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Brain network connections rewire adaptively in response to neural activity. Adaptive

rewiring may be understood as a process which, at its every step, is aimed at optimizing

the efficiency of signal diffusion. In evolving model networks, this amounts to creating

shortcut connections in regions with high diffusion and pruning where diffusion is low.

Adaptive rewiring leads over time to topologies akin to brain anatomy: small worlds

with rich club and modular or centralized structures. We continue our investigation of

adaptive rewiring by focusing on three desiderata: specificity of evolving model network

architectures, robustness of dynamically maintained architectures, and flexibility of

network evolution to stochastically deviate from specificity and robustness. Our adaptive

rewiring model simulations show that specificity and robustness characterize alternative

modes of network operation, controlled by a single parameter, the rewiring interval. Small

control parameter shifts across a critical transition zone allow switching between the two

modes. Adaptive rewiring exhibits greater flexibility for skewed, lognormal connection

weight distributions than for normally distributed ones. The results qualify adaptive

rewiring as a key principle of self-organized complexity in network architectures, in

particular of those that characterize the variety of functional architectures in the brain.

Keywords: structural plasticity, evolving network model, functional connectivity, structure function relation,

network diffusion, hebbian plasticity, specificity, robustness

INTRODUCTION

From gestation to termination, the brain continuously undergoes adaptive rewiring; structural
changes that shape, maintain, and provide flexibility to function. Adaptive rewiring commonly
relies on functional connectivity, i.e., the pairwise statistical dependencies in neural activity
patterns (Rubinov et al., 2009; Avena-Koenigsberger et al., 2018). We described adaptive rewiring
in a graph-theoretical framework as adding shortcut connections between nodes with strong
functional connectivity while pruning connections with weak functional connectivity (Gong and
van Leeuwen, 2003, 2004; van den Berg and van Leeuwen, 2004; Rubinov et al., 2009; Jarman et al.,
2014; Papadopoulos et al., 2017; Hellrigel et al., 2019).

Whereas those models considered functional connectivity in oscillatory activity, some adaptive
rewiring models (Jarman et al., 2017; Rentzeperis and van Leeuwen, 2020) are based on a broader,
more abstract notion of neural activity. Heat diffusion on a graph is used to represent the aggregate
effects of neural activity, i.e., the traffic of neural signals as a distribution of random walks on the
network (Chung, 1996). Experimental studies have shown that heat diffusion models can predict
the mass effect of brain activity from anatomical connectivity (Abdelnour et al., 2014, 2018). This
motivates our choice of adopting heat diffusion to represent neural mass activity in our current
model networks.
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Jarman et al. (2017) for binary networks, and Rentzeperis and
van Leeuwen (2020) for weighted ones, studied adaptive rewiring
based on heat diffusion. By creating shortcut connections in
highly trafficked regions and pruning where traffic is low,
adaptive rewiring optimizes the network traffic flow. Heat
diffusion was used for representing network activity without
explicit modeling of input or output; as in our previous models,
adaptive rewiring reflects transformations of the system in
adaptation to its own spontaneous activity [but see Haqiqatkhah
and van Leeuwen (2020) for a model that accomodates input and
memory]. The model networks are also undirected and therefore
symmetric. This makes them, at best, coarse approximations
of the brain at systems level, but reflects the typical use of
symmetrical measures such as phase synchrony in large-scale
functional connectivity observations.

Notwithstanding these simplifying assumptions, the authors
were able to show that adaptive rewiring based on heat diffusion
generates complex network connectivity structures akin to those
of the brain. Networks evolve small world structures (Sporns
and Zwi, 2004; Bassett and Bullmore, 2017) with modular
connectivity patterns (Hilgetag et al., 2000; Bullmore and Sporns,
2009) and the rich club effect (Zamora-López et al., 2010; van den
Heuvel and Sporns, 2011). In general, a crucial component in the
emergence of these connectivity structures is the maintenance of
a minimum number of connections among neural units (van den
Berg et al., 2012).

Such brain-like structures emerge universally in these models
from random initial conditions. Plasticity, however, requires
more than just invariably realizing some desirable network
features. For instance, when the computational role of a given
network changes, the rewiring mechanism should be able to
drive the changes that will allow the network to meet the new
demands. The demands on plasticity vary, depending on the
brain region (Neville and Bavelier, 2000) or the triggering factor,
be it development (Sur and Leamey, 2001), learning (Plautz et al.,
2000), or recovery following injury (Nudo, 2003, 2013). It is still
an open question whether a single adaptive rewiring mechanism
is versatile enough to switch upon demand between two different
rewiring strategies: either to dynamically maintain an existing
functional topology or to modify it.

To address this issue, we introduce the concepts of specificity,
robustness, and flexibility of evolving network connectivity.
Specificitymeans that a network evolves to a connectivity pattern
type irrespective of its prior history; for example, an adaptively
rewiring network that becomes modular regardless of its current
topology -random, modular, or centralized. Biological brain
networks show specificity in their evolution and development
toward modular structures with dense interconnections within
functional units but sparse between different units (Kaas, 2012).
Specificity resembles the process of convergence to a global
attractor in dynamical systems.

