). In the remaining 18% of cases, the
path lengths of the trained agents were close to the shortest
path solution (Figures 5D,E, 6B). The path traveled by an
agent exceeded the shortest path only by 3% on average.
Overall, our findings suggest that networks with motivation
can solve fairly complex navigation problems. In doing so, the
agent is not provided with any particular target, but, instead,
learns to select the next target based on the balance between
attractiveness of different goals measured by the closeness to the
shortest path solution.

FIGURE 5 | Training a neural network to find the shortest route to visit a
subset of target cities using the motivation framework. (A) In this example, the
total number of cities is N = 10, and the number of target cities to visit is
m = 3. The neural network receives the agent’s position and motivation
vectors as inputs and computes the Q-values for all available actions. (B,C)
The trained agent (B) took the correct shortest path solution (C). This
scenario accounts for 82% of the test examples. (D,E) The trained agent (D)
took a different route than the shortest path solution (E). This scenario
accounts for 18% of the test examples.

Motivational Salience Can Help
Implement Hierarchical Behavior
Here, we propose that motivation may present a mechanism of
how hierarchical reinforcement learning (HRL) algorithms can
be implemented in the brain. As described above, actions in
the motivation-based RL are chosen on the basis of Q-function
Q(st, at, µt). An action at chosen at certain time point usually
maximizes the Q-function, representing the total expected future
reward, and leads to the transition of the agent to the new state:
st → at → st+1. Because of the dependence of the Q-function on
motivation, chosen action depends on the variable µ representing
motivational salience. We argued above that motivation allows
RL to have the flexibility of a rapid change in behavioral policy
when the need of an animal fluctuates. The same mechanism
can be used to implement HRL, if motivation µ is supplied by
another, higher-level ‘manager’ network with its own Q-function,
Q(1)(µt, a(1)

t , µ
(1)
t ). When the higher-level network picks an

action a(1)
t , it leads to a change in the motivational state for the

lower-level network: µt → a(1)
t → µt+1 thus rapidly changing
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the behavior of the latter. The ‘manager’ network could on its own
be controlled by a higher-level manager via its own motivation
µ

(1)
t . The decision hierarchy could be very complex, if it includes

several management levels, with the dynamics of motivation
on level l determined via Q-function computed on level l+ 1:
Q(l+1)(µ

(l)
t , a(l+1)

t , µ
(l+1)
t ) and µ

(l)
t → a(l+1)

t → µ
(l)
t+1.

To demonstrate a hierarchical system in out transport network
example, we implemented a manager network which received the
agent’s state (position) and the estimate of the prior motivation
vector as inputs. The manager network computed the Q-values
for all possible manager’s actions a(1)

t . These actions yielded
changes in estimated motivation for the next time step, i.e., µt →

a(1)
t → µt+1 (Figure 6A). The manager supplied the estimated

motivation for the next time step µt+1 to the trained agent,
a Q-network which used µt+1 alongside with its own true
state to transition to a new state, st → at → st+1, and collect a
corresponding reward. We trained the manager network using
the TD method. We considered two types of the manager reward
schedules, as described below.

To model the tasks with full knowledge of the agent’s
motivation – where one only needs to infer the rules of
motivation dynamics – we first implemented the supervised
learning model for the manager network. The training set
consisted of prerecorded pairs of true motivations before and
after the agent’s action. We provided the manager network
with a positive reward for a manager’s action that changed
the motivation correctly, or with a matching negative reward
otherwise. For an incorrectly taking action of doing nothing,
we assigned only a half of the usual negative reward – to
discourage erroneous changes of estimated motivation. We
matched the positive and negative rewards for the manager to
prevent it from reinforcing erroneous actions (e.g., setting to
zero a motivation component which is already zero), or being
overcautious (taking only do nothing actions). Trained using this
method, the supervised manager learns the agent’s motivation
dynamics correctly, causing no deficiency in its performance
(exceeding the shortest path by 3% on average – same as the
agent supplied with correct motivation; Figure 6B, compare
“supervised” to “actor only”).

We then implemented the unsupervised RL model for the
manager. In this case, the manager is not supplied with the
correct motivation vector at each step of training, and, instead,
has to infer motivation dynamics for the transport network using
agent’s rewards only, in a true RL fashion. The training occurred
through interaction between the agent and the manager. At every
step, the manager took an action to update the estimated agent’s
motivation and communicated it to the agent. The agent then
transitioned to a new state and collected a corresponding reward.
We only propagated the sign of the agent’s reward to the manager,
as the exact intrinsic reward of the manager may not be the same
as for the actor. Similarly to the supervised case, we balanced
positive and negative rewards for the manager (positive reward
was larger than negative due to fewer occurrences). When a
negative reward followed the manager’s action of doing nothing,
we assigned the manager a half of the usual negative reward. We
performed training in batches to average out diverse exploratory

