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Recent deep-learning artificial neural networks have shown remarkable success in

recognizing natural human speech, however the reasons for their success are not entirely

understood. Success of these methods might be because state-of-the-art networks

use recurrent layers or dilated convolutional layers that enable the network to use a

time-dependent feature space. The importance of time-dependent features in human

cortical mechanisms of speech perception, measured by electroencephalography (EEG)

and magnetoencephalography (MEG), have also been of particular recent interest. It

is possible that recurrent neural networks (RNNs) achieve their success by emulating

aspects of cortical dynamics, albeit through very different computational mechanisms. In

that case, we should observe commonalities in the temporal dynamics of deep-learning

models, particularly in recurrent layers, and brain electrical activity (EEG) during speech

perception.We explored this prediction by presenting the same sentences to both human

listeners and the Deep Speech RNN and considered the temporal dynamics of the

EEG and RNN units for identical sentences. We tested whether the recently discovered

phenomenon of envelope phase tracking in the human EEG is also evident in RNN

hidden layers.We furthermore predicted that the clustering of dissimilarity betweenmodel

representations of pairs of stimuli would be similar in both RNN and EEG dynamics. We

found that the dynamics of both the recurrent layer of the network and human EEG

signals exhibit envelope phase tracking with similar time lags. We also computed the

representational distance matrices (RDMs) of brain and network responses to speech

stimuli. The model RDMs became more similar to the brain RDM when going from early

network layers to later ones, and eventually peaked at the recurrent layer. These results

suggest that the Deep Speech RNN captures a representation of temporal features of

speech in a manner similar to human brain.
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1. INTRODUCTION

Biological systems have evolved highly sophisticatedmechanisms
for perceiving and interpreting sensory input. Since the
introduction of the first perceptron networks by Rosenblatt
(1958) in the middle of the previous century, researchers have
sought to learn lessons from biological neural architectures

to create artificial ones that can learn to perceive. Recent
work has yielded dramatic advances of deep Artificial Neural

Networks (dANNs) and Recurrent Neural Networks (RNNs)
that accomplish visual and auditory perceptual tasks with near-
human-like performance (Oord et al., 2016; Huang et al., 2017;
Kell et al., 2018; Kubilius et al., 2018). However, developments of
machine learning for applications (such as image classification,
automatic speech recognition, etc.) have proceeded so rapidly
that the companion domains of neuroscience (i.e., vision science,
auditory neuroscience) have become largely uncoupled and
empirically disconnected from the state-of-the-art in machine
learning. This situation exposes a range of interesting questions:
Do convolutional deep neural networks and recurrent networks
emulate the hierarchical and feedback processes of the human
brain? Do they even extract the same features from the sensory
world? We think there is good reason to postulate that the
answer is “yes” and proceed to probe the similarities and
differences between biological and artificial systems. Here we
report meaningful similarities between human brain electrical
dynamics captured by electroencephalography (EEG) and the
activation dynamics of units in the Mozilla Deep Speech RNN
during a speech perception task.

Understanding the similarities between brain and artificial
neural networks is promising for two reasons: First, ANNs might
capture important computational principles that the brain has
also evolved to implement. In that case, they might act as
useful models of brain computations, albeit by very different
computational mechanisms. Second, a deep understanding of
the similarities and differences between biological and (very
good) artificial networks might substantially lead to faster and
less data-intensive ways to train biologically-inspired artificial
networks. Although dANNs are quite good, they are trained
quite differently from the human brain (no infant learns to
perceive by watching 10,000 h of YouTube videos). Thus, there
are compelling reasons to consider how biological and artificial
systems might be convergent (and divergent) in how they extract
sensory features, and map those onto outputs.

Recent authors have begun to work toward this objective,
with the particular goal of developing benchmarks to measure
similarities between biological and artificial networks. For
example, brain-score (Schrimpf et al., 2018) consists of several
neural and behavioral metrics in the context of visual object
perception. These provide a measure of similarities between
the internal representation of an artificial network, such as
DenseNet-169 (Huang et al., 2017) or CorNet-S (Kubilius
et al., 2018), and the responses of single neurons in specific
visual cortical regions. Further behavioral metrics compared
network and human task performance (Schrimpf et al., 2018).
Another suggested benchmark is Representational Similarity
Analysis (RSA) in which network latent representations are

compared with the associated brain responses in order to
examine similarities in how the biological and artificial
systems differentiate between a set of stimuli (Nili et al.,
2014). These measures have been applied to visual object
recognition and have demonstrated some similarities, despite
the vast differences in biological and machine computational
mechanisms (Khaligh-Razavi and Kriegeskorte, 2014).

