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Neurodynamic organizations are information-based abstractions, expressed in bits, of

the structure of long duration EEG amplitude levels. Neurodynamic information (NI, the

variable of neurodynamic organization) is thought to continually accumulate as EEG

amplitudes cycle through periods of persistent activation and deactivation in response

to the activities and uncertainties of teamwork. Here we show that (1) Neurodynamic

information levels were a better predictor of uncertainty and novice and expert behaviors

than were the EEG power levels from which NI was derived. (2) Spatial and temporal

parsing of teamNI from experienced submarine navigation and healthcare teams showed

that it was composed of discrete peaks with durations up to 20–60 s, and identified the

involvement of activated delta waves when precise motor control was needed. (3) The

relationship between NI and EEG power was complex varying by brain regions, EEG

frequencies, and global vs. local brain interactions. The presence of an organizational

system of information that parallels the amplitude of EEG rhythms is important as it

provides a greatly reduced data dimension while retaining the essential system features,

i.e., linkages to higher scale behaviors that span temporal and spatial scales of teamwork.

In this way the combinatorial explosion of EEG rhythmic variables at micro levels become

compressed into an intermediate system of information and organization which links to

macro-scale team and team member behaviors. These studies provide an avenue for

understanding how complex organizations arise from the dynamics of underlying micro-

scale variables. The study also has practical implications for how micro-scale variables

might be better represented, both conceptually and in terms of parsimony, for training

machines to recognize human behaviors that span scales of teams.

Keywords: teamwork, EEG, uncertainty, information, team neurodynamics, social coordination dynamics

INTRODUCTION

It has been proposed that biological systems, like teams, are hierarchies of information that are
functionally organized across spatial and time scales (Flack, 2017a). Uncertainty is the messenger
on this hierarchy guiding information back and forth between the environment and the team
(Flack et al., 2012), with ripples and islands in these information streams representing periods of
changing organization [see Stevens et al. (2013) for team examples]. This changing information
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helps the brain identify regularities in the environment
and use them to shape adaptations along the macroscopic
and microscopic continuum of experience and learning
(Daniels et al., 2017).

In this process, uncertainty plays a unifying role in how the
task and environment are perceived by a team (Stroulia and Goel,
1994; Hong, 2010), and how adaptive inference guides attention,
motor control, decision making and ultimately learning (Friston
et al., 2006; Friston, 2010; Sengupta et al., 2013; Dragomir et al.,
2020).

As the brain learns to track patterns during training, discrete
segments of cognitive stability develop that are energetically the
“best fits” for predictively navigating through the tasks while
avoiding surprise (Knill and Pouget, 2004). With practice, the
responses and cognition required to execute them become more
automatic, and require less energy to perform (Dunst et al.,
2014; Sun et al., 2020). As a result we think and act in terms of
schemata (Rumelhart, 1980), scripts (Schank and Abelson, 1977),
chunks (Schneider and Logan, 2015), policies (Pezzulo et al.,
2018) and episodes (Farooqui andManly, 2018, 2019), which help
streamline the moment to moment activities by structuring them
into routines around frequently experienced events (Cooper and
Shallice, 2000); in other words, exploiting what has already
been experienced and learned (Daw et al., 2006). To the extent
that the planning and execution of these routines meets the
task requirements, the evolving situation will be predictable and
teams will avoid surprise.

Occasionally, escalating unfamiliar environments and variable
task outcomes generate unexpected sensory signals increasing
uncertainty about what action to take next. This requires a switch
from exploiting what has been learned to exploring and learning
alternative approaches. The open-ended nature of exploration
makes it difficult to predict how long the uncertainty will last
(O’Rielly, 2013; Soltani and Izquierdo, 2019; Domenech et al.,
2020), as the micro-states of uncertainty begin to scale into
macro-states of pauses and hesitation (Kaufman et al., 2015).
An open question, with implications for training to perform in
complex environments, is how uncertainty at the neural level
scales into observable hesitation.

Bottom up approaches to this question are complicated in that
most low-level neural processes are not in themselves directly
causal to team performance but involve everyday cognitive
activities that support seeing, listening, decision making, etc. It
is when these activities are transiently amplified or modified
by the context, that they assume greater importance for teams.
Studies performed at the scale of a half to one second have used
EEG, fMRI, fNIRS or MRI and have measured the interpersonal
dynamics of seen or heard motor actions (Caetano et al., 2007);
speaker-listener coupling (Stephens et al., 2010; Perez et al.,
2019); duets playing guitar (Sänger et al., 2012); and synchronic
vs. diachronic movements (Tognoli and Kelso, 2015). These
and other events are increasingly being probed by new sensor
technologies and methods (Likens and Wiltshir, 2020).

The meaning of EEG power is also important. Alpha band
oscillations (8–12Hz) emphasize different functional properties
depending on whether their states are synchronized (a.k.a.
activated or high power) or desynchronized (a.k.a. deactivated

or low power). Low power (i.e., often called suppressed) states
are seen during attentive reading (Lachaux et al., 2008) and
tend to favor new memory encodings. Higher alpha power
states may transiently suppress gamma rhythms and help protect
the contents of working memory from being disturbed thereby
enhancing retention (Klimesch et al., 2006; Ossandon et al.,
2011; Klimesch, 2012; Bonnefond and Jensen, 2015; Wianda and
Ross, 2019). Similar considerations might apply to gamma waves
(Sedley and Cunningham, 2013) and delta waves (1–4Hz), which
show an increase in power during the onset of fatigue, which
decrease following challenge interruptions (Bodala et al., 2018).