FIGURE 6 | (A) Hierarchical reinforcement learning (HRL) setting for the
transport network example. Bottom row: the agent Q-network receives
current state (position) and motivation, and then computes the Q-values for
transitioning to the other states (positions). Top row: the manager that makes
changes in motivation. The manager can be represented by a hardcoded set
of rules (random walk/agent-only simulation), or a Q-network
(supervised/unsupervised simulations). (B) Performance of four representative
models on 100 test runs trained in the same network: actual path lengths
versus precomputed shortest path solutions. In the agent only simulation, the
agent is supplied with the accurate motivation, whereas in hierarchical models
(supervised/unsupervised), the motivation vector is computed by the manager
network. The diagonal: identity line.

behaviors of the agents outside familiar settings (Henderson
et al., 1982). We then evaluated the manager through the agent’s
performance, as we assumed no knowledge of the agent’s true
motivation. Figure 6B shows that the unsupervised manager
learns the agent’s motivation dynamics, causing only a slight
deficiency in its performance (exceeding the shortest path by 4%
on average; Figure 6B, “unsupervised”).

Overall, the results above suggest that HRL networks with
motivation may provide a powerful tool to infer motivation
dynamics of the real-life agents. It is also possible that HRL
mechanisms in the brain may have evolved from circuits
implementing motivational salience. As such, HRL networks with
motivation may be useful in interpretation of experimental data.

Responses of Neurons in Ventral
Pallidum (VP)
To verify consistency of our theory with neuronal recordings
we applied our model to data collected within a classical
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conditioning task with motivation (Stephenson-Jones et al.,
2020). Below we provide a brief recap of the task; more details are
described in Stephenson-Jones et al. (2020). Mice were trained
to associate specific cues (sound tones) with different outcomes
(Figures 7A,B). Specifically, the animals received one of five
possible outcomes: a strong or weak reward (5 µl/1 µl of water);
a strong or weak punishment (500 ms/100 ms of air puff); or
nothing at all (0 µl of water/0 ms of air puff). Trials containing
rewards/punishment were separated into different blocks to
place the animals into positively or negatively motivated states.
Trials with no reward/no punishment (in reward/punishment
blocks, respectively) were identical and were indicated to the
animals with the same sound tone (cue). In these trials,
differences in behavioral or neuronal responses were unrelated
to the reward magnitude, and solely relied on the animal’s
motivation (motivated/demotivated). To study the underlying
neuronal circuits, we recorded the activity of neurons in the
VP, a brain area considered central to computing motivation
(Berridge and Schulkin, 1989), in three mice while they were
performing this task (Figures 7A,B). Overall, we obtained 149
well-isolated single neurons [Figure 7C; see (Stephenson-Jones
et al., 2020) for details].

We classified these neurons based on their firing patterns
type using an unsupervised clustering approach (“Materials and
Methods”; Stephenson-Jones et al., 2020). We found that the
neuronal population contained at least four functionally distinct
types (Figure 7C). In the positive valency neurons (type IV
or PVNs; 55 out of 149 cells), baseline neuronal activations
increased during the expectation of rewards and decreased
during the expectation of punishment (Figures 7C,D). In the
negative valency neurons (type II or NVNs; 19 out of 149
cells), the activations followed the opposite rule (Figures 7C,E).
In the mixed sensitivity neurons (type I and type III; 75 out
of 149 cells), the responses were of the same sign in reward
and punishment conditions (Figures 7C,F,G). Type names were
assigned in accordance with (Stephenson-Jones et al., 2020).

The responses of VP neurons appeared to reflect the
reward signs and amplitudes (Figures 7C–G), similarly
to habenula-projecting globus pallidus (GPh) neurons
(Stephenson-Jones et al., 2016) or dopamine neurons (Hong and
Hikosaka, 2008). Unlike the GPh neurons, the responses of VP
neurons also showed the following features:

(1) The responses of some of the VP neurons (in particular the
responses of the PVN type cells) to the sound cue were
more sustained than those of dopamine or GPh neurons
(Cohen et al., 2012; Stephenson-Jones et al., 2016) and often
persisted until the reward delivery (Figures 7C,D);

(2) The responses of the VP neurons to the reward expectation
were modulated by the licking rate indicating coupling to
motivation (Stephenson-Jones et al., 2020). By contrast,
GPh neuron responses to expectation are stable over time
(Cohen et al., 2012).

(3) The baseline firing rates of the VP neurons changed as
mice transitioned between rewards/punishment blocks
of trials (Figures 7C–E), potentially reflecting changes
in motivational state. In particular, the baseline firing

FIGURE 7 | Ventral pallidum responses in the classical conditioning task with
motivation. (A,B) A behavioral task for the recording. Trials were separated
into blocks during which only rewards (water drops) or only punishment (air
puffs) were delivered thus providing positive or negative motivation.
(C) Responses of the VP neurons recorded in 3 mice clustered into the
negative motivation neurons, positive motivation neurons, and neurons of
mixed sensitivity. Dendrogram shows hierarchical clustering (see section
“Materials and Methods”). (D–G) Average firing rates of the neurons in each
cluster [cell type names follow Stephenson-Jones et al. (2020)]. (D) Positive
valency neurons (PVNs) elevate their firing rate in reward condition in
proportion with the reward magnitude; the baseline firing rate in PVNs in
reward conditions is higher than in punishment conditions. (E) Negative
valency neurons (NVNs) show the opposite trend. (F,G) Mixed sensitivity
neurons (type I and type III) do not distinguish reward and punishment
conditions.

rates of the VP neurons in the identical no reward/no
punishment trials were different (Figures 7C–E).
GPh neurons do not tend to show such modulation
(Stephenson-Jones et al., 2016).