By contrast, the domain of auditory perception has been
less investigated. Despite keen interest and remarkable progress
in speech recognition networks within the field of machine
learning, these sophisticated networks have not been well-
compared with the human speech perception system. In a
recent paper, Kell et al. (2018) trained a convolutional network
that achieved human-like performance on music genre and
speech classification tasks. The activity within hidden layers
of that network predicted patterns of voxel activity in human
auditory cortex during speech perception, as measured by
functional Magnetic Resonance Imaging (fMRI). Furthermore,
they observed a hierarchical organization of this similarity,
with early network layers better explaining primary cortex
signals and deeper layers related to extra-primary cortex. This
work further supports the notion that deep ANNs could
capture computational principles that are employed by the
brain during auditory perception. However, since hearing is
fundamentally spectrotemporal, the fast-changing dynamics
within recurrent networks (RNNs) such as Mozilla’s Deep Speech
are also of particular interest. Such networks are quite good in
extracting speech from time-varying sound (Hannun et al., 2014)
and mapping spectrotemporal information onto text output.
However, it is unclear if the underlying temporal mechanisms
are similar to speech processing in the brain. Comparing such
a network with the brain representation of speech could help
to understand whether the network is a good fit to model
characteristics of the auditory system of speech perception.

Recent advances in the neuroscience of speech and language
provide useful metrics with which to compare biological
and artificial speech perception systems. The mechanisms of
speech perception that track linguistic events in a time-varying
speech signal have been revealed in phase, amplitude, and
spectral features of cortical dynamics as measured by EEG,
magnetoencephalography (MEG), and electrocorticography
(ECoG). For example, cortical delta band oscillations are
synchronized with words and phrases (Ding et al., 2016;
Kösem et al., 2016; Meyer et al., 2017). Importantly, alignment
of delta oscillations to linguistic components of speech is
learning-dependent: the phenomenon only occurs for speech
in a familiar language. Similarly, theta-band signals track the
acoustic amplitude envelope related to the ∼5 Hz syllable rate
of speech (Ghitza, 2012, 2013; Giraud and Poeppel, 2012).
Successful comprehension of speech is shown to modulate this
theta-tracking phenomenon, suggesting that it reflects learned
mechanisms of speech perception. For example, theta-tracking
is reduced in when speech was made unintelligible by various
distortions of the acoustic signal such as time compression
(Ahissar et al., 2001), by removing spectrotemporal features
(Peelle et al., 2013; Ding et al., 2014), by distorting the envelope
itself (Doelling et al., 2014), by adding noise (Luo and Poeppel,
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2007; Vanthornhout et al., 2018), or by distorting phonological
information (Mai et al., 2016). Nevertheless, it seems that
the brain is able to track the amplitude envelope in the theta
band even when the speech was in an unfamiliar language
(ding; Soni and Tata, 2021), when the signal was obscured
(Zoefel and VanRullen, 2016), when speech was time-reversed
(Howard and Poeppel, 2010), or when phonemes were omitted
while preserving the low-frequency envelope (Hambrook et al.,
2018). Thus, theta-band tracking of the amplitude envelope
seems to be modulated by, but not entirely dependent on a
learned mechanism.

Since brain electrical dynamics seem to be important for
cortical mechanisms of speech perception, we reasoned that a
very good RNN trained for speech recognition should exhibit
similar temporal dynamics of the activations of its hidden units,
particularly in recurrent layers. In order to investigate if these
temporal features are in common with human brain responses,
we presented a set of identical speech stimuli to a group of
human participants as well as to a trained Mozilla Deep Speech
network. We recorded brain electrical activity of the subjects
using electroencephalography and compared EEG dynamics to
speech with the network internal representations of the same
speech stimuli. Following the literature on theta-band (∼4–8
Hz) EEG phase tracking of the speech envelope, we show that
the temporal responses of a trained network also tracked the
speech envelope (relative to an untrained network). We also used
the previously established benchmark, RSA, to show that human
brains and the Deep Speech network differentiate similar features
of speech.

2. METHODS

Human EEG data was recorded as part of a larger experiment to
compare native and non-native English speakers with respect to
brain dynamics. These comparisons are reported elsewhere (Soni
and Tata, 2021). Here we analyzed those data with respect to the
relationship between native speakers of English and trained and
untrained Deep Speech networks.