There is a need however for higher level representations where
modifications to and amplifications of the micro-scale dynamics
are allowed to change freely, while still providing “best fit” (i.e.,
more stable) functional approximations for higher level activities
(Nikolaus et al., 2008). In other words, abstractions that have a
basis in mechanism but where many of the micro details don’t
need specifying (Flack, 2017b).

We have proposed that the informational properties of EEG
rhythms might be candidates for such a representation as their
basis in organization, not power or phase, may be more likely to
align with processes responsible for observable macro-scale team
organizations and behaviors. Such neurodynamic organizations
contribute properties to the system not always possessed by the
amplitude or phase of brainwaves. For instance, neurodynamic
information (the variable of neurodynamic organization) has
been shown to link with the organization of team activities
(Stevens and Galloway, 2017) or speech (Gorman et al., 2015), or
of team uncertainty (Stevens et al., 2016; Stevens and Galloway,
2019).

In this paper we parse the neurodynamics of teams into
spatial and temporal subsets and merge them with lower level
properties of EEG amplitude. The goal is to develop a framework
for describing periods of neurodynamic uncertainty that could
guide real-time feedback during training as well as support
machines in their understanding of human uncertainty (Stevens
and Galloway, 2019).

We consider three questions within this context.

1. Performing attention-demanding cognitive tasks requires not
only regional activations but also deactivations that reflect
decreased neural activity in regions supporting processes
unrelated or irrelevant to the task at hand (i.e., Gusnard
and Raichle, 2001; McKiernan et al., 2003; Fox et al.,
2005; Lachaut et al., 2012). The first question asks whether
there are periods of uncertainty, as identified by elevated
neurodynamic organization, preferentially associated with
periods of activated or deactivated EEG power? Are there
channel or frequency dependencies for those periods where
increased NI represents high EEG power vs. when they are
represented by low EEG power?

2. Sensory likelihood functions, currently felt to be the
lowest level where uncertainty is represented in cortical
neurons are often unimodal (Beck et al., 2008; Walker
et al., 2020) while multi-channel, multi-frequency-based team
neurodynamic data streams appear multifractal (Likens et al.,
2014). The second question asks whether the neurodynamic
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organizations associated with uncertainty are discrete at the
sensor and frequency level or distributed across scalp regions
and EEG frequencies?

3. Scalp-averaged NI levels vary based on their frequency,
magnitudes and durations of neurodynamic organization.
From a training and feedback perspective important questions
are: How frequently does uncertainty occur? What is the
level of uncertainty? How long is the uncertainty likely
to last? The third question asks whether it is possible to
develop quantitative neurodynamic models of the frequency,
magnitude and duration of periods of uncertainty?

To expand the generality of the findings, examples include
required US Navy submarine simulation training by experienced
navy team members, required simulation training for
experienced emergency air medical healthcare teams and
advanced placement problem solving teams.

METHODS

Teams and Tasks
The data sets for these studies were sampled from teams
performing complex and relevant tasks including (a) submarine
navigation teams performing required simulations, (b)
experienced and novice healthcare teams practicing patient
ventilation, and c) advanced placement teams engaged in dyadic
problem solving. The subjects, and task details for the Map
Navigation Task (Stevens and Galloway, 2014, 2015), healthcare
(Stevens et al., 2016, 2018; Stevens and Galloway, 2017) and
Submarine Piloting Navigation (Stevens and Galloway, 2016,
2017; Stevens et al., 2017) have been previously described
(Stevens and Galloway, 2017, 2019; Stevens et al., 2019). The
physical settings and a brief summary of each task are shown in
Figure 1.

Ethics Statement
Informed consent protocols were approved by the Biomedical
IRB, San Diego, CA (Protocol EEG01), the Order of Saint Francis
Healthcare Institutional Review Board, and the Naval Submarine
Medical Research Laboratory Institutional Review Board. All
participating subjects consented (including images and speech
for additional analysis) per approved applicable protocols. To
maintain confidentially, each subject was assigned a unique
number known only to the investigators of the study, and subject
identities were not shared. This design complies with DHHS:
protected human subject 45 CFR 46; FDA: informed consent 21
CFR 50.

Modeling Neurodynamic Organizations
and Information
The EEG sensors were adjusted for good contact (<10�) and
the EEG data streams (software timing with hardware timing)
were synchronized with electronic time markers (e.g., trigger)
as well as with (e.g., lab streaming layer, a.k.a. LSL) the events
observed in audio/videos with <50ms of accuracy (Kothe,
2014). Commonly found artifacts occur from speech, eye blinks,
heartbeats, breathing rhythms and other electromyography