Overall, our data suggests that the VP contains two
populations of oppositely-tuned neurons, responding to rewards
(Figure 7D) and punishment (Figure 7E). These neurons encode
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not only the reward values, but also motivational states. Further
data and considerations supporting the conclusion that the VP
neurons in our recordings are specifically tuned to motivation
can be found in Stephenson-Jones et al. (2020).

To see whether our model can reproduce these findings, we
investigated artificial neural networks with motivation that were
subjected to similar training procedure. Because the Pavlovian
conditioning task includes time as variable (Figure 7), we
chose to use recurrent neural network (RNN) as a basis of
our model (Sutton and Barto, 1987; see section “Materials and
Methods”). The network received two time-dependent inputs.
One input described the cue (Figures 8A,B) – which we view
here as a state of the environment because it indicates to
the model what kind of trial it is currently in (weak/strong
reward/punishment trial, or no reward/no punishment trial).
Another input described motivation, which was constant within
the entire trial. Motivation input was introduced to indicate to
the model whether it is in a reward (µ = +1) or punishment
(µ = −1) block of trials. Motivation also allowed the model to
distinguish the otherwise identical no reward/no punishment
trials. We trained the network using backpropagation (see section
“Materials and Methods”). The resulting inputs and outputs after
training for various conditions are shown in Figure 8B.

We show (Figure 8B) that the network has learned a rational
expectation of trial outcome as a function of time. For example,
in the positive motivation trials (µ = +1), early in the trial,
before a cue is presented, the expected value of future reward
Vt(st, µt) starts from a low positive value, in expectation of
future reward. As the cue arrives, the expected value of future
reward Vt reasonably represents the expected outcome. For
example, in the trials with the strong reward (the leftmost column
in Figure 8B), the network adjusts its expectation to higher
value after the cue arrives. For the trials with the weak reward
(second column), no adjustment is necessary, and, therefore,
reward expectation Vt remains unaffected by the cue. Vt increases
slightly after the cue arrives due to the temporal discount γ = 0.9.
For no reward trials (third column in Figure 8B), in the positive
motivation case, the expected reward decreases after the cue
arrives, due to the pessimistic prognosis predicted by the cue. In
negative motivation cases (µ = −1, Figure 8B, columns 4–6), the
behavior of the network is similar except for the sign. Overall, the
network produces reward expectations Vt that accurately reflect
motivation and future rewards.

We then examined the responses of individual neurons in the
model. We clustered the population of artificial neurons using the
same clustering approach as for the VP recordings (“Materials
and Methods”; Stephenson-Jones et al., 2020). We found that
neural population contained two groups of oppositely tuned cells
(Figure 8C), similarly to the experimental observations in the
VP (Figure 7C). These two clusters of neurons were elevating
their baseline activity in reward (Figures 8C,D) and punishment
(Figures 8C,E) trials, respectively. Here, we did not train the first,
feedforward layer of the weights in our network model (between
the inputs and the recurrent layer) leaving it initialized with
random numbers in accordance with the Xavier rule (see section
“Materials and Methods”). Although the results were qualitatively
similar in the model where all layers are trained (i.e., we observed

FIGURE 8 | Recurrent neural network with motivation in the classical
conditioning task. (A) The architecture of the RNN computing the V-function in
this task. (B) Inputs and outputs of the RNN for each trial type. Inputs:
motivation µ, cue s, subjective reward value r̃. Outputs: V-function. Bottom
row: the precomputed correct V-function V∗. Trial types (left to right): strong
reward, weak reward, no reward, no punishment, weak punishment, strong
punishment. (C) Responses of neurons in the RNN can be clustered into the
positive motivation (red), negative motivation (blue), and neurons of mixed
sensitivity (green). Dendrogram shows hierarchical clustering (see section
“Materials and Methods”). (D,E) Average activities of the neurons in red and
blue clusters in the model resemble those of PVNs and NVNs recorded in the
VP. (F) Recurrent connectivity matrix. (G) t-SNE embedding of the RNN
neurons based on their weights (spatial arrangement) corresponds to their
clustering by the activity (red/blue/green color as in the panels C,F). (H) The
push-pull circuit – a schematic representation of the recurrent connectivity in
the model (annotated with the mean weights and the corresponding standard
errors of mean; SEMs).

tuning of baseline activity to motivation, and of phasic activity
to the expected reward magnitude), using the random first-layer
weights resulted in relatively small motivation-related variation
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of baseline activity (Figures 8C–E), which was closer to what we
observed in our VP data (Figures 7C–E).