2.1. Participants
A total of 15 native English speakers, in the age range of
19–30 years old (mean ± SD: 21.47 ± 3.02), participated in
this study. All participants were Canadians and were recruited
from an undergraduate course at the University of Lethbridge
for course credit (3 male; 1 left-handed). All participants had
normal or corrected-to-normal vision and reported no history
of neurological or psychiatric disorders. The study was in
accordance with the Declaration of Helsinki and approved by
the Human Subjects Ethics Committee of the University of
Lethbridge. The data from all 15 participants were analyzed in
this study.

2.2. Stimuli
Twenty-five unique speech utterances were presented to
participants. Each utterance was made of two unique consecutive
sentences that were individually meaningful but not necessarily
related. The length of each sentence was 3–4 s, resulting in a

total length of 5.5–6.5 s for each stimulus. Each speech stimulus
contained 12–21 words (16.24 ± 2.28), 19–31 syllables (24.28
± 3.13), and 52–89 phonemes (70.20 ± 8.72) per stimulus and
were presented four consecutive times for each participant in a
random order.

Speech sentences were selected from the TIMIT Acoustic-
Phonetic Continuous Speech Corpus (Garofolo et al., 1993). The
corpus contains time-aligned orthographic, phonemic, and word
transcriptions of over 600 speech samples of different dialects of
American English. Speech stimuli chosen for this study were all
spoken by male speakers from two dialect regions. They were
sampled at 16 KHz and normalized to the root mean square
(RMS) amplitude before presentation.

2.3. Task Procedure
An Apple Mac Pro with a firewire audio interface (M-
Audio Firewire 410) was used as a presentation device
and the presentation was fully automated using MATLAB
programming space (The MathWorks Inc., Natick, MA, USA)
and Psychophysics Toolbox functions (Brainard, 1997), which
were running on Apple Computer’s Core Audio Framework
(Mac OS 10.6). An Electrical Geodesics Inc. Net Station data
acquisition software was used to record EEG. All stimuli were
presented in a free-field sound attenuated room where a studio-
grade audio monitor (Mackie HR624 MK-2) was located on the
auditory front midline of the participant with a 1 m distance.
Participants used a keyboard on a table close to them to report
behavioral responses.

A monitor was located in from of the participants and was
used to display some task descriptions before the task started,
during a break, and after the task. It also was displaying a “+”
sign at the center to identify a place for the participants to focus
their eyes while listening. The group of selected utterances were
presented in a random order, but each were presented four times
consecutively, resulting in a total of 100 trials with one self-paced
break after 50 trials. After each trial, participants had 30 s to type
what they heard as best they could using a keyboard in front of
them and then press “Enter” to continue.

2.4. EEG Data and Preprocessing
During the experiment, EEG signals were recorded via an
Ag/AgCl 128-electrodel net (Electrical Geodesics Inc., Eugene,
OR, USA) at 500 Hz sampling rate. The net size was chosen to fit
the participant’s head and the electrode impedances were checked
to remain below 100 K�. EEG signals were preprocessed after
the recording with Brain Electrical Source Analysis (BESA; Megis
Software 5.3, Grafelfing, Germany) by first band pass filtering
between 0.5 and 30 Hz and then replacing bad channels with
a spline interpolation of the neighboring channels. After that,
eye blinks and movements were filtered out using spatial filters
(Ille et al., 2002) and then the signals were re-referenced to
an average reference. We used EEGLAB (Delorme and Makeig,
2004) and customized code inMATLAB (MATLAB version 9.1.0;
The Mathworks Inc., 2016, Natick, MA, USA) for the rest of
the analysis. Data was FIR filtered between 1 and 20 Hz and
downsampled to 250 Hz for further analysis. Each trial was
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FIGURE 1 | Mozilla deep speech architecture. The recurrent neural network contains five layers of hidden units where the first three layers as well as the fifth layer use

a clipped rectified-linear activation function and the fourth layer is a recurrent layer. The last layer uses a softmax function to select the most probable alphabet letter at

each timepoint (Hannun et al., 2014).

extracted starting 700 ms before and ending 7,800 ms after the
onset of stimulus presentation.