sources. The pre-processing protocol for the EEG data streams
were optimized for removing these artifacts. This included:
(1) the rejection of bad channels, (2) using separate high
and low pass frequency filters for detrending the data to
properly calibrate the thresholds prior to detecting and adaptively
removing sinusoidal noise (Mullen, 2012), enhanced source
separation techniques (Delorme et al., 2007) for detecting
artifacts and interpolating artifact “bursts” (Mullen et al., 2015)
and (3) robust average referencing (Bigdely-Shamlo et al., 2015).
Software tools included: customized MATLAB R© scripts as well
as the MATLAB R©-based FieldTrip R© toolbox (Oostenveld et al.,
2011), the open source EEGLAB signal processing environment
(Delorme and Makeig, 2004), Lab (ABM, Carlsbad) and/or,
NeuroPype R© Suite (Intheon Labs, San Diego) as previously
reported (Stevens and Galloway, 2015, 2017, 2019; Stevens et al.,
2016). As neurodynamic organizations regularly occur during
silence, speech is an unlikely source for most organizations
(Stevens and Galloway, 2014, 2015). Power spectral density
(PSD) was estimated with the Welch method (Welch, 1967).
Commercial EEG headsets with both dry and wet electrodes have
been used from multiple vendors with the number of sensors
ranging from five to nineteen. A greater number of electrodes
allowmore detailed analysis of the spatial locations of the sources
of uncertainty in the brain.

Team and Individual Neurodynamic
Modeling
The modeling goal was to develop a multi-modal, multi-level
system that would provide neurodynamic measures from each
team member at a 1Hz resolution that could be quantitatively
compared across sensor sites (i.e., the occipital lobe vs. the motor
cortex) and the 1–40Hz frequency spectra from each person.

Each second the EEG power spectral density (PSD) levels
were separated into the performance averaged high, medium,
and low power levels and assigned the symbols 3, 1, and −1.
The entire performance of any team member could then be
described by several hundred parallel data streams of −1, 1, or
3’s (Figure 2). The data from each team member (shown for a
dyad in Figure 2A) was then combined to create a composite
neurodynamic symbol (NS) that represented the team state. With
two persons and three states, the team symbolic history consisted
of data streams of the symbols 1 to 9 and a maximum entropy of
3.17 bits (Figure 2B).

A single neurodynamic symbol contains no information;
it has an entropy of 0. The detection and quantitation of
uncertainty and hesitation used information modeling over the
Neurodynamic Data Streams (NDS), followed by the calculation
of the entropy (Shannon, 1948, 1951) of the symbol distributions
that were modeled over 60 s that were updated each second.

The neurodynamic history of the team’s performance
described in Figure 2 was only a partial history based on a single
1Hz frequency bin from a single EEG sensor. For a 19 sensor
EEG montage, with each sensor containing forty 1Hz bins, this
process would be repeated 760 times.

The bits of information calculated from the entropy
measures were subtracted from the maximum entropy for

Frontiers in Systems Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 606823

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Stevens and Galloway Quantitative Estimates of Team Uncertainty

FIGURE 1 | Summaries of the tasks and brief displays of their physical settings.

the number of unique symbols to provide Neurodynamic
Information (NI), a positive value of information. This
relationship is shown in Figure 3 which compares the
distributions of entropy and NI for the Medical Flight
(Life Flight) trauma team performance described below.
This figure also shows the changes in the distributions
when the NS data streams were randomized six times
before modeling.

Bounding the Limits of Information
The entropy of the neurodynamic symbol streams can never
be greater than the maximum of the number of symbols; for
three PSD levels these would be 4.75 bits for a 27 symbol three
person team, 3.17 bits for a nine symbol dyad, or 1.59 bits for an
individual. The entropy can also never be lower than 0, which is
the entropy of a single symbol. These mathematical limits mean
that the entropy of any team of three persons where the EEG is
separated into three levels will have entropy levels between 0 and
4.75 bits.

Calculating the EEG Power Values
To preserve the activation-deactivation meanings of EEG the
NDS were modeled numerically as well as symbolically using
the −1, 1, and 3 values, which enabled dynamic comparisons
between neurodynamic organizations expressed as NI bits and
the underlying EEG power values (EEG-PV). A numeric moving
average of 60 s was performed over EEG-PV data streams to align
with the NI.

RESULTS

Parsing the Neurodynamic Information of a
Map Task Performance
The dyad performed the Map Navigation Task (Doherty-
Sneddon et al., 1997) with the Giver (G) verbally directing
a second person, the Follower (F), in drawing a line
through landmarks on (F’s) computer screen (Stevens and
Galloway, 2014, 2015, 2017). During the task, the team was
exchanging information and (F) was drawing paths with
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FIGURE 2 | Team and individual neurodynamic modeling of a dyad. (A) A sample Neurodynamic Symbol (NS) showing a 1 s period where the EEG power was high

for team member 1 (G), and average for team member 2 (F). (B) The nine-symbol Neurodynamic State Space (NSS) for two persons with three EEG power levels.

(C) The distributions of the −1, 1, and 3 symbols need to be equal for accurate quantitative entropy comparisons. (D) Neurodynamic Data Streams (NDS) are symbol

sequences that span the performance. For a dyad they are the team symbols in Figure 2B, while for individual team members they would be the−1, 1 and 3 values

used symbolically. Note in Figure 2D that the symbol expression for both team and individual NDS were not random but punctuated by periods of symbol repeats

which elevated the NI. Periods of symbol repeats were quantitated using entropy calculations over a 60 s window that was updated each second. (E) The NDS and

the neurodynamic information tracing is shown for the dyad at the C3 sensor for the 18 Hz frequency.

the computer mouse around the task landmarks. Around
350 s (F) had difficulties controlling the cursor with the
computer mouse and while attempting to gain control,
began rapidly clicking it to send commands (Figure 4B). As
the Follower became frustrated [indicated by (F) speech],

the NI first increased in the parietal region (P0z, P3)
and subsequently to the pre-motor/motor region (C3 and
C4 sensors).