We then examined the recurrent connectivity between these
two groups of neurons in the model (Figure 8F). We found
that similarly tuned neurons, i.e., cells belonging to the same
functional cluster, tended to excite each other, whereas oppositely
tuned cells tended to inhibit each other. Clustering of the neurons
by the weights (spatial arrangement on Figure 8G) agreed with
clustering by the activations (colors on the Figure 8F) (see section
“Materials and Methods”) suggesting that this RNN circuit can be
implemented with two distinct cell types.

Our model suggests the rationale for the existence of two
oppositely tuned cell types. In the classical conditioning task,
the conditioned stimulus (CS) and reward/punishment are
separated by a temporal delay. During the delay, the network
is expected to maintain a memory of upcoming punishment
or reward, and, thus, acts as a working memory network (Her
et al., 2016) which retains reward expectation in its persistent
activity. This persistent activity is seen in both the responses
of individual neurons in VP (Figures 7D,E) and the RNN
neurons (Figures 8D,E). Persistent activity in RNN belongs to
the class of parametric persistent responses often studied in
working memory and decision-making tasks (Cannon et al.,
1983; Goldman et al., 2003; Machens et al., 2005; Her et al., 2016).
Previous studies of working memory and decision-making tasks
(Cannon et al., 1983; Machens et al., 2005; Wong et al., 2007)
suggest that persistent activity can be maintained by two groups
of oppositely tuned neurons in a network architecture called the
“push-pull” circuit. This solution is also discovered by our model
(Figures 8F–H). In this type of circuit, memory is maintained
via positive feedback. The positive feedback is produced by two
forms of connectivity. First, similarly tuned neurons excite each
other (Figure 8). Second, oppositely tuned neurons inhibit each
other, which introduces effective self-excitation via disinhibition
(Figure 8). Overall, our artificial RNN yields a prediction for the
structure of connectivity implementing reward prediction in the
classical conditioning setting.

Our RNN model presented above was obtained ab initio
to represent the entire reward system. Our previous results
suggest a lack of recurrent connectivity in the VP (Stephenson-
Jones et al., 2020). We suggest that push-pull circuit in our
model corresponds to the neurons upstream of the VP, e.g., to
the prefrontal cortex (PFC) known to maintain the cue-reward
associations (Gottfried et al., 2003; Bray and O’Doherty, 2007).
The VP neurons, maintaining positive or negative tuning to
motivation, may therefore correspond to the final feedforward
layer of our model (Figure 8A).

To examine whether our model with motivation predicts
the VP neural signals better than the model that does not
incorporate motivation, we additionally trained networks with
non-informative constant input (µ∗ = 0 6= µ) instead of varying
motivational input. The subjective values of the rewards
in the task did not change (r̃ = µr 6= µ∗r). Such networks
learned to contain two neuronal types – tuned positively
and negatively to the rewards. Activations of these neurons,
however, did not show tuning of their baseline activations
to reward/punishment blocks of trials observed in the VP.

Non-motivated agents were therefore inconsistent with the
experimental observations. In addition, non-motivated models
could not distinguish the neutral stimuli (no reward/punishment,
the same CS) presented during positive and negative motivation
blocks of trials. Although the number of cell types learned
by motivated and non-motivated agents matched, only the
activation patterns of cells in motivated agent resembled those
recorded in the brain.

DISCUSSION

Motivational salience, which we call here, for brevity, motivation,
has been defined previously as the need-based modulation
of reward magnitude (Zhang et al., 2009; Berridge, 2012).
Here we proposed an RL approach to the neural networks
that can be trained to include motivation into the calculation
of action. We considered a diverse set of example networks
that can solve different problems using a similar architecture.
In each task, we aimed to use a simple model capable of
successfully learning the task. This approach both minimized
the training time for each model, and constrained the models
to generalize their behaviors across the inputs instead of
memorizing the input-output pairs. The networks received both
current motivation and state variables as inputs and were
trained to compute the magnitude of cumulative motivation-
dependent future rewards (Q-function). The action was then
selected as a maximum over the Q-function. The network
weights were updated using TD rule via the conventional
backpropagation algorithm. We found that the networks can
learn correct behaviors in this setting, including behaviors
that reflect relatively complex scenarios of future motivation
changes. Thus, our model, in the transport network example, is
capable of solving an NP-complete task without relearning the
connection weights.