2.5. DeepSpeech Network
We used an open-source implementation of a speech recognition
network called Deep Speech from Mozilla (https://github.com/
mozilla/DeepSpeech). The network architecture is based on
research from Baidu (Hannun et al., 2014). Specifically, we used
version 0.6.1 of the network. The network architecture consists of

three initial layers with clipped rectified-linear (ReLU) activation,
an LSTM (i.e., long short-term memory) layer (Hochreiter and
Schmidhuber, 1997), another layer with ReLU activation, and
a final output layer with softmax activation (Figure 1). The
Mozilla DeepSpeech implementation used in this paper has
a unidirectional LSTM layer unlike the original DeepSpeech
paper which used bidirectional LSTM layers. The network is
trained using the Connectionist Temporal Classification (CTC)
loss (Graves et al., 2006) to output alphabetical characters
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corresponding to a text transcript of the speech. This loss
allows the network to learn to produce the correct output
without requiring that the transcript be force-aligned to
the audio.

2.6. Data Analysis
The acoustic envelope of each speech stimulus was first calculated
by taking the absolute value of the Hilbert transform, then low-
pass filtering at 25Hz.We employed a least-square Finite Impulse
Response (FIR) filter for this purpose. The filtered envelope was
then downsampled to match the sampling rate of the temporal
dynamics of the network output. Its first derivative was then
calculated; then negative values were replaced by zero to make
a positive half-wave rectified representation of the envelope. This
was normalized to the summation of the amplitudes to make a
standard area under the curve of 1. The resulting signals, which
show acoustic modulations of stimuli, were used for subsequent
cross-correlation between either the human EEG signals or the
network activation signals.

EEG responses across the four repetitions of each stimulus
were first averaged to reduce the noise. They were then averaged
across 12 selected frontocentral channels (EGI sensors 4, 5, 6,
11, 12, 13, 20, 21, 25, 113, 119, 124). These channels were
selected to be consistent with a frontal midline focus of signals
volume conducted from auditory and adjacent cortex on the
supratemporal plane. For each participant, the resulting signals
were then down-sampled to the sampling rate of pre-processed
acoustic envelope of the corresponding stimulus and then cross-
correlated with the envelope. The correlation functions were
then averaged across the participants to reach a grand-averaged
cross-correlation function per stimulus. The acoustic envelope
of each stimulus was likewise cross-correlated with its matching
output of each layer of the trained Deep Speech network. The
results were then averaged across those nodes higher than the
20th percentile of the correlation values, separately for each
stimulus. The purpose of this step was to only keep the nodes
that contributed most to the dynamics of the network.

As a measure of comparison, cross-correlation between the
preprocessed envelope of each stimulus and the EEG or network
responses to a randomly chosen non-matching stimulus was also
calculated. This cross-correlation between non-corresponding
time series provided a signal representing a null hypothesis.
Peaks in the resulting cross-correlation closely resembled the
well-known N1-P2 complex of the classic auditory Event-Related
Potential (ERP) and were consistent with previous work using
this approach (Hambrook et al., 2018). We chose peaks for
statistical analysis by two-tailed paired-sample t-test at∼140 and
∼220 ms based on a priori expectation from that previous work.
Finally, the cross-correlation between each stimulus envelope
and matching or random outputs was re-calculated for 100
shuffles of an untrained network, then averaged across the
shuffles, and grand averaged across the stimuli. This cross-
correlation with untrained networks allowed us to consider
the less interesting hypothesis that temporal dynamics in the
trained network might simply be “inherited” from the dynamics
of the speech signal itself and passed-through the layers of
the network.

The major goal of this study was to find if the Deep Speech
model shares a common feature map with the human brain
speech recognition system. Representational Similarity Analysis
is a technique that has been employed to compare computational
model representations of a group of inputs with the brain
responses to the same stimuli (Nili et al., 2014). In the RSA
framework, Representational Dissimilarity Matrices (RDMs) are
first calculated for the brain and the model responses. RDM
is a symmetric square matrix containing distances between all
pairwise representations of the group of stimuli (Nili et al., 2014).
The brain and model RDMs are then compared using Spearman
rank correlation coefficient.

Using RSA toolbox and a Euclidean distance measure, we
calculated RDMs for each of the first five layers of the trained
network, as well as all 100 shuffled untrained networks for the
group of 25 stimuli. Separately, the RDM for the brain responses
of each of 15 participants was also calculated by first pooling the
EEG data of the 12 selected EEG channels together. These RDMs
were then averaged across the repetitions of each presentation.
The group of 15 obtained brain RDMs were then correlated
with each of the network RDMs. For the untrained network, the
Spearman correlation coefficients were averaged across the 100
RDMs per layer per EEG participant. As a result, there were 15
correlation coefficients per layer for the trained network, and the
same number for the untrained networks. For each network layer,
these values were then statistically compared (by t-test) to test if
the representation of the trained network was significantly more
similar to the brain representations than the untrained networks.
We next correlated RDMs of the trained and untrained networks
with the average RDMs of EEG participants to find the general
pattern across the layers.