At a quantitative level, restricting the analysis to the EEG
sensor level raised the average NI of the Follower from 0.035 bits

Frontiers in Systems Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 606823

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Stevens and Galloway Quantitative Estimates of Team Uncertainty

FIGURE 3 | Histogram of the information levels in a medical flight team. This

figure shows the relationship between the entropy and the NI measures of the

medical flight team detailed in Figure 8. The average NI was 0.27 bits while

the NI where the NDS were randomized prior to modeling was 0.09 bits which

was significantly lower than the non-randomized data (Z = −5.5 P < 0.001),

and removed the long-tailed distribution.

to 0.16 bits. Restricting further to the 18-Hz frequency during
the 60 s of peak activity of the C3 sensor further increased the
average NI to 0.26 bits, reaching a peak fifteen times greater than
the Follower’s average NI in Figure 4A. This peak of 0.46 bits of
NI was∼30% of that possible for three symbols (1.57 bits).

Lastly, a 60 s moving average of the EEG power values (EEG-
PV) was calculated for the 18Hz segment using the −1, 1, and 3
values numerically. The bar graph in the lower part of Figure 4D
showed a mean power value of 0.26, which was significantly
lower than the performance average (i.e., the mean performance
level of equal numbers of −1, 1 and 3 values) of 1.0 (Z= –
2.97, p < 0.05). These results suggest that the organization that
produced the elevatedNI resulted from persistent deactivation of
mu rhythms, which occurred when (F) visualized and performed
drawing movements (Caetano et al., 2007; Tognoli and Kelso,
2015).

Transforming EEG µ-Volts Into Information
Bits Creates New Behavior-Related
Properties
The across-scale parsing of neurodynamic information from
the team to the micro level dynamics becomes interrupted
at the level of EEG power where symbols representing either
activated or de-activated EEG power resulted in elevated
neurodynamic organization (Figure 4D). We therefore asked
which was the better predictor of team and team member
behavior: a measure of organization, (NI, bits of information), or
a measure of EEG power levels (EEG-PV). This was tested in two
contexts: (1) Distinguishing experienced physician and operating
room nurses performances from those of medical students
during simulation training; and, (2) distinguishing performance

segments associated with verbal uncertainty from those without
(Figure 5).

In the first experiment four experienced and five medical
student teams performed patient ventilation simulations and the
scalp averaged NI and EEG-PV were modeled. The NI levels of
medical students (Figure 5A) were significantly higher (median
= 0.19 bits), than those of experienced practitioner (Figure 5B)
(median = 0.12, Z = −2.0, p = 0.04, Wilcoxon). A similar
comparison using EEG-PV from which the NI were derived
showed no across-group differences; medical student (median =

1.16), experienced practitioners (median = 1.11, Z = −0.16, p
= 0.87).

In the second experiment we asked whether the NI and
EEG-PV could equally distinguish MT performance segments
where uncertainty was present or absent. The uncertainty
was determined by verbalizations of (G) or (F). Twenty-nine
segments from six MT performances were isolated where either
(G) or (F) verbally indicated uncertainty (71 to 125 s in length
(mean/SD = 96.1 ± 17.2 s). These utterances indicated not
knowing what to do in the task, confusion about navigation
instructions due tomirrormap images of (G) and (F), discussions
regarding the need to start over, or expressed difficulty during
periods where the drawing tool was unresponsive. The NI
(Figure 5C) and EEG-PV (Figure 5D) in these segments were
compared with ten similarly sized segments where speech
indicated no uncertainty or stress. The data for this experiment
were acquired as part of a study where unsupervised artificial
neural networks were used to categorize the neurodynamic
uncertainty of Map Task dyad teams (Stevens and Galloway,
2019).

A Wilcoxon comparison of the NI bits was significantly
different between segments with (median = 0.072), and without
uncertainty (median= 0.033, Z = 2.52, p < 0.02), while a similar
comparison using the EEG-PV was not different between the
segments with (median= 0.96) or without expressed uncertainty
(median= 1.05, Z =−0.28, p= 0.77).

This comparison confirmed for healthcare teams that the
level of neurodynamic organization of experts was lower than
that of novices. The data also indicated that the neurodynamic
organizational properties of NI were more reflective of macro-
scale behaviors than the underlying EEG power values from
which the NI was derived. In other words, the data streams
consisting of high, average and low EEG-PV lacked the
information held by NI that enables linkages to be made with
higher level behavioral measures of teamwork.