Our approach is based on the previous model by Zhang
et al. (2009), with a few critical differences. First, in the
aforementioned work the state of the agent (reflecting the
cue/conditioned stimulus, CS) was the only input of a value
function; we considered the value function to be explicitly a
function of the state and motivation. This way, our models were
able to learn the relation between the state, motivation, and
their joint incentive value. Second, to interpolate between the
multidimensional inputs of the value function, we used deep
neural networks. Deep RL models are capable of learning the
generalized rules in their weights from the first principles. In
our case, the models were capable of generalizing the relation
between the rewards, motivations, and their incentive values
(i.e., the product of the reward and motivation) and were
also able to extrapolate their policies to the novel motivation
schedules via developing new courses of action (e.g., the “delayed
migration” policy). Third, in our models, the motivations
were multidimensional and dynamic, forcing the agents to
learn the dynamics of motivations to develop the optimal
behaviors. Overall, our work combines the Berridge’s model of
motivation with deep RL and previous models of motivational
drives to provide an interpretable framework for studying
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motivated behaviors and their algorithmic rationale in real-world
agents and settings.

Although motivation seemingly can be viewed as a part
of the agent’s state, there are multiple reasons to consider
them separately. First, motivation is generally a slowly changing
variable. Thus, an animal’s appetite does not change substantially
during a few seconds of a single behavioral trial. At the same
time, the animal’s actions may lead to immediate changes
of its position. Second, the research in neuroscience suggests
that motivation and state may be represented and computed
separately in mammalian brain. Whereas motivation is usually
attributed to the regions of the reward system, such as the
ventral pallidum (VP) (Berridge and Schulkin, 1989; Berridge,
2012), the state is likely to be computed elsewhere, e.g., in
the hippocampus (Eichenbaum et al., 1999) or cortex. Such
distinction in the brain may be based on an algorithmic rationale
that facilitates computations and is yet to be understood.
Finally, in hierarchical RL (HRL) implementation, motivation
is provided by a higher-level network, while information
about the state is generated externally. For these reasons, in
this work we consider an agent’s state Est and its motivation
Eµ separately.

Although the Q-function with motivation (2) is similar
to the Q-function in goal-conditioned RL (Schaul et al.,
2015; Andrychowicz et al., 2017), the underlying learning
dynamics of these two models are different. Motivated behavior
simultaneously pursues multiple distributed sources of dynamic
rewards. The Q-function therefore accounts for the internal
motivation dynamics. This way, an agent with motivation
chooses what reward to pursue – making it different from RL with
subgoals (Sutton et al., 1999). As we show in this work, simple
motivational schedules give rise to large varieties of behaviors.
A reduction in numbers of handcrafted features suggests that
motivation could provide a step toward more general methods
of computation – a goal identified recently by Richard Sutton
(Sutton, 2019).

Our model of motivation is consistent with the large body of
existing motivational models and behavioral observations. In a
recent work, Keramati and Gutkin (2014) show that homeostatic
RL explains prominent motivation-related behavioral
phenomena including anticipatory responding (Mansfield
and Cunningham, 1980), dose-dependent reinforcement
(Hodos, 1961), potentiating effect of deprivation (Hodos, 1961),
inhibitory effect of irrelevant drives (Dickinson and Balleine,
2002), etc. Although homeostatic RL defines the rewards as the
gradients of the cost function with a fixed point, the theoretical
predictions generalize to the models with linear, or approximately
linear, multiplicative motivation. We therefore expect the
behaviors of our models to be consistent with the large body of
experimental data described above (Hodos, 1961; Mansfield and
Cunningham, 1980; Dickinson and Balleine, 2002).

Biologically-grounded choices of motivation dynamics enable
our model to reproduce realistic behaviors, including those
related to drug addiction. Here we show that a simplistic model,
where motivation toward “smoking” grows large compared to
motivations toward the other rewards, qualitatively accounts
for the binging behavior. Our model suggests that the smoking

frequency can be explained with the temporal discounting
parameter γ defining the relative impact of the rewards near
and far in the future. Our framework, offering a way to
derive behaviors from the first principles, can be combined
with the classical results regressing the craving rates to a
variety of environmental cues (e.g., McKennell, 1970) to
build finetuned models of addicted behaviors. For example,
motivational dynamics may change over time. Addictive drugs
can become less rewarding (‘liked’) after repeated experience
despite increases in the motivational salience and/or craving
for drugs – which can be accounted for in the model with an
additional layer in motivation hierarchy (akin to the Transport
network task). The discrepancy between low ‘liking’ of the
drug and the high rate of cravings can be formalized as
the difference between motivational salience and motivational
vigor, the generalized willingness to expend energy toward
a reward. Motivational vigor can be incorporated into the
model by the means of the actor-critic formalism (Sutton
and Barto, 1998) which computes log likelihoods for every
action. Including these and other parameters to our motivation
framework may help building detailed models of addictive
behaviors in future work.