In the next step, we extracted EEG components in 2 Hz bands
to find the frequency bands where network RDM shares more or
less similarity with the brain RDM. EEG signals were first filtered
using FIR gaussian low/band pass filters. Then their RDMs were
calculated and averaged across the repetitions per participants
and then across the participants. Finally, obtained EEG RDMwas
compared with the RDMs of each network layer using spearman
correlation coefficient.

In the next step, we extended RSA to all EEG electrodes in
order to consider if different brain regions are more or less
similar to different network layers. We reasoned that different
patterns of scalp topography associated with different layers
might reflect hierarchical processing of speech features. For
each participant, we calculated the RDM of each EEG electrode
(128 in total) and then found its pairwise correlations with
RDMs of the layers of the trained and untrained networks.
For the untrained network, the resultant Spearman correlation
coefficients were averaged across the 100 shuffles per network
layer per EEG electrode, resulting in 15 coefficients. Distribution
of the correlation coefficients of the trained network were
then statistically compared with the untrained network in each
layer to find the electrodes showing significant similarity. For
visualizing the scalp topography of these electrodes, significant
correlation coefficients between each averaged EEG RDMs across
the participants and each trained network layer were kept and the
rest of the coefficients were set to zero.
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3. RESULTS

3.1. Recurrent Layer of Deep Speech
Network Is Phase-Locked to Speech
Envelope With a Similar Delay as EEG
Signal
Consistent with previous studies (Hambrook et al., 2018), we
found that cortical responses track acoustic envelope fluctuations
with a slight delay (Luo and Poeppel, 2007). Figure 2A shows
that cross correlation between the envelope of speech and EEG
signals start to deviate from the baseline at about 100 ms after
the presentation onset. It reaches to its minimum value (−12.3)
at about 140 ms and then rises to reach the peak (10.1) at
about 220 ms. These two peaks differ from the random stimulus-
response significantly [t-test: min: t(48) = −7.4, p = 17 ∗

10−10; max: t(48) = 5.2, p = 36 ∗ 10−7]. Figure 2B shows
that the trained network output of RNN layer also starts to
track input fluctuations after about 80 ms. Although its deviation
from the baseline is less than what we observe in EEG signal,
its trough (−7.3) lines up with EEG in latency (∼130–140 ms)
and it is significantly different from the cross-correlation of non-
matching stimulus-response pairs [t-test: t(48) = −4.5, p = 48 ∗
10−6]. The later positive peak seen in the human EEG data seems
absent, however, and is close to zero (0.16) and does not differ
from the threshold [t-test: t(48) = 0.79, p = 0.43]. Figure 2C, on
the other hand, shows that the RNN layers of untrained networks
are not phase-locked to the stimulus at those timepoints (t-test:
p > 0.05).

3.2. Not All the Layers in the Trained
Network Track Speech Modulations
Similar to the Brain
We next sought to investigate other layers of the network
to see if they also represent similar tracking patterns as the
brain. Although the output of the first, second, and fifth layers
are also correlated with their matching stimulus modulations
(Figure 3A), the pattern is not near what we observed for the
brain (Figure 2A). In other words, none of the rest of the layers
is phase-locked to the input envelope at the same time-delay and
correlation value as the brain is. Thus, the recurrent layer shows
the most similar pattern to the human brain response to speech.

On the other hand, all layers of untrained networks (shown
in Figure 2B) except the RNN layer, seem to represent some
correlations with their matching stimulus on average, but with
high variability. Although these networks are not trained to
convert their speech inputs into text, they may still inherit and
simply pass through input fluctuations which thus reflects in the
correlation function. Similar reflections might have happened in
other layers of the trained network.

3.3. Similarity Between Brain and Network
Representations of the Stimuli Increases
as the Input Travels to the Recurrent and
Fifth Layer
We investigated other commonalities between the features
encoded in the brain responses and those reflected by network

outputs to the speech stimuli. One way to address this question is
to find out if the brain and the network differentiate between pairs
of stimuli in a similar way. For example, if the vector distance
between the network outputs corresponding to two different
speech streams is low, that means the network representations
of these two speech streams are similar. Likewise, if the vector
distance between EEG signals for two speech streams is low,
it means that the brain represents these two stimuli similarly.
Comparing these two sets of vector distances reveals whether
patterns of similarity and dissimilarity are common across brain
and artificial networks. Thus, the representational similarity
analysis can be a measure of comparison between the model
and the brain representations (Khaligh-Razavi and Kriegeskorte,
2014; Nili et al., 2014).