Neurodynamics of Submarine Piloting and
Navigation
The dynamical relationships between NI and EEG-PV were next
studied with an expert submarine navigation team who were in
port training for a new deployment. The goals were to determine:
(1) whether discrete NI dynamics would be seen during a high
stakes, high fidelity training exercise when the analysis was
restricted to that of an individual sensor and EEG frequency; and,
(2) whether the increased NI resulted from persistently activated
or deactivated EEG power.
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FIGURE 4 | Quantitative comparisons of NI across spatial scales. (A) The bits of information of the team, team members, and their shared information is shown for a

Map Task performance; the two lines are there for aligning the panels. (B) The NI dynamics at each sensor of the Follower. The bar to the right shows the density of

his mouse clicks which increased around 330 s when he verbalized uncertainty. (C) The elevated NI at the C3 sensor is expanded for one segment (epoch 330-390 s)

and displayed across the 1–40Hz EEG frequency spectrum. (D) A profile plot of NI in the 18Hz frequency band is overlaid with a bar plot of the −1, 1, and 3 EEG-PV.

All NI values are shown after the subtraction of NI from parallel randomized NDS.

This analysis focused on a periodic training activity called
“Rounds” where the position of the submarine is estimated
every 3min using visual and electronic aids. Preliminary studies
identified the FzP0 dipole as having the greatest NI in the
10–11Hz region during periods of Rounds and this is shown in
Figure 6C for the Contact Manager (CM).

Time-frequency plots showed NI elevations in the 10–11Hz,
and the 23–40Hz regions that were spaced at ∼3min.
intervals (Figure 6A shown for the CM). The EEG-PV profiles
(Figure 6B) showed segments, particularly in the 23–40Hz
bands, with either activated (light bands) or deactivated EEG
power (dark bands) that visually aligned near the periods of
increased NI.

The NI were analyzed for the NV, QM and CM who were
the primary control room navigation team (Figure 6D). The
11Hz activity is highlighted as it was a frequency distant from
the broader 23–40Hz activity. It was also more discrete, thus
allowing a better estimation of the duration of each peak. The
individual dynamics are aligned with a timeline marking the
1min countdown events of the Rounds sequence. The NI peaks
for the three team members were weakly correlated (NV-QM, r
= 0.36; NV-CM, r = 0.3; QM-CM, r= 0.34; p < 0.01 for all), but
not synchronous.

As shown in Figure 7, when measured continuously the
correlation between levels of NI and EEG-PV was moderately
negative (r =−0.41).
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FIGURE 5 | Linking levels of NI and EEG-PV with observable behaviors. Top: The scalp-averaged levels of NI (A), and EEG-PV (B) were compared between

fourth-year medical students (n = 15) and experienced operating room physicians and nurses (n = 12) while they performed simulations of patient ventilation. Bottom:

The NI (C) and EEG-PV (D) were compared for segments from MT performances where uncertainty was (n = 29) or was not (n = 10) being expressed.

Parsing the Neurodynamic Information of a
Medical Flight Team
To gauge the generality of the framework in Figure 3, a
similar analysis was performed with an experienced two-
person medical flight team where EEG was acquired within
a stationary helicopter environment. The task was simulated
pediatric bronchiolitis. The Flight Nurse at the head of the
child (FN-H) began by unpacking the supplies needed for
establishing an airway for the infant (Figure 8A). (FN-H) then
calculated and diluted a dosage of ketamine hydrochloride
(because of its bronchodilatory properties) for sedation in
order to perform the ventilation procedure (i.e., intubation).
Two intubation attempts were performed followed by a period
of infant monitoring; the elevated NI occurred during the
intubation procedures.

The Flight Nurse at the side position (FN-S) began with an
intraosseous infusion (IO) that required drilling into the child’s
tibia. Next FN-S rapidly provided rescue ventilation with bag-
valve-mask ventilation prior to and after the intubations. For
FN-S, the periods of elevatedNI occurred during the IO infusion.

The average NI of the two team members (FN-H = 0.066
bits; FN-S = 0.08 bits) and the shared information equaled the
information of the team (0.15 bits), a relationship similar to that
seen in Figure 4.

At the sensor level the periods of elevatedNI involved a subset
of EEG channels, which for FN-H were those in the frontal
region, while for FN-S they weremostly of the central and parietal
regions (Figure 8B). The peaks in the most active EEG channels
were often discrete and the NI was enriched over five times the
session average (Figure 8C).
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FIGURE 6 | (A) Time x Frequency x NI plot. The color bar indicates the bits of NI. (B) Time x Frequency x EEG-PV plot. The color bar shows the level of EEG-PV

calculated from the −1, 1, and 3 values; the average value for each frequency band was 1.0. (C) The data were modeled from the FzP0 dipole of the CM which had

the highest NI levels of the channels. (D) The countdowns for the last minute of the five Rounds sequences are plotted vs. time. These figures plot the NI for the

Navigator (NV mean NI = 0.23 bits, randomized = 0.01) Quartermaster (QM mean NI = 0.14 bits, randomized = 0.017) and the Contact Manager (CM, mean NI =

0.12 bits, randomized = 0.03).

Similar to Figure 4, sample NI peaks were further analyzed
for the events when FN-S was inserting a needle into the tibia
for fluid infusions (Figures 8A,C,D). The NI peak highlighted in
Figure 8C (the Fz channel) of FN-S was localized to the 10-12Hz
frequency range and was symmetrical with a half prominence
of 36 s (Figure 8D). This peak had NI level (0.9 bits) which was
greater than half of the theoretical maximum of 1.59 bits. The bar
chart in the lower level of Figure 8D showed a mean power level
of 0.2 which was lower than the session average of 1.0 indicating
EEG deactivation during this period.