We trained recurrent neural networks (RNNs) to estimate
future motivation-dependent subjective values of the reward
in the Pavlovian conditioning task. In contrast to purely
feedforward networks, the RNNs allow learning the temporal
sequences of events such as the associations between reward-
predicting cues (conditioned stimuli, CS) and following
rewards (unconditioned stimuli, US). The ability to learn the
temporal US-CS associations makes RNNs a rational choice
for the models of animal behavior and neuronal activity
in Pavlovian conditioning tasks (Sutton and Barto, 1987).
Since the structure of network for computing motivation-
dependent reward expectations is not fully understood,
modeling this circuit as an RNN seems to be a simple and
plausible first step, similarly to the models of persistent
activity and working memory. It is not clear at the moment
whether RNN obtained here is fully contained in VP or is
represented by some other part of the reward circuit. Our
mathematical model does not specify where the recurrent
connectivity facilitating the persistent activity is formed; such
structure could occur in PFC where neurons are known
to maintain cue-reward associations (Gottfried et al., 2003;
Bray and O’Doherty, 2007), in VP, or in some other brain
region. Previously published findings suggest that VP may
not contain connectivity that is strong enough to maintain
persistent activity (Stephenson-Jones et al., 2020). Our study may
motivate the search for the recurrent circuit that can maintain
cue-reward associations.

We found that neurons in the RNNs trained to recognize
motivation can be clustered into two oppositely tuned
populations: positive and negative motivation neurons.
These populations display increased firing in reward and
punishment trials, respectively. Similar two groups of neurons
are found in the previously published data (Stephenson-Jones
et al., 2020) on neural responses in the mouse’s VP: a basal
ganglia region implicated in motivation-dependent estimates
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of reward (Richard et al., 2016). Thus, our neural networks
develop response patterns comparable to experimentally
observed in the brain.

We found that the recurrent network structure in this
Pavlovian conditioning case is compatible with the conventional
models of working memory. The general idea is that the
information about an upcoming reward – once supplied by a
cue – is maintained in the network due to the positive recurrent
feedback. This feedback can be produced by disinhibition
between two oppositely tuned populations of neurons, namely
positive and negative motivation sensitive cells. Thus, the
presence of two subpopulations of neurons may be a consequence
of the functional requirements on the network to maintain
persistent variables within a trial. This function is reflected in
both neural responses and architecture.

Motivation offers a framework compatible with other methods
in machine learning, such as R-learning, goal-conditioned RL,
and hierarchical RL (HRL). R-learning is an average-reward
reinforcement learning model (Schwartz, 1993; Sinakevitch et al.,
2018). Specifically, the cumulative sum of future rewards is
computed with respect to the average level of reward. The
average reward level is computed across multiple trials, which
makes it similar to motivation. In goal-conditioned RL – the
closest counterpart to RL with motivation – the Q-function
depends on three parameters: Q(Est, at, g), where g is the
current static goal. In the motivation framework, multiple
dynamic goals are present at the same time and it is up
to an agent to decide which one to pursue – based on
the future motivation dynamic learned by the network. HRL
methods include the options framework (Sutton and Barto,
1987; Sutton and Barto, 1998), RL with subgoals (Sutton
et al., 1999), feudal RL (Dayan and Hinton, 2000; Bacon and
Precup, 2018), and others. In HRL, complex tasks are solved by
breaking them into smaller, more manageable pieces. In both
the case of motivated agents and HRL, the reward function
is manipulated by an external process, such as a higher level
manager (Sutton et al., 1999). HRL approaches have several
advantages compared to traditional RL, such as transfer of
knowledge from already learned tasks and the ability to faster
learn solutions to complex tasks. Although HRL methods
are computationally efficient and generate behaviors separated
into multiple levels of organization – which resemble animals’
behavior – a mapping of HRL methods to brain networks is
missing. Here, we suggest that motivation offers a way for
HRL algorithms to be implemented in the brain. In case of
motivation, the goal of the agent is not explicitly specified and
may shift in course of behavior if motivational variables change
their values. Moreover, multiple goals may simultaneously be
presented to an agent, whose aim is to select the one that yields
the highest subjective reward. We present an example of how
HRL can be implemented in motivation setting for the case of
transport network.

Overall, we suggest that motivation-based networks can
generate complex ongoing behaviors that can rapidly adapt to
dynamic changes in an organism’s demands without changes in
synaptic strengths. Thus, neural networks with motivation can
both encompass more complex behaviors than networks with

a fixed reward function and be mapped onto neuronal circuits
that control rewarded behaviors. Since animal performance in
realistic conditions depends on the states of satiety, wakefulness,
etc., our approach should help build more realistic computational
models that include these variables.

MATERIALS AND METHODS

The Four Demands Task
To optimize the behaviors in the Four Demands task, we
implemented a feedforward neural network as described below.
On the input, the network received an agent’s state and
motivation. The state variable contained an agent’s position,
which was represented by a 36-dimensional one-hot vector.
The motivation was represented by a 4-dimensional integer
vector. From both state and motivation variables, we subtracted
the mean values. To balance the contributions of state and
motivation to the network, we normalized their variances to 1 and
9, respectively, since the ratio of the number of these variables
is 4/36. The inputs of the network were propagated through
three feedforward hidden layers (100 sigmoid units each), and a
feedforward output layer (5 linear units) (Figure 2A). We trained
the network to compute the Q-values of the possible actions: to
move left, right, up, down, or to stay.