We have used Euclidean distance as a measure of differences
between each pair of responses of either network or brain to
make RDMs. The RDMs of EEG and each network layer of
either trained or untrained networks were compared to each
other with Spearman correlation coefficients. In contrast with
the untrained networks, the averaged correlation values in the
trained network across EEG participants showed an upward
trend with a peak at the RNN layer (Figure 4A) which indicates
that the representational dissimilarities of each layer of the
trained network became more correlated to the representational
dissimilarities of the brain when comparing to the previous
layers. Also, comparing to untrained networks, the recurrent
layer in the trained model was the only layer with an RDM
that was significantly correlated with the EEG RDM [t-test,
1st layer: t(28) = −1.3, p = 0.2; 2nd layer: t(28) = −1.27,
p = 0.21; 3rd layer: t(28) = −1.38, p = 0.18; RNN layer:
t(28) = −2.73, p = 0.011; 5th layer: t(28) = −1.87, p = 0.07].
Moreover, we observed that correlation between the trained
network RDMs with the averaged RDMs of EEG participants
increased as we progress through the layers (Figure 4B). Also,
as an example of the untrained networks performance, one of
them was randomly chosen and the correlations between its
RDMs and the averaged RDMs of EEG participants are plotted.
As anticipated by Figure 4A, compared to the trained network,
these correlation values remained low. We have also included
RDM plots for each network layer and the EEG averaged across
participants in Figure 5.

In order to investigate whether the similarity between model
and brain RDMs happen in a specific frequency band of the EEG
signals, we next filtered EEG signals in 2 Hz narrow bands from
0 to 20 Hz and then repeated the RSA. Correlation coefficients of
trained network drops at about 13 Hz in all the layers. However,
a similar downward trend is also observed in all the layers of the
untrained network at about 11–15 Hz. This might be a reflection
of the inputs instead of the model features. On the other hand, a
general trend from layer to layer is upward in the trained network
indicating that the RNN and the last layers have the highest
similarity with the brain representation of the stimuli.

By examining the similarity between EEG and
network representations for each individual electrode
we found regions across the scalp topography with
significant correlations as compared to untrained networks.
While about 40% of electrodes showed significant
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FIGURE 2 | Tracking speech envelope modulations by EEG signals and recurrent output of the network. Correlation function between half-wave positively rectified

derivation of the speech envelope and (A) average EEG signal across selected channels, (B) RNN output of the trained network averaged across the nodes in the

highest 80 percentile, and (C) RNN output of each 100 shuffle untrained network averaged across the nodes in the highest 80 percentile are calculated. For (C),

correlation functions were then averaged across the shuffles. Solid lines indicate grand mean across the stimuli and their surrounding shadow indicates the Standard

Error of Mean (SEM). Solid black curves indicate the correlation between matching pairs of stimuli and response signals, whereas the solid blue curves indicate

non-matching pairs of stimulus-response that were chosen randomly. All the signals were time-aligned to the stimulus onset; thus, the positive peak lags represent the

delayed responses to the stimulus and negative lags indicate possible brain/network predictions of the future input stimulus. Vertical dashed lines indicate time zero,

and the time points of minimum and maximum correlations with EEG. Asterisks indicate where the matching and non-matching cross-correlations are significantly

different at those timepoints (t-test, p < 0.05). Note that the value of the y-axis is the raw cross-correlation, not a correlation coefficient.

correlations with the RNN layer, only a few electrodes
were correlated with the rest of the layers. Nevertheless,
those correlations seemed to increase from each layer to
the next.

4. DISCUSSION

Early neural networks were inspired by ideas in neuroscience

and psychology and were designed to be analogous to
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FIGURE 3 | Correlation between preprocessed envelope of stimuli and the output of each layer. Correlation function between half-wave positively rectified deviation of

the speech envelope and each layer output of the (A) trained network and (B) each 100 shuffle untrained network are calculated, then averaged across the nodes in

the highest 80 percentile. For (B), correlation functions were then averaged across the shuffles. Solid lines indicate grand mean across the stimuli and their

surrounding shadow indicates the Standard Error of Mean (SEM). Black line indicates the correlation between matching pairs of stimuli-output signals, while blue lines

indicate random pairs of stimulus and output. All the signals were time-aligned to the stimulus onset; thus, the positive lags represent the delayed responses to the

stimulus and negative lags indicate possible network predictions of the future input stimulus.