The NI peak of FN-H highlighted in Figure 8B (the F7
channel) was predominantly in the 2–4Hz frequencies (i.e.,
delta wave) and was highest (0.84 bits) during the failed
intubation attempt (Figure 8E). During the gap between the two

intubations there were additional NI elevations in the beta and
low gamma range.

Estimating the Magnitude and Duration of
NI Peaks
Scalp-averaged NI levels vary based on their frequency,
magnitudes and durations of neurodynamic organization. From
a training and feedback perspective important questions are:
How frequently does uncertainty occur? What is the level of
uncertainty? How long is the uncertainty likely to last? The
frequency and magnitude of NI peaks can be estimated by peak-
finding routines that identify peaks based on the magnitude and
the relationships with their neighbors.
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FIGURE 7 | Comparison of the NI and EEG-PV dynamics of the Contact Manager. (A) The countdowns for the last minute of the five Rounds sequences are plotted

vs. time. These figures plot the NI (B) and the EEG-PV (C) for the CM. The dotted line in (C) shows the 11Hz frequency of 1.0 that demarcates positive and negative

values. All values are from the FzP0 dipole of each person. The average value of the randomized NI was 0.01 bits. The correlation between (B) and (C) was r = –0.41.

Using these routines, the incidence of NI peaks was
estimated for the team members of three Life Flight teams
each second. For maximum resolution, this was calculated
each second for each of the 1–40Hz bins for each of
the 19 sensors (Table 1). Across the six team members the
peaks of elevated NI represented 7–8 percent of the total
performance times.

The NI profiles in sections Parsing the Neurodynamic
Information of a Map Task Performance, Neurodynamics
of Submarine Piloting and Navigation, and Parsing the
Neurodynamic Information of a Medical Flight Team showed
that as the analyses proceeded from the team toward the

EEG frequency level the NI peaks became more discrete
(Figure 9A) increasing the reliability of the magnitude and
duration estimates.

At the sensor level, when estimated with a minimum
peak prominence of 0.1 bits the mean peak duration was
41 ± 18 s while the mean NI magnitude was 0.097 ±

0.04 bits (Figure 9B). When the NI peak duration was
estimated at different prominence levels, it rapidly increased
for the first 0.1–0.15 bits and then began to plateau with a
duration∼55–60 s.

When similar estimates were performed at the frequency level
a similar plateau was observed beginning around 0.2 bits. The
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FIGURE 8 | Quantitative comparison of NI levels for a medical flight team. (A) The bits of information of the team, team members and the member’s shared

information. (B) The NI dynamics at each sensor at for the head (FN-H) and side (FN-S) positions. (C) The elevated NI at the Fz sensor is expanded for one segment

(epoch 1507–1557 s) of the FN-S and displayed across the 1–40Hz EEG frequency spectrum. (D) A profile plot of NI in the 10–12Hz frequency bands is shown with a

bar chart of EEG-PV underneath. (E) A drill-down sequence for FN-H at the sensor level, followed by isolation of the 2Hz NI and EEG-PV for a segment

(1,900–2,200 s) of the P7 channel. The correlation between NI and EEG-PV was r = 0.84.

plateau was lower (30–50 s) suggesting further peak resolution
when parsing to this level (Figures 9C,D).

Performance-Wide NI and EEG-PV

Interactions Are Complex
The parsing of NI across different spatial and temporal
scales in Figures 4, 7, and 8 provided evidence for both

positive and negative correlations between NI and EEG-
PV when examined at the level of individual sensors
and frequencies.

For FN-H the scalp-averaged correlations (Figure 10A)
fluctuated between r > 0.9 to r < −0.65 over the performance.
The greatest positive correlation (between 450 and 750 s)
coincided with the two endotracheal intubation attempts where
there was both high NI and high EEG-PV. The periods of
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negative correlation were those where FN-H was preparing
supplies or monitoring vital signs before and after the change of
intubation techniques.

For FN-S the scalp-averaged correlations for FN-S
(Figure 10D) fluctuated between r > 0.9 to r < −0.9 with
the greatest correlation at the beginning of the task while
preparing the IO fluid port and the lowest while FN-S was
watching FN-H attempt the two intubations.

TABLE 1 | Incidence of periods of uncertainty at the EEG frequency level.

Total epochs Epochs with peak NI Percent

LF1S1 FN-H 737,960 56,590 0.08

FN-S 737,960 54,969 0.07

LF2S1 FN-H 1,357,360 95,407 0.07

FN-S 1,357,360 98,503 0.07

LF3S1 FN-H 1,812,600 137,707 0.08

FN-S 1,812,600 132,916 0.07

The uncertainty peaks are defined as ones greater than its two neighbors and had a

prominence of at least 0.005 bits.

The scalp-wide analysis was then segmented into the sensors
in the frontal (Fp1, Fp2, F7, F3, Fz, F4 F8), central (T3, C3, Cz,
C4, T4), parietal (P7, P3, Pz, P4, P8) and occipital (O1, O2) scalp
regions. The correlations were then repeated FN-H (Figure 10B)
and FN-S (Figure 10E) over a window of 60 s that was updated
each second using data from these regions.

For FN-H the strongly positive NI/EEG-PV correlations were
scalp-wide indicating a global involvement of all brain regions.
The periods of negative correlations appeared more regionally
local with the greatest concentration in the frontal region, and
the least in the occipital region.