Rewiring shows robustness when it maintains a certain
connectivity pattern during rewiring, i.e., centralized networks
that are adaptively rewired stay centralized and modular ones
stay modular. Traditionally, the robustness of a network has
been defined as its capacity to withstand node or link failure
(Albert et al., 2000; Callaway et al., 2000). Different measures

of network functionality, such as connectivity or information
spreading efficiency may be used to specify robustness (Bullmore
and Sporns, 2009). Bellingeri et al. (2019) have shown that
the efficiency of real-world networks depends on the weight
distribution of the links. A study on a network’s efficiency
following rewiring for different weight distributions appears to
be a natural continuation of this work. Here, robustness is related
to the connectivity pattern of the network after rewiring instead
of node or link removal. It is analogous to homeostasis, in that
connections are in a dynamic equilibrium that maintains the
overall properties of the network. Homeostatic mechanisms are
crucial in maintaining the functionality of the brain in the face
of constant changes (Turrigiano and Nelson, 2004; Turrigiano,
2012).

A rewiring process shows flexibility when it deviates
stochastically from the rules of specificity or robustness.
Stochastic changes could lead to undesirable noise effects that will
degrade the performance of a system. However, when controlled,
stochastic deviations could benefit a network’s performance in
both biological and artificial systems. For instance, randomly
rewiring a small subset of connections from a regular network
could lead to a significant decrease in the average path length
of the network without affecting significantly its connectivity
structure (Watts and Strogatz, 1998). Furthermore, a random
initialization of the weights of a deep neural network will achieve
symmetry breaking, facilitating the convergence of the weights to
optimal values during backpropagation (Rumelhart et al., 1985).

We probe the specificity, robustness, and flexibility of our
recently proposed adaptive rewiring model (Rentzeperis and van
Leeuwen, 2020). During each rewiring step, a pair of connected
nodes with low diffusion is pruned while an unconnected pair
with high diffusion is connected. The rewiring rule is tuned by
a rewiring interval parameter (τ ). The value of this parameter is
crucial for the resulting type of network. This has been shown
when initially random networks are allowed to evolve their
structure under repeated application of the adaptive rewiring rule
(Jarman et al., 2017; Rentzeperis and van Leeuwen, 2020). For
small τ intervals (fast rewiring rates), random networks rewire to
become modular; for large τ intervals (slow rewiring rates) they
rewire to become centralized (Jarman et al., 2017; Rentzeperis
and van Leeuwen, 2020). In a narrow window between fast
and slow rewiring rates, we find maximal variability of evolved
topologies from highly modular to highly centralized ones.

Evolution of random networks offers only a limited purview
on the specificity, robustness, or flexibility of the rewiring
process. Rewiring on established connectivity patterns offers a
more natural equivalent to brain plasticity. We thus proceeded
to probe the rewiring process when the initial networks take on a
wide range of pre-established complex connectivity patterns.

Starting from a network with complex connectivity the
rewiring process shows different characteristics depending on
the value of the rewiring interval. For small rewiring intervals
(fast rewiring rates), the rewiring process shows specificity:
it reorganizes any pre-established connectivity structure into
a modular one. For larger rewiring intervals (slow and
intermediate rewiring rates) the process shows robustness: the
pre-established type of connectivity structure persists in a
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dynamic manner. Both robustness and specificity are generally
more pronounced for normally than for lognormally weighted
networks, with the latter showing a greater degree of flexibility.

MATERIALS AND METHODS

The first subsection provides the basic graph nomenclature
for defining the networks used. The second introduces heat
diffusion, which constitutes the core process behind the rewiring
algorithm, and the graph Laplacian, a matrix that captures the
structure of the network and controls the diffusion process.
The third describes the rewiring algorithm, the fourth the
simulation parameters used, the fifth the modularity metric used
to characterize the networks’ connectivity structure, and the sixth
the way the specificity, robustness and flexibility characteristics
are found.

Graph Preliminaries
We define a network as a weighted undirected graph, G = (V,
E, W), where V denotes the set of N vertices (nodes) (V =
{vi|i ∈ 1 . . . , n}), E represents the edges (connections) between
them as a set of node pairs (E =

{(

i, j
)∣

∣i ∈ V , j ∈ V
}

), while the
set W signifies the strength of the connection, (W = {wij ∈
R≥0|(i, j) ∈ E}). The cardinalities |V| = n and |E| = m refer
to the total number of nodes and connections in the network,
respectively. A graph G can be conveniently described by an
n × n adjacency matrix A, with entries showing the strengths of
the pairwise connections between nodes, i.e., Aij = wij. A zero
entry, wij = 0, indicates that nodes, i and j, are not connected.
Networks are undirected and with no self-loops, meaning A is
symmetric and zero in its diagonal entries (Aii = 0). For this class
of networks, the strength of the nodes is obtained by summing
the rows or the columns of A, i.e., sj =

∑n
i=1 Aij. Finally, the

degree of a node is defined as the number of edges connected to
it, i.e., for a particular node it is the number of non-zero elements
in the corresponding row or column of A.