On every iteration, we picked an action, corresponding to
the largest network output (Q-value). With probability ε, we
replaced the selected action with a random action (ε -greedy
policy; ε decreased exponentially from 0.5 to 0.05 throughout
simulation; in case of random walk agents, we set ε = 1). If the
selected action resulted in a step through a “wall,” the position
remained unchanged; otherwise we updated the agent’s position.
For the agent’s new position, we computed the subjective
reward value (Er · Eµ), and used Bellman equation (γ = 0.9) to
compute TD error (Eq. 4). We then backpropagated the TD
error through the network to update its weights [initialized
using Xavier rule (Glorot and Bengio, 2010)]. Specifically, we
used the network activations, corresponding to the previous
step, and backpropagated TD-error only through the output,
corresponding to the selected action. For each model, we
performed 4 · 105 training iterations with the learning rate
decreasing exponentially from 3 · 10−3 to 3 · 10−5.

We trained the network using various motivation schedules
as follows. Each reward component was set equal to one in
a corresponding room, and to zero elsewhere (Figure 1B).
Each component of the motivation was increased by one on
every iteration (Figure 1C). If a component of motivation µn
reached the threshold θn, we stopped increasing this component
any further. If the reward of a type n was consumed on
current iteration, we dropped the corresponding component
of motivation µn to zero. For motivated, non-motivated, and
random walk agents, we trained 41 model each (123 models
total) with motivation threshold θ1 = θ2 = θ3 = θ4 ranging from
1 to 100, spaced exponentially, one training run per unique
θ value. To check whether a single network can perform
optimally under various motivation schedules, we also trained a
separate model with an additional input (θ) in minibatches of 10
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iterations corresponding to θ = 1...10. To mimic addiction, we
also trained a separate model with θ1 = θ2 = θ3 = 1, and θ4 = 10
(Figure 3A), using various values of γ = 0.5; 0.8; 0.9; 0.95. For
each run, we displayed sequences of agent’s locations to establish
correspondence between policies and average reward rates.

The Transport Network Task
To build an environment for the transport network task, we
defined the locations for 10 “cities” by sampling x− and y−
coordinates from the standard normal distribution N(0, 1). For
these locations, we computed Delaunay triangulation to define a
network of the roads between the cities. For each road (Delaunay
graph edge), we computed its length – the Euclidean distance
between two cities it connects. We then selected multiple random
subsets of 3 cities to be visited by an agent: the training set (105

target subsets), and the testing set (100 different target subsets).
To navigate the transport network, we implemented a

feedforward neural network as described below. On the input,
the network received an agent’s state and motivation. The state
variable contained an agent’s position, which was represented by a
10-dimensional one-hot vector. The motivation was represented
by a 10-dimensional binary vector. To specify the agent’s targets,
we initialized the motivation vector with 3 non-zero components
µi1 ...µi3 , corresponding to the target cities i1...i3. The inputs of
the network were propagated through a hidden layer (200 Leaky
ReLU units; leak α = 0.2), and an output layer (10 leaky ReLU
units; leak α = 0.2). We trained the network to compute the
Q-values of the potential actions (visiting each of the cities).

On every iteration within a task episode, we picked an action
to go from the current city to one of the immediately connected
cities, then we updated the current position. To choose the
action, we used the softmax policy (β = 0.5) over the Q-values
of the available moves. When the motivation µj toward the new
position j was non-zero, we yielded the reward of 5, and dropped
the motivation µj to 0. On every iteration, we reduced the reward
by the distance traveled within this iteration. The task episode
terminated when all the components of motivation were equal to
zero. On every iteration, we used Bellman equation (γ = 0.9) to
compute the TD error. We backpropagated the TD error through
the network to update its weights (initialized using Xavier rule).
For each model, we performed training on 105 task episodes with
the learning rate decreasing exponentially from 10−2 to 10−4.
To assess the model performance, we evaluated the model (β =
10) on the testing set and compared the resulting path lengths
one-by-one to the precomputed shortest path solutions.

To infer motivation dynamics from the trained agent, we
implemented a manager neural network. On the input, the
manager network received the agent’s state, and an estimate of the
agent’s motivation (details below) in the same format as for the
agent network. The inputs were propagated through three hidden
layers (200 Leaky ReLU units; leak α = 0.2), and an output layer
(11 leaky ReLU units; leak α = 0.2). We trained the network
(using Bellman equation with γ = 0.9 and backpropagating the
TD error) to compute the Q-values of all possible manager actions
(set any component of the estimated motivation to zero, or do
nothing). On every iteration, we picked an action, corresponding
to the largest network output (Q-value). With probability ε, we

replaced the selected action with a random action (ε-greedy
policy; ε = 0.1).

In the supervised learning case, we trained the manager
network (learning rate decreasing exponentially from 10−3 to
10−6) on 2 · 105 prerecorded task episodes performed by the
trained agent operating under correct motivation schedule (as
described above) and initialized with random starting positions
and targets. When the manager network predicted correct change
of the agent’s motivation (supplied to the manager on the input),
it received a reward of +2; otherwise a reward of−2. If a negative
reward was received because of a “do nothing” manager action,
we reduced it to−1.