For FN-S the positive correlations at the beginning of
the simulation were also scalp-wide, while the negative
correlations were both locally and globally distributed
(Figure 10E).

The final perspective of the NI / EEG-PV correlations was
across the EEG frequency spectrum for the different scalp regions
(Figures 10C,F). For the NDS, from both FN-H and FN-S, the
positive correlations were present over the 1–15Hz frequencies.
For FN-H, the correlations for the frontal and central regions
became negative in the beta and gamma regions approaching r
=−2, while those for the parietal and occipital regions remained

FIGURE 9 | Relationship between the magnitude and duration of NI peaks. (A) A segment of a Life Flight team NDS showing peak identifications, using the

findpeaks.m MATLAB® function. The peak magnitudes resulting from this function are based on having a minimum level of magnitude, which was 0.1 bits for this plot.

(B) The second-by-second NI distributions from the 19 sensors of the FN-H and FN-S of LF2. (C) This plot shows the duration of peaks (y-axis) within different

magnitude intervals (x-axis). (D) The duration of peaks is shown for the six team members when the data streams included the 1–40Hz frequency bands of each

sensor.
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FIGURE 10 | The changing relationships of NI and EEG-PV during an ecologically valid task. The correlation between parallel NI and EEG-PV data streams were

measured for FN-H (top) and FN-S during a Life flight performance (LF1). The correlation data was aggregated across the scalp (A,D), regions of the scalp (B,E) or at

the EEG frequency level for regions of the scalp (C,F).

high. This divergence in NI/EEG-PV correlations between low
and high frequencies also occurred with the data from FN-S, but
only the correlation in the parietal region remained high in the
beta and gamma frequencies.

The high vs. low EEG power andNI relationships are therefore
complex. There are suggestions of global brain involvement
with higher EEG power which preferentially occurs in the 1–
15Hz EEG bands. As the NI became more regionally local,
the correlation with EEG-PV became more neutral to negative
implying increased neurodynamic organization as a result of
temporally persistent low EEG-PV.

DISCUSSION

Investigators are increasingly turning to sensor technologies,
including EEG, to better understand and optimize team training
and support, but with little theory to guide them in how to
best represent data across the heterogeneous neuronal timescales
at micro levels (Murray et al., 2014) and the heterogeneous
timescales of teamwork at the macro levels. One challenge is
finding representations that bridge the gap between implicit
neural and physiologic variables that are inaccessible to visual
inspection and understanding (micro scale), with those that are.
A second challenge is moving the technologies toward real-time
continuous data collection and analysis, which for neural data

will almost certainly require abstractions of the lowest levels of
neural activity.

The first was that the EEG data streams that were modeled at a
1Hz resolution contained periods of neurodynamic organization
lasting seconds to minutes that under closer inspection linked
with observable behaviors like the feeling of uncertainty, or as
yet unknown qualities that distinguish experienced operating
room staff from medical students. A second theme was that
team neurodynamic data when parsed to the level of individual
channels and frequencies showed discrete NI peaks of varying
frequency, magnitude, and duration. A third theme was that
both activated and suppressed EEG amplitudes contributed to
elevated NI.

The results in section Transforming EEG µ-volts into
information bits creates new behavior-related properties parallel
what we previously saw when comparingNI levels and instructor
ratings of submarine navigation team performance where there
was an inverse correlation between levels of NI and team ratings
(Stevens et al., 2017). Combined, the two datasets indicate that
higher performing teams are generally less neurodynamically
organized than lower performing teams.

The inverse correlation between levels of NI and the
experience also has parallels with the idea of neural efficiency
in that they are both indicators of more efficient energy states.
Neural efficiency refers to the patterns of reduced brain activity
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with equal or superior performance and was originally described
as it related to intelligence (Neubauer and Fink, 2009). The
idea of neural efficiency has recently been expanded to include
differences between skilled basketball and volleyball players.
Studies by Zhang et al. (2019) showed that when imagining
performing skills in the domain of their expertise the players
showed greater neural efficiency (as measured by fMRI) than
when imagining performing in the other sport.

The higher NI levels in less experienced/proficient individuals
may be partially explained by the finding that periods of NI
increases often occur when there is uncertainty. Uncertainty
arises when results do not match expectations, and from the
ideas of neural efficiency these might be periods where the
complexities of the task outweighed the developed expertise, Less
experienced individuals are more likely to experience increases
in the frequency, magnitude and/or duration of uncertainty,
and the ability to quantitatively measure these dimensions of
uncertainty would be useful for probing the details of the novice-
expert continuum.

The frequency of encountering uncertain events is a factor of
experience (Kennedy et al., 2005; Stevens et al., 2017, 2018). The
better prepared an individual/team member is, through training
and practice, the less likely s/he is to encounter a surprising event.
In part this will be due to the possession of a larger repertoire
of complied episodes. One of the consequences of extensive
training is thatmany of the possible perturbations to the teamwill
have been experienced (i.e., this uncertainty would be expected
as opposed to unexpected) and the (low) likelihood of their
occurrence will have been factored in Soltani and Izquierdo
(2019).