The Graph Laplacian and the Heat Kernel
The graph Laplacian, L, is the graph equivalent of the Laplace
Beltrami operator, (∇2f ). Informally speaking, both provide the
difference between the average value in the neighborhood of a
point and the value of the point. The graph Laplacian features
in optimization problems such as graph partitioning (Jianbo and
Malik, 2000) and dimensionality reduction (Belkin and Niyogi,
2002). It is defined as L = D–A, where A is an adjacency matrix
and D is a diagonal matrix containing in its non-zero entries the
strengths of A: Dii =

∑n
j=1 Aij.

The normalized graph Laplacian (Chung, 1996) is defined as

L = D−1/2LD−1/2; but if si = 0 thenD
−1/2
ii = 0. Its elements are:

Lij =











1 if i = j
−Aij√
sisj

if
(

i, j
)

∈ E (1)

0 otherwise

(1)

The normalized graph Laplacian, L, is more suitable than L for
irregular graphs, i.e., graphs with nodes that differ in degree or
strength. This irregularity is captured by the eigenvector v0 =

[
√
s1, . . . ,

√
sn]

T (Chung and Richardson, 2006) corresponding
to its zero eigenvalue, λ0 = 0. Since it captures the differences
in strength/degree between nodes, the normalized Laplacian is
preferred for nearly all real-life graph representations, biological
or otherwise. Subsequently, any mention of the graph Laplacian
refers to the normalized version L.

The heat equation in a network is defined as:

∂h(t)

∂t
= −Lh (t) (2)

The heat kernel, h(τ ), is an n×nmatrix quantifying the diffusion
between all pairs of nodes in the network, i.e., h(τ )ij reflects the
amount of heat transferred between nodes i and j after time τ .
The graph Laplacian, L, is of the same size and captures the rate
of change of the diffusion.

The unique solution to the heat equation (for unit input from
each node) is:

h (t) = e−tLInxn = e−tL (3)

We use the exponential part of (3) for diffusion, which indicates
the dynamics when we inject unit input to a node (while the rest
are zero) for all the nodes in parallel.

Adaptive Rewiring Algorithm
In the first part of our analysis, the network structure before
adaptive rewiring is G = Ginitial with |V| = n nodes and |E| =
⌊

2
log(n)
n n(n− 1)

⌋

connections, which guarantees networks with

random Ginitial to be connected (Bollobás and Béla, 2001).
Adaptive rewiring follows a simple rule: connections with low
flow transfer are cut and transferred to non-adjacent nodes
with high flow transfer. The rewiring process can be described
as follows:

Step 1. Select with uniform probability a node k from the
nodes with non-zero degree that are also not connected to all
other nodes

(

k ∈ V
∣

∣ 0 < dk < n− 1).
Step 2. With probability prandom select j1 and j2 based on

the criteria of step 2.1 (random rewiring) otherwise (1- prandom)
select them based on the criteria of step 2.2 (heat diffusion
rewiring). Delete the edge (k, j2) and add the edge (k, j1). The
weight of (k, j1) is the same as the one of the previously connected
edge (k, j2).

Step 2.1. j1 is selected randomly from the set of nodes that
are not connected to k, (j1 ∈

{

j ∈ V
∣

∣

(

j, k
)

/∈ E
}

). j2 is selected
randomly from the set of nodes that are connected to k, (j2 ∈
{

j ∈ V
∣

∣

(

j, k
)

∈ E
}

).
Step 2.2. Calculate the heat kernel, h(τ ), of the current

adjacency matrix A, of graph G. From the nodes not connected
to k, j1 is the one with the highest heat transfer with k. From the
nodes connected to k, j2 is the one with the lowest heat transfer
with k. Mathematically, this is expressed as follows:

j1 = argmax(k,j)/∈E, k 6=jhkj (τ ) (4)

j2 = argmin(k,j)∈E, k 6=j hkj (τ ) (5)

Step 3. Go back to step 1 until r edge rewirings have been reached.

Frontiers in Systems Neuroscience | www.frontiersin.org 3 March 2021 | Volume 15 | Article 580569

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Rentzeperis and van Leeuwen Rewiring Shows Specificity, Robustness, Flexibility

In the context of the adaptive rewiring algorithm, we refer to
the time variable of the heat kernel as the rewiring interval (τ ),
since before each rewiring we let the diffusion process for t = τ .
For small τ values diffusion from each node is contained within
a local region; for larger values of τ diffusion is more globally
spread. The state of each node, or the amount of heat, can be
found by summing the rows or the columns of h(τ ) .

We use networks with two different weight distributions:
normal and lognormal. The distribution of neurons’ presynaptic
weights have been typically modeled as normal, but recent
evidence suggests that the weights are skewed, lognormally
distributed (Buzsáki and Mizuseki, 2014; Teramae and Fukai,
2014). Normally distributed weights were sampled from the
normal probability distribution:

p (x) = 1

σ
√
2π

e
− (x−µ)2

2σ2 (6)

with µ = 1, and σ = 0.25. Negative samples were set to zero.
As these are 5 standard deviations away from the mean, their
occurrence (one in three and a half million) for all practical
purposes did not distort the sampling distribution. Lognormally
distributed weights were sampled from a lognormal distribution:

p (x) = 1

σ
√
2π

e
− (ln(x)−µ)2

2σ2 (7)

with µ = 0, and σ = 1. In both cases the edges were normalized
so that the sum of their weights equal the number of the
network’s connections. We obtained similar results for different
distribution parameters and normalizations. Subsequently, we
refer to networks with normally and lognormally distributed
weight distributions as normal networks and lognormal
networks, respectively.