biological mechanisms. However, this is not always the case
for recently developed networks, which are optimized for
specific applications such as image classification or speech-to-text
recognition. Thus, state-of-the-art dANNs may or may not share
architectural and computational features with the brain systems
and underlying mechanisms that perform related operations
in humans (Khaligh-Razavi, 2014). However, these networks
have shown great success in performing such tasks, approaching
and in some cases exceeding, human performance. In that
sense, recent successful dANNs are the closest computational
models that we have for human-like perception. Mozilla’s Deep
Speech architecture can generate text transcriptions with good
accuracy when given natural speech acoustic input. A key
architectural difference of this (and related) network, relative to
older speech recognition systems, is that it employs a recurrent
layer. Given the substantial theoretical and empirical evidence
for the importance of recurrence or “feedback” signals in
cortical computations (e.g., Lamme and Roelfsema, 2000), we
hypothesized that the temporal dynamics of recurrent layer
activations in a trained Deep Speech network should exhibit
some similarities with brain electrical dynamics during a speech
listening task. We thus asked the question whether the internal
representations of Deep Speech, either in early layers or the
recurrent layer, parallel the brain representation of human
speech features. We searched for commonalities between the two
representations by comparing the latent outputs of the network
with the recorded EEG signals of human brain.

We found that the recurrent layer in particular tracks envelope
fluctuations of the speech signal in a similar way to the EEG
signals measured at frontocentral electrodes. This was not
observed in other layers of the trained network, nor in any
layer of the untrained networks. On the other hand, the peaks
in similarity at the theta band (∼7 Hz) in untrained networks
(Figure 4C), suggest that narrow-band envelope modulations
are passed through the network regardless of training. This
aligns with the observation that even incomprehensible speech is
tracked at the theta band in EEG, at least to some degree (Howard
and Poeppel, 2010; Ding et al., 2016; Zoefel and VanRullen,
2016; Hambrook et al., 2018; Soni and Tata, 2021). This finding
suggests that envelope tracking by the auditory system is a
phenomenon not limited to speech mechanisms per se, but rather
related to more basic coupling between input dynamics and
cortical responses. Learning speech, whether by a human brain
or by a network, might refine the temporal fidelity with which
these responses occur across frequency bands, leading to cross-
frequency coupling that manifests as stronger cross-correlations
between stimulus and response envelopes, such as shown in
Figure 2.

Although this research has found that the recurrent layer
tracks the envelope fluctuations of speech signals similarly
to EEG, there is a potential confound due to the network
architecture. Specifically, it is impossible to determine from the
current research if the envelope tracking is due to the recurrent
nature of the LSTM layer or if it is due to the position of the layer
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FIGURE 4 | Correlation coefficients between brain and network RDMs. (A) Correlation coefficients between EEG RDMs of each participant and the trained/untrained

network RDMs of each layer, averaged across the participants. For the untrained networks, correlation coefficients were first averaged across the 100 shuffles and

then grand averaged across the participants. The error bars indicate SEM. Asterisk indicate statistically significant differences between trained and untrained networks

in the specified layer (t-test, p < 0.05). The gray bar displays the noise ceiling with a lower bound of 0.094 and an upper bound of 0.295. (B) Correlation coefficients

between averaged EEG RDMs across the participants and the trained/untrained network RDMs of each layer (only one untrained network is shown here for

illustration). (C) EEG signals were first filtered in each 2Hz frequency bands and then RDMs were calculated. Correlation coefficients between averaged EEG RDMs

across the participants and the trained/untrained network RDMs of each layer are plotted (only one untrained network is shown for illustration).

near the top of the network. This confound could be tested in
future experiments that compare various network architectures
that only use convolutional layers, including other state-of-the-
art networks (Han et al., 2020; Zhang et al., 2020). Another
valuable experiment could be to compare the early network
layers to neural activity in the early auditory system, although
there would be a difficult technical challenge in recording such
neural activity in humans. Testing the representations learned
by unsupervised networks such as variational autoencoders
(Kingma and Welling, 2013) would be an interesting future
area to explore. It is also important to note that the brain does

not directly perform the speech-to-text task that the network is
trained to perform.