The magnitude of uncertainty reflects the costs of searching
across levels of cognition to resolve it (Zénon et al., 2018).
Events like the loss of mouse cursor control in Figure 4,
cause the team to abandon a search of the library of episodes
hoping for a relevant match, and instead adopt an exploratory
strategy. Such exploration would no longer be spatially and
temporally local within the brain and could involve prolonged
and distributed iterations of the predictive coding – action
cycles of the information hierarchy while evidence is triangulated
(Clark, 2016; Shipp, 2016; Yon et al., 2020). During predictive
coding, each level of the hierarchy predicts representations in
the level below, via backward connections. Predictions are fed
backward in the hierarchy and reciprocated by prediction error in
the forward direction, acting to modify the representation of the
outside world at increasing levels of abstraction, and optimize the
nature of perception over a series of iterations. An example would
be again from the Map Task in Figure 4 where the highlighted
segment is one of a sequence involving elevatedNI being detected
first in the parietal region (P3) and then moving to the motor
regions (C3 and C4 sensors) while options for controlling the
mouse are explored.

The factors affecting the third dynamical component,
duration, are less understood. Determining how long hesitation
will last may be themost difficult to predict, yet probably themost
valuable for training. To estimate the duration of uncertainty in
these expert teams we parsed the NI data streams into smaller
spatial and temporal scales. The data shown in sections Parsing

the Neurodynamic Information of a Map Task Performance,
Neurodynamics of Submarine Piloting and Navigation, and
Parsing the Neurodynamic Information of a Medical Flight
Team illustrate how the structural dynamics of NI became more
discrete as the neurodynamic analysis of the team was extended
to the individual, sensor and then the EEG frequency level. These
discrete peaks were also enriched in the levels ofNI with extended
peaks (40–60 s) approaching the upper theoretical limits of the
entropy of the system.

The regional and frequency localization of these peaks,
and their association with periods of stress or uncertainty
suggests that the responses of experts to these (most
likely expected) events are regionally local in the brain.
Examples included in this paper are the deactivation of
mu rhythms in Figure 4, the activation of delta rhythms
in Figure 8 and the (mostly) deactivated alpha rhythms
in Figure 7.

The elevated neurodynamic organization of delta waves (2–
4Hz) during periods of task difficulty and of greatest NI levels
was unexpected. In the Life Flight performance illustrated in
Figure 8 the two team members showed elevated NI in the 1–
4Hz region during two delicate motor activities both of which
require focused attention and precise movements. The elevated
NI was greatest in the frontal scalp sensors but was detectable
scalp-wide. This global scalp distribution is consistent with the
general idea in neuroscience that low frequencies tend to be
global expressed, while the higher frequencies tend to be more
local (Buzaki, 2006).

Delta waves are widely used as proxy for a sleep homeostatic
process and have primarily been reported in the context of sleep-
wake driven changes (Hubbard et al., 2020), but more recently
they have gained attention as a modulator of executive action of
motor function (Harmony, 2013).

Recent studies of delta wave suppression have taken advantage
of the physiological mirror response where motor activity
involuntarily occurs in the opposite side of the body when
deliberate motor activity like hand gesturing are planned
(Maudrich et al., 2020). When participants were made aware
of this activity and asked to inhibit any involuntary co-
activation their directed attention exerted an inhibitory drive
on the involuntary motor output, and this suppression was
accompanied by increased delta power in frontal areas. An
important aspect of these studies was that the participants were
able to suppress this motor response without any special training
or online feedback, just by becoming aware that the mirroring
response was occurring. This represents one of the simplest forms
of neurofeedback.

The finding of elevated delta NI and EEG-PV is unusual, but
not unique to Life Flight simulations. Recently we studied the
neurodynamics of a neurosurgery team operating to decompress
the peroneal nerve of a live patient (Stevens et al., 2019). For the
final clipping of the offending tendon the primary neurosurgeon
relieved the resident-neurosurgeon. During the remaining seven
minutes elevated NI in the delta region was the dominant
neurodynamic feature. The finding of elevated delta NI in the
neurosurgeon and expert Life Flight team members may indicate
that one of the characteristics of expertise is the finer control of
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musclemovements during task-critical areas where they have had
extensive training.

The analyzing at the EEG channel and frequency levels also
enabled estimates to be made of the duration of elevated NI. At
the sensor level, the duration ofNI peaks began to plateau around
55–65 s when aNImagnitude of∼0.2 bits was reached.When the
analysis was repeated using data sampled at the frequency level
a plateau was reached around 0.25 bits with a duration of 35–
45 s. These results indicate that deriving quantitative estimates
of the frequency, magnitude and duration of uncertainty can be
realistically accomplished.

The final theme was the relationship between NI levels
and levels of activated vs. inactivated EEG amplitude which
was clearly complex. The results establish that elevated
NI levels can result from both periods of EEG activation
as well as deactivation. The associations with macro-scale
behaviors however were greater for NI than for EEG-
PV implying that the EEG power/organization junction is
important for passingmessages frommicro-scale to macro-scales
of teamwork.

The presence of an organizational system of information
that parallels the amplitude of EEG rhythms is important as it
provides a greatly reduced data dimension while retaining the
essential system features, i.e., linkages to higher scale behaviors.

In this way the combinatorial explosion of EEG rhythmic
variables at micro levels become compressed into an intermediate
system of information and organization which links to macro-
scale team and team member behaviors.
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