Simulation Parameters
We used networks of 100 nodes with an average degree of 18.24,
thus guaranteeing networks with randomGinitial to be connected.
The simulations varied two parameters in the networks: prandom
and τ . prandom was either 0 or 0.2; τ was tested for a wide range
of values (τ ∈ [0, 8]). Unless otherwise stated, the number of
rewirings we performed in a network was 4,000. Figure 1 shows
the evolution of a random network at different stages of rewiring
for two different τ values.

Modularity Measure
In previous studies, we showed that adaptive rewiring leads to
networks that are small worlds for all combinations of τ and
prandom, save the degenerative cases (τ close to 0; prandom =
1) (Jarman et al., 2017; Rentzeperis and van Leeuwen, 2020).
The wide range of rewired networks cannot be distinguished by
the small worldness metric. For instance, networks with close
small world values could have distant topologies: modular and
centralized (Supplementary Figure 1). What distinguishes the
aforementioned topologies is the modularity measure.

Themodularity measure (Q) quantifies the strength of clusters
(or communities) within a network; the denser the connections

within communities and the sparser between them, the greater Q
is. Q is defined as follows (Newman, 2004):

Q = 1

2m

∑

ij

[

Aij −
sisj

2m

]

δ(cicj) (8)

where m is the sum of all the weights in the network, si is the
strength of node i, Aij is the weight of the connection between
nodes i and j, ci is the community node i is assigned to, and δ(ci,cj)
is 1 when both nodes i and j belong to the same community,
otherwise it is zero.We used an igraph (Csardi andNepusz, 2006)
implementation of the multilevel algorithm (Blondel et al., 2008),
a heuristic modularity optimization function, to assign nodes
to communities.

Specificity, Robustness, and Flexibility
A rewiring process shows specificity if it rewires a network
to a specific connectivity pattern irrespective of its initial
connectivity. It shows robustness if it does not change the initial
connectivity pattern of the network. For a rewired network
with an established connectivity pattern, the Q value indicates
its connectivity state. Large Q values are attributed to modular
networks and small ones to centralized networks. There is a
natural division between modular and centralized connectivity;
this division is found at a rewiring interval that imparts
maximum variability to the rewired networks, τtransition. We use
the mean value of the modularity values of the rewired networks
at τtransition as this division.

To find the specificity or robustness of the rewiring process
we obtain a measure of the relationship between the modularity
values of the initial and the rewired networks. We fit a linear
function that estimates the modularity of the rewired networks
from the modularity of the initial networks. If this line is close
to horizontal, the rewiring process shows specificity, if it is close
to being diagonal, the rewiring process shows robustness. The
greater the variation of the data from the linear fit the more
variable the rewiring process is. We call this type of variation
flexibility. We quantify flexibility by measuring the squared
Pearson correlation coefficient (R2) of the data.R2 can be between
0 and 1, the smaller it is the more flexibility the fit shows.

RESULTS

We first examine the rewiring connectivity patterns emerging
for different τ values when the starting network is randomly
connected. The final topologies of the networks evolving from
initially random networks offer useful demarcations on the
rewiring intervals. Specifically, for smaller τ values, the network
rewires to be modular and for larger ones centralized. In the
next section, we show that for a short window of intermediate
τ values the rewired networks show maximum variability in
their connectivity patterns: they can be modular, centralized
or anything in between. We subsequently probe whether the
variability in the initial random networks can explain the
distribution of different connectivity structures in the rewired
networks. This section is a precursor of the final one where the
initial networks have an established connectivity pattern. We
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FIGURE 1 | Adjacency matrices for two example networks evolving through adaptive rewiring with different values of τ . The smaller rewiring interval (τ = 3; upper row

of adjacency matrices), produces a modular network, i.e., with dense connections within communities and sparse connections between them. The larger rewiring

interval (τ = 4.5; lower row of adjacency matrices) has a different effect on the final rewired network; it gives rise to a centralized connectivity structure, where a few

nodes have a large number of connections and the rest are sparsely connected or unconnected.

show that for larger τ values, the small biases in the connectivity
pattern of the starting random networks strongly correlate
with the forthcoming patterns of their rewired networks when
their weights are lognormally–but not normally–distributed,
effectively predicting their variability. We finally probe how the
rewiring process affects a network with an already established
connectivity pattern. We find that whereas for small τ values the
process shows specificity; rewired networks settle into modular
connectivity structures -irrespective of their initial connectivity
type-, for large τ values the process shows robustness, rewiring
leaves the networks’ connectivity type intact. In both cases
rewiring shows greater flexibility for networks with lognormally
distributed weights, compared to normally distributed ones.