In the unsupervised case, we trained the manager network
(learning rate decreasing exponentially from 10−2 to 10−5,
reduced to 10−3 whenever initially larger) using minibatches
of 50 iterations on 2 · 105 task episodes performed by the
trained agent operating under manager-supplied motivation
and initialized with random starting positions and targets. The
estimated motivation, edited by the manager network on current
step, served as an input to the manager network on the next
step. The initial estimated motivation matched the agent’s initial
targets. We manually terminated task episodes that lasted longer
than 50 iterations. When the agent received a positive reward,
we assigned the manager a reward of +5; otherwise a reward of
−2. If a negative reward was received because of a “do nothing”
manager action, we reduced it to−1.

We tested the manager networks (deterministic policy; ε =

0.0) maintaining its own estimate of the agent’s motivation
and supplying it to the trained agent (softmax policy; β = 10),
which operated on the same testing set as before. We compared
the resulting path lengths one-by-one to the precomputed
shortest path solutions.

Pavlovian Conditioning Task
To build a circuit model of motivation in Pavlovian conditioning
task, we replicated in silico the experiment where mice
learned to associate sound cues with zero/weak/strong
rewards/punishments, and reward/punishment trials were
grouped in separate blocks to motivate/demotivate animals
(Stephenson-Jones et al., 2020). We implemented a recurrent
neural network, and trained it on sequences of 20 iterations
(time steps) representing time within individual trials. For
each individual trial, we first randomly chose whether the
agent would be rewarded or, alternatively, punished (positive
or negative motivation trials, respectively). We then randomly
chose the strength of the upcoming reward/punishment to be
zero, or weak, or strong. Depending on the type and strength of
reward/punishment, we generated a cue (conditioned stimulus,
CS): 0 for zero reward; 0.5 for weak reward; 1 for strong
reward; 0 for zero punishment; −0.5 for weak punishment;
−1 for strong punishment. The cues for zero reward and
zero punishment were identical; thus, zero reward/zero
punishment trials could be only distinguished based on
motivation. We then passed motivation and cue to the network,
as described below.

The cue input to the network was represented with the
state variable. As the cue in Pavlovian conditioning task was
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only briefly presented shortly after the beginning of the trial
(Stephenson-Jones et al., 2020), the state variable was initially
equal to 0 (“silence,” time steps 1–5 out of 20), then equal to
the CS as defined above (“sound tone,” time steps 6–10 out of
20), then again equal to 0 (“silence,” time steps 11–20 out of 20)
(Figure 8B, the 2nd row). The motivation input to the network
(1 for positive and −1 for negative) was constant throughout
the entire trial (all 20 time steps; Figure 8B, the 1st row). The
inputs to the network were propagated through a recurrent layer
(40 sigmoid units), and a feedforward output layer (1 linear unit)
(Figure 8A). We trained the network (recurrent and feedforward
output layers) to compute the V-values (discounted sums of
future expected subjective reward values) for each time step
within the trial.

The subjective reward values (of unconditioned stimuli, US)
were computed as a product of (positive) reward/punishment size
and motivation – and thus numerically matched the CS values.
As the rewards/punishments in Pavlovian conditioning task were
delivered only shortly before the end of the trial (Stephenson-
Jones et al., 2020), the subjective reward signal to the network
was initially equal to zero (“no reward/no punishment yet,” time
steps 1–13 of 20), then was equal to the US as described above
(“reward/punishment,” time steps 14–18 out of 20), then again
equal to 0 (“no more reward/no more punishment,” time steps
19–20 out of 20) (Figure 8B, the 3rd row). We used this subjective
reward signal in Bellman equation (γ = 0.9) to compute a TD
error for every time step (similarly to Eq. 4, without dependence
on actions). We then backpropagated the TD errors through
time to update the network’s weights [initially drawn from the
uniform distribution U

(
−10−5, 10−5)]. We did not update the

weights between the inputs and recurrent layer [initialized using
Xavier rule (Glorot and Bengio, 2010)]. For backpropagation,
we used the network activations corresponding to the previous
time step. We performed training on 3 · 105 batches of 20
sequences each with the learning rate decaying exponentially
from 10−2 to 10−4.

We clustered the neurons that we previously recorded in
the VP, and the recurrent neurons in RNN after training, as

follows (Stephenson-Jones et al., 2020). First, we computed the
first three PCA components of the z-scored firing rates of all
neurons in the strong reward and punishment trials. Then,
we used these principal components in hierarchical clustering
(Euclidean distance; complete agglomeration). To see whether
the neurons within the same activity-based clusters in RNN have
similar connectivity, we computed the weight-based correlation
matrix between the recurrent neurons using the vectors of
their postsynaptic weights. We then displayed the weight-based
correlations in RNN using t-SNE (Maaten and Hinton, 2008)
(p = 30) and color-coded the neurons with respect to their
activity-based clusters.
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