Using Representational Similarity Analysis, our results also
showed that similarity between the RDM of frontocentral
EEG and network RDMs increased by progressing through
early to intermediate layers of the trained network, from the
first layer to the fifth one. However, only at the RNN layer
was this similarity significantly different from the untrained
networks. Moreover, when comparing the RDMs of EEG signals
within frequency bands with the RDMs of network layers, the
similarity was enhanced in almost all the frequencies as the
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FIGURE 5 | RDMs for network layer and EEG. Each similarity matrix was separately rank-transformed and scaled into the range [0, 1]. The EEG RDM is averaged

across participants.

layer number increased. Notably, this progression did not occur
for untrained networks (Figure 4C), which suggests that it is a
result of computations learned by the network for performing
speech recognition.

4.1. Network Layer Matters
This study demonstrated that the Deep Speech network captures
some spectrotemporal features in the speech stimulus in a
manner similar to what the brain captures. However, this
similarity is not the same across network layers. In fact, the RNN
layer showed the most robust similarity of tracking structure
compared to the brain signals (Figures 2, 3). This suggests
that the recurrent layer performs computations on, or at least
represents, time-varying features that are also represented by
the neural processes underlying the scalp-recorded EEG at the
frontal midline. In this sense, the RNN layer might model a
spectrotemporal operation that is learned by the auditory cortex
during language acquisition. This operation is presumably more
elaborate than simply tracking the occurrence of amplitude
modulations related to syllable stress, because even untrained
networks seem capable of passing through this signal in the theta
band (note in Figure 4C the presence of a peak at around 7 Hz
across layers of the untrained network). One possibility is that
the fluctuations of activity at more than one frequency are nested
and aligned with the syllable rate, but only in the trained network
(and the brain).

Another fascinating aspect of the RNN layer dynamics is
the similar ∼140 ms delay that also appears in the EEG.
Traditionally the lag in EEG is interpreted as being due to
transmission delay between peripheral auditory circuits and

the cortex, and as such it does not seem to apply for
artificial networks. Yet we see in the RNN layer the same
peak at the same latency. One possibility is that this is how
gating works in LSTM units, and the units are exhibiting this
sensitivity to the temporal dynamics of prior information in the
speech stream.

4.2. Network Layers and the Hierarchy in
the Biological System of Speech
Perception
The interesting upward trend in the representational similarity
between the EEG RDM and network layers suggests hierarchical
organization in the processing of speech features. In other words,
the early layers, which do not seem to have a lot in common
with the recorded activity of frontocentral electrodes, may fit
other regions of the ascending auditory pathway related to early
and simple processing of the sound stimuli. In this view, the
recurrent layer processes later and more complicated stages of
the speech recognition. This is consistent with previous results
of an auditory cortex model (Kell et al., 2018) derived from
a dANN trained to perform speech and music classifications.
Kell et al. showed that a dANN consisting of 12 layers of
feedforward (early layers) and fully connected (deep layers)
performed similar to humans on word recognition and music
genres classification. Activity in that network was capable of
explaining human auditory cortical responses to sound stimuli
measured by fMRI. Importantly, the authors found that the
hierarchical structure of their dANN was reflected in the
functional anatomy of the auditory system: the earlier layers of
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their network predicted primary or “core” auditory cortex activity
whereas the intermediate and deep layers predicted signals in
non-core auditory cortex voxels. This predictive performance
dropped significantly for the fully connected layers, possibly
because the function of those layers correlated with regions
outside the auditory cortex (Kell et al., 2018). Our results are
broadly consistent with such a hierarchy as suggested by our
RDM analysis: we found that the correlation between early
network layers and EEG was evident at only a few electrodes
whereas the correlations with the RNN layer was disributed
across a large network of EEG electrodes over temporal, central,
and frontal regions. It is important to note that even though both
the RNN layer and the EEG results use a similar representation,
this does not mean that the mechanisms they use are necessarily
the same.

To summarize, we found interesting similarities between
brain electrical dynamics during speech perception and the
time-varying activations of units in a trained recurrent
neural network performing the same speech recognition
task. Those similarities were consistent with a hierarchical
arrangement of the representation of speech features. This
result explored with EEG, considered along with related
work with visual (Schrimpf et al., 2018) and auditory (Kell
et al., 2018) functional MRI, suggests a compelling reason
to further consider deep and recurrent neural networks as
models of brain functions, despite the profound differences
between the low-level computational mechanisms (i.e., biological
vs. digital). Further investigations of the similarities and
differences between such networks and the human brain
under similar or identical perceptual tasks will advance
development of ANNs and perhaps provide insights into brain
computational mechanisms.
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