Modular and Centralized Networks
In amodular network, the connections between nodes in a cluster
are dense while the connections between nodes in different
clusters are sparse. A centralized network is dominated by two
sets of nodes: a majority with no or few connections, and a
minority with heavy connectivity, the latter acting as a hub.
We used the Q metric to demarcate the τ values for which the
rewired networks are modular (highQ values), and the candidate
τ values for which the rewired networks are centralized (low
Q values). The starting network was randomly connected. Both
normal and lognormal networks show similar Q profiles across
τ : Q initially increases as a function τ reaching a plateau and
then drops off (Figure 2). There are however some differences:
normal networks have a wider range of modularity values,
reach the plateau faster, sustain it for a broader window of τ

values and are more robust to random rewirings compared to

FIGURE 2 | Modularity for both normal and lognormal networks grows as τ

increases, but then decreases for larger τ values. (A) Q as a function of τ for

prandom = 0. (B) Same as (A) for prandom = 0.2. Vertical lines indicate standard

deviations from 100 instantiations of the rewiring algorithm.

lognormal networks (the amplitude drop-off of Q with increased
randomness is smaller).

A lowQ value does not guarantee that a network is centralized,
since random or close to random networks also have small
Q values. For a fixed number of total connections, centralized
and modular networks have distinct degree distributions: the
nodes’ degrees for modular networks are close to the mean
degree, whereas the ones for centralized networks can deviate
significantly. In centralized networks the majority of nodes are
sparsely connected, and the rest are densely connected. Hence,
compared to modular networks, centralized ones have a larger
proportion of nodes with degree outliers. We used the Poisson
distribution parameters to derive the number of outliers of
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rewired networks. The Poisson distribution is a suitable baseline
since it is a good fit for the degree distribution of random Erdös–
Rényi networks. We considered outlier degrees the ones outside
of the range <k> ± 3σκ, where <k> is the mean degree of the
network and σκ the dispersion of the Poisson distribution (σκ

= <k>1/2).
The proportion of outliers as a function of τ for both normal

and lognormal networks follows a sigmoid function (Figure 3A).
These results are in agreement with the ones using themodularity
measure. Networks with high Q values have a small number of
outliers and networks with low Q values have a large number of
outliers (the exception being networks with a τ value close to zero
which have small Q values and few outliers; these types are more
in line with the properties of a random network). For τ values
that give rise to the highest Q values (τnormal = 3, τlognormal = 4.5)
we get networks with degree distributions that are concentrated
around the mean (Figure 3B). For larger τ values (τnormal = 5,
τlognormal = 7) that produce networks with the largest number
of nodes with degree outliers we get degree distributions with
a large spread and a heavy tail (Figure 3C). We get similar
strength distributions in the modular and centralized τ ranges
(inset plots in Figures 3B,C). Thus, overall with the exception of
τ values close to zero and the ones in between a transition range
(transition from modular to centralized networks), for small
τ values the rewired networks invariably converge to modular
structures and for large τ values to centralized structures.

Network Structure at the Transition Point
Our previous analyses showed that, depending on the value
of the control parameter τ , the rewiring process would drive
networks either to a modular or centralized state. At the
boundary between those two states the structure of the network
is ambiguous (Figure 4A). Moving the control parameter τ

across the boundary causes a phase transition from modular to
centralized connectivity. Our aim in this section is to probe the
properties of the network at this transition.

We estimated the τ value in the middle of the phase transition
from modular to centralized networks (τtransition) by locating the
inflection point, the point with the largest derivative value, on
each of the sigmoid curves representing the proportion degree
outliers (Figure 3A). The inflection point for lognormal networks
(τtransition = 5.5) is shifted to the right compared to the normal
ones (τtransition = 4.15). In a similar analysis on the modularity
data, where we located the highest absolute derivative value for
the descending part of the modularity curves, we found values
close to τtransition.

Having established the variability of the rewiring process
at τtransition, we opted to examine the distribution pattern of
the modularity values of the rewired networks. A plausible
hypothesis is that the distribution at τtransition is bimodal
with one peak centered at the modular region and the other
at the distributed one. A contrasting hypothesis is that the
distribution is unimodal with the peak in-between the modular
and centralized regions. For normal networks, we found a
compromise between those two hypotheses: the modularity
distribution at τtransition is uniform, with the modularity values
on the left and right boundaries giving rise to modular and

centralized networks, respectively (Figure 4A, center plot). On
the other hand, the modularity distribution for lognormal
networks is more in line with the second hypothesis: it is
unimodal, and its peak is in-between themodular and centralized
regions (Figure 4B, center plot).

The rewired networks at τtransition show maximum variability
from highly modular to highly centralized connectivity. Our
previous results indicate that beyond certain points to the left
and to the right of τtransition, variability in the distribution
of modularity values will be reduced and modular and more
centralized values, respectively, become predominant.

Here we focus on the range around τtransition, for which
rewired networks show variability. We consider how the
distribution pattern of modularity values changes during the
transition away from the inflection point and whether these
changes are dependent on the weight distribution of the network.
We find that, for normal networks, small perturbations (δτ =
0.1) strongly increase the bias of rewiring. Depending on the
sign of small perturbations to τtransition, the resulting modularity
distributions show a distinct peak either at the modular region
(negative perturbations; two leftmost plots of Figure 4A) or
the centralized one (positive perturbations; two rightmost plots
of Figure 4A). In contrast, for lognormal network, changes in
response to the same perturbations are much subtler: a mere
shift of the peak and corresponding mean of the distribution
(Figure 4B).

Effect of Random Initial Variability on
Connectivity Structure After Rewiring
Starting from a random configuration, the rewiring process for
a specific τ can result in some variability in the final network,
an effect that culminates at τtransition where networks could range
from highly modular to highly centralized ones (Figure 4, center
plots). Furthermore, at the fringes of its variability range, the
initial random network is biased toward a slightly more modular
or centralized connectivity pattern.We asked whether these small
fortuitous biases in the initial random network are carried over
during rewiring, essentially predicting the connectivity pattern of
the final network. If this is the case, then some of the variability
of the rewired networks could be explained by the variability
of the initial network. We tested the hypothesis by comparing
the modularity indices of networks before and after rewiring
for τ values in the transition point (τtransition), and for typical τ

values for which the random network rewires to be modular and
centralized (τmodular and τcentralized, respectively).

At τtransition, we found very weak correlation between
the modulation values of the random and rewired networks
(ρtransition

normal = 0.12, ρtransition
lognormal = 0.15; Figure 5B). This indicates

that the connectivity pattern of the rewired network at τtransition
is nearly independent of the connectivity bias of the initial
random network. The same was true for τmodular and τcentralized
values for normal networks and for lognormal networks
but only at τmodular (Figures 5A,C). At τcentralized lognormal
networks showed a strong positive correlation (ρcentralized

lognormal =
0.66, Figure 5C, green data points). The linear fit that best
explains the data has a slope of 1 and a bias of 0 which
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FIGURE 3 | For larger τ values, rewired networks have a large proportion of degree outliers from the mean with the majority of the nodes being sparsely connected

and some heavily connected. (A) Proportion of nodes with outlier degrees as a function of τ for normal and lognormal networks. Vertical lines indicate the standard

deviations from 100 instantiations of the rewiring algorithm. (B) The degree distribution for modular normal and lognormal networks (left to right; τnormal = 3, τlognormal =
4.5). Inset plots show the corresponding strength distributions. (C) Same as in (B), but for centralized networks (τnormal = 5, τlognormal = 7). In all cases prandom = 0.2.

For (B,C) we took the aggregate of 1,000 rewiring instantiations and normalized them so that the sum of the proportions adds to 1.

FIGURE 4 | Normal networks show a uniform modularity distribution and are more prone to connectivity transitions after slight perturbations to τtransition compared to

lognormal ones which have a modularity distribution with a distinct peak. (A) Normal network. Modularity distributions for τ values at and near the transition point:

(τtransition – 2δτ , τtransition – δτ , τtransition, τtransition + δτ , τtransition + 2δτ ) = (3.95, 4.05, 4.15, 4.25, 4.35). For each τ we obtained 1,000 modularity values each

corresponding to a different instantiation of the rewiring algorithm (B). Same as (A) for the lognormal network τ = (5.3, 5.4, 5.5, 5.6, 5.7).

indicates that the rewired network maintained the modularity

value it had before rewiring. This suggests that for lognormal

networks at τcentralized the rewiring process exhibits robustness.

However, random networks exhibit a small range of variability
in their topologies and thus any inference about robustness

or specificity cannot be conclusive. For initial networks with a
wider range of modularity values, rewiring could possibly show

different characteristics.

Specificity, Robustness and Flexibility of
Pre-established Complex Network
Structures
In the previous section we examined to what extent the biases
in the connectivity of a random network would affect rewiring
for different τ . Even though an initially random network may
serve as a suitable baseline, it has a small range of variability
in its connectivity pattern. Hence, it is inconclusive in meriting
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FIGURE 5 | The rewiring process for lognormal networks at τcentralized shows stability. (A) Scatter plot of the modularity values, Q, of networks after 4,000 rewirings at

τmodular (τnormal = 3, τlognormal = 4.5) against those of their initial random configuration show no correlation. (B) Networks in the transition point (τnormal = 4.15, τlognormal

= 5.5). Scatter plots show weak positive correlation. (C) For normal networks in the centralized regime there is still no correlation, however the modularity of the

random network for lognormal networks is positively correlated with the final rewired network (τnormal = 5, τlognormal = 7), with a linear fit of slope 1 and intercept 0.

the specificity, robustness and flexibility of the rewired process.
For that, the starting networks to be rewired should have a
large variability in their modularity. In this context we ask:
Once a network reaches a connectivity pattern, be it modular or
centralized, how does it respond to additional rewiring?

To probe this question, we compared the networks’
modularity values at 4,000 and 8,000 rewirings. More specifically,
an initially random network is rewired 4,000 times at τtransition;
next, it is rewired an additional 4,000 rewirings at τtest. We
compare the Q values of the network at 4,000 (at τtransition)
and 8,000 rewirings (at τtest). The set of networks produced at
τtransition after the first 4,000 rewirings forms a suitable testbed
since the networks have the highest variability and they are
also not biased toward a more modular or centralized pattern
(Figure 4). We use different τtest values, to probe how they will
affect the connectivity pattern of the network established after
the first 4,000 rewirings.

We evaluate the relationship between the two sets of Q values
by finding a linear fit between them, which is optimal in terms
of least squared error. The linear fit takes the form Q̂8000 =
αQ4000 + β , where Q4000 is a data vector containing the Q values
of all the networks after the first 4,000 rewirings, the two scalar
terms, α and β, are the slope and bias, respectively, that we adjust
to find the fit, Q̂8000, that gives the best approximation in a least
squares error sense of the networks’ Q values after an additional
4,000 rewirings. Our classification of networks as modular or
centralized is based on the modularity distributions at τtransition.
A network with a modularity value that is <0.45 is considered
modular, one with a modularity value >0.50 is considered
centralized. The gray area of modularity values between 0.45
and 0.50 is demarcated by the means from the modularity
distributions of lognormal and normal networks at τtransition.

For both normal and lognormal networks at τtest = τtransition
(Figure 6B), the estimated slope and bias terms are the same, α=
0.6 and β = 0.25, respectively. This fit indicates robustness, since
networks with one kind of connectivity pattern at 4,000 rewirings
tend to stay at that pattern at 8,000 rewirings. More specifically,
in the centralized range the linear fit gives Q̂8000 values that are

greater than Q4000 but still within the centralized range for the
most part, i.e., for Q4000 values between [0.2, 0.45], the linear
fit gives Q̂8000 values between [0.37, 052]. In the modular range,
both Q4000 and Q̂8000 have even closer values, i.e., for Q4000

between [0.5,0.7] the linear fit gives Q̂8000 between [0.55, 0.67].
The previous analysis showed that when τtest is equal to

τtransition, both normal and lognormal networks sustained on
average their connectivity pattern. But for other τtest values, the
rewiring process could act differently. One intuitive hypothesis
is that for τtest < τtransition and τtest > τtransition rewiring will
drive the networks to more modular and centralized connectivity
patterns, respectively, i.e., in both cases the rewiring process will
show specificity.

This hypothesis holds true when τtest = τmodular (τnormal = 3,
τlognormal = 4.5) since the majority of networks move to modular
connectivity patterns, as displayed by their high Q8000 values,
irrespective of their Q4000 values (Figure 6A). This observation
is reinforced by the linear fits for both normal and lognormal
networks where the estimated bias terms are significantly greater
compared to the slopes [(αnormal = 0.21, βnormal = 0.54) and
(αlognormal = 0.31, βlognormal = 0.43)]. For τtest = τcentralized
(τnormal = 5, τlognormal = 7, Figure 6C) the rewired networks do
not collapse to a centralized state (small Q8000 values) but rather
lock in the connectivity state they had at 4,000 rewirings. More
specifically, the linear fit for the normal networks and to a lesser
extent for the lognormal ones show that the Q4000 and Q̂8000

pairs have similar values for the whole range of modularity values
[(αnormal = 0.91, βnormal = 0.07) and (αlognormal = 0.78, βlognormal

= 0.06)].
To quantify how consistent the modularity data (Q4000, Q8000)

are with their linear fits we measured their squared Pearson
correlation coefficient (R2). R2 values close to one merit that
a linear fit is a good estimator to the actual data. We found
that the R2 values are smaller for lognormal networks compared
to normal ones for the τtest values around τtransition (Figure 7;
τtest ∈ [τtransition − 2, τtransition + 2]). In an additional analysis
we found that the variance of the fitted slope and bias terms is
greater for lognormal networks (Supplementary Figure 2). Both
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FIGURE 6 | Robustness and specificity of the rewiring process depend on the value of τtest. The Q values of networks after 4,000 and 8,000 rewirings along with their

linear fits are shown. For the first 4,000 rewirings τtransition (τnormal = 4.15, τlognormal = 5.5) was used, for the subsequent 4,000 rewirings τtest. We collect data from

1,000 rewiring instantiations of a condition. In all cases prandom = 0.2. (A) τtest = τmodular (τnormal = 3, τlognormal = 4.5). (B) τtest = τmodular. (C) τtest = τcentralized (τnormal =
5, τlognormal = 7).

results suggest that there is an inherent flexibility in following
a specific linear pattern for lognormal network compared to
normal networks. This property imparts them greater flexibility.

DISCUSSION

Modeling studies for the evolution of complex networks have
shown that a simple adaptive rewiring rule provides networks
with brain-like, small-world structure. Whereas alternative basic
rules, such as winner-take-all or non-linear growth, respectively,
lead either to modular (Bauer et al., 2014) or centralized (Bauer
and Kaiser, 2017) network structures only, adaptive rewiring can
establish both modular and centralized structures, depending on
the value of a single control parameter, the rewiring interval
(Jarman et al., 2017; Rentzeperis and van Leeuwen, 2020).

Since adaptive rewiring can lead to different architectures,
we considered the specificity, robustness, and flexibility of
networks evolving through adaptive rewiring. We find specificity
of network evolution for adaptive rewiring with small rewiring
intervals (fast rewiring rates). That is, networks evolve to be
modular irrespective of their previous connectivity state. This
result is in line with the underlying architecture of the brain, since
many of the brain’s functions are broken down into functional
units laid out into cortical maps (Mountcastle, 1957; Hubel
and Wiesel, 1962). Neurons within functional units are densely
connected with each other while connections between units are
sparse (Kaas, 2012). This type of organization has been proposed
to emerge from an early period of spontaneous activity where
wiring is diffuse, followed by mostly sensory dependent activity
where the rewiring process is specific within regions (Katz and
Shatz, 1996). Here we show, however, that such a distinction in
activity is not necessary for modular structure to arise.

The specificity of activity dependent rewiring in the cortex has
been amply demonstrated in experimental studies. Notably, in
neonatal ferrets, after auditory deafferentation, retinal input was
rerouted into the auditory pathway leading to the transformation

FIGURE 7 | Lognormal networks show greater flexibility compared to normal

networks. Squared Pearson correlation coefficient (R2) between Q4000 and

Q8000 for different τtest values. We used bootstrapping to calculate the mean

and standard deviation at each point. More specifically for each point we

randomly selected 100 Q pairs (Q4000, Q8000) with replacement from a sample

of 200 pairs and estimated R2. We repeated this process 1,000 times. We

calculated the mean and standard deviation from this 1,000 generated data.

of neurons in the primary auditory cortex into visually responsive
ones, organized in an orientation map comparable to V1 (Sur
et al., 1988; Roe et al., 1990; Melchner et al., 2000; Sharma et al.,
2000; Horng and Sur, 2006). Thus, activity showed specificity in
that it bypassed any structural blueprint of the primary auditory
cortex to reorganize it in accord with the novel visual input.
Conversely, lack of input activity can also lead to dramatic
changes in the reorganization of the cortex as it has been
indicated by the effects of sensory loss (Bavelier andNeville, 2002;
Merabet and Pascual-Leone, 2010).
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Robustness, on the other hand, is involved in maintaining
function despite changes taking place in the brain. In the context
of our study, it can be viewed as a mechanism that constrains
the possible topologies of an adaptable network in that rewiring
does not destroy the layout of its overall architecture. We find
robustness in networks evolving with larger rewiring intervals
(slow and intermediate rewiring rates).

Biological networks are characterized by robustness. They
maintain functionality via a range of homeostatic regulatory
(Davis and Goodman, 1998) and plasticity (Turrigiano and
Nelson, 2004) mechanisms. A number of activity dependent
mechanisms are also geared toward homeostasis, such as sliding
plasticity thresholds (Bienenstock et al., 1982; Bear, 1995),
conservation of total synaptic weight (Royer and Paré, 2003)
and spike-timing-dependent plasticity rules (Abbott and Nelson,
2000; for a review Turrigiano and Nelson, 2004; Turrigiano,
2012). Modeling studies have also inferred that homeostatic
mechanisms controlling activity within certain boundaries
could influence rewiring (Butz et al., 2009; Butz and van
Ooyen, 2013). Our results suggest that the brain could rely on
adaptive rewiring to retain its functionality because certain of its
substructures are in a dynamic equilibrium, that is, connections
change adaptively, but macroscopic topological features
remain unchanged.

The behavior of the rewiring mechanism in our model is
controlled by the rewiring interval. If the rewiring process is
poised at the τtransition region, then slight perturbations to τ

can sway the rewiring process from robustness to specificity
and vice versa. This observation resembles the hypothesis of
self-organized criticality, the notion that the brain operates in
a boundary between different dynamics (Bak et al., 1987; de
Arcangelis et al., 2006; Shin and Kim, 2006; Levina et al.,
2007; Wang et al., 2011; Hesse and Gross, 2014). This kind
of modus operandi offers a parsimonious explanation on
a possible mechanism for the reorganization of the brain
that can accommodate specific design principles (specificity)
and maintain functionality (robustness). Both specificity and
robustness permit stochastic variations deviating from the rule,
which generally confer flexibility to biological systems.

The rewiring mechanism shows specificity and robustness for
both normal and lognormal networks. However, for lognormal
networks, the rewiring process shows greater flexibility in that
it steers away from specificity and robustness more often
compared to normal networks. Flexibility, as defined here,
could enhance adaptability and convergence to optimal values
(Rumelhart et al., 1985; Watts and Strogatz, 1998). A possible
effect of flexibility in rewiring is a certain amount of diffuse
and redundant connections in the brain (Turrigiano and Nelson,
2004). Such connections could facilitate reorganization of the
brain during development, in learning, and after injury. In the
current adaptive rewiring model, the characteristics of specificity,
robustness, and flexibility arise naturally for different rewiring
intervals. The versatility of the basic principle embodied by the
model, therefore, may underlie the specific mechanisms of brain
development, learning, and recovery from injury.
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