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The detection of causal effects among simultaneous observations provides knowledge

about the underlying network, and is a topic of interests in many scientific areas.

Over the years different causality measures have been developed, each with their own

advantages and disadvantages. However, an extensive evaluation study is missing. In

this work we consider some of the best-known causality measures i.e., cross-correlation,

(conditional) Granger causality index (CGCI), partial directed coherence (PDC), directed

transfer function (DTF), and partial mutual information on mixed embedding (PMIME).

To correct for noise-related spurious connections, each measure (except PMIME) is

tested for statistical significance based on surrogate data. The performance of the

causality metrics is evaluated on a set of simulation models with distinct characteristics,

to assess how well they work in- as well as outside of their “comfort zone.” PDC and

DTF perform best on systems with frequency-specific connections, while PMIME is the

only one able to detect non-linear interactions. The varying performance depending

on the system characteristics warrants the use of multiple measures and comparing

their results to avoid errors. Furthermore, lags between coupled variables are inherent

to real-world systems and could hold essential information on the network dynamics.

They are however often not taken into account and we lack proper tools to estimate

them. We propose three new methods for lag estimation in multivariate time series,

based on autoregressive modelling and information theory. One of the autoregressive

methods and the one based on information theory were able to reliably identify the correct

lag value in different simulated systems. However, only the latter was able to maintain

its performance in the case of non-linear interactions. As a clinical application, the

same methods are also applied on an intracranial recording of an epileptic seizure. The

combined knowledge from the causality measures and insights from the simulations, on

how these measures perform under different circumstances and when to use which one,

allow us to recreate a plausible network of the seizure propagation that supports previous

observations of desynchronisation and synchronisation during seizure progression. The

lag estimation results show absence of a relationship between connectivity strength and

estimated lag values, which contradicts the line of thinking in connectivity shaped by the

neuron doctrine.

Keywords: functional connectivity, lag estimation, information theory, multivariate time series, granger causality,

ictal network, EEG connectivity
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1. INTRODUCTION

Many scientific fields are interested in detecting causal
relationships between simultaneously observed signals, as
they reveal the interplay between different processes and how
they are linked within a larger system. One of the leading
concepts for the detection of directional interactions, Granger
causality, has been widely used in economics in an attempt
to identify the driving and responding constituents within
an economic environment (Pasquale, 2007; Beyzatlar et al.,
2012; Plíhal, 2016). More recently, the same concepts have
progressively entered the field of neuroscience and have lead to
a new research field, referred to as “network neuroscience” (Seth
et al., 2015; Hassan and Wendling, 2018). There is a growing
body of evidence supporting the theory of large-scale networks of
highly specialised and segregated areas within the brain. Within
this context, the characterisation of functional brain networks in
different normal and pathological states from neuroimaging data
has become an exciting and promising field in brain research
(Fornito et al., 2015; Bassett and Sporns, 2017). Even more
recently, this concept has extended further into a new conceptual
framework called “network physiology,” which focuses on the
coordination and network interactions among diverse organ
systems and subsystems as a hallmark of physiologic state and
function (Bartsch et al., 2015).

Most of the functional connectivity measures seek to detect
a statistical causation from the data, based on the theorem
of Wiener, who proposed two criteria for causality: causes
precede their effects, and causes should in some way predict
their effects (Wiener and Masani, 1957). Granger adopted this
definition of causality in 1969 to develop his famous index using
predictions based on auto-regressive models (Granger, 1969).
Over the years, a rich and growing body of literature has evolved
both on the development of new metrics to quantify causal
interactions and modifications of existing metrics, as well as
practical implementations. With the help of information theory,
measures capable of detecting non-linear interactions have been
developed (Vicente et al., 2011; Montalto et al., 2014). The
large number of available methods, often described with a large
amount of technical detail, and variable choices of the relevant
parameters often makes it difficult to choose and justify which
method to use (Bressler and Seth, 2011; Bastos and Schoffelen,
2016). Several review papers have been published in an attempt
to provide an overview, however the amount of comparative
studies is limited and often focussed on a small subset of metrics
and signal types (Pereda et al., 2005; Sakkalis, 2011; Wu et al.,
2011; Silfverhuth et al., 2012; Fasoula et al., 2013; Olejarczyk
et al., 2017; Siggiridou et al., 2019). With this study we want to
help fill this gap by providing an extensive evaluation of several
multivariate measures of directed causality on a wide range of
simulation models, complementary to the work of Papana et al.
(2013). In their work they evaluated a similar set of causality
measures, looking also at the effect of time series length and
coupling strength on the outcome. We extend this evaluation by
adding the lag estimation and moving on from the simulations to
apply the methods on real data.

One of the key postulations formulated inWeiner’s criteria for
causality is that the cause always precedes its effect. This seems to
be a fair presumption and is in line with what we see in most real-
life applications. Time delays between communicating variables
are an inherent element of network systems and can have a large
impact on its dynamics. Changing the delays of connections has
been shown to affect synchrony in spike-burst simulations of
neuronal networks (Jirsa, 2008). To gain a full understanding of
the network processes that underly the observations, we therefore
need estimations not only of the connections but also of their
delays. These delays have been largely ignored up to now, partly
because we lack proper tools to estimate them. To address this
issue we propose three new methods to estimate the lags in
multivariate time series and evaluate them on simulation models
and a real-world application.

The paper is structured as follows: we begin with a
mathematical description of the simulation models and causality
measures that are to be evaluated in this study. We compare
the performance of all possible combinations to gain a better
understanding of the interplay between the system characteristics
and the results from the functional connectivity measures.
Then, we formulate the methods for lag estimation, based
on autoregressive modelling and information theory, and also
evaluate them on simulation models. In the end, we apply
the same methods on a clinical dataset to see how we can
translate our newly gained insights into real-world applications.
The results are presented in section 6 and discussed in
section 7. Finally, we end with some concluding remarks in
section 8.

2. SIMULATION MODELS

To evaluate the causality measures we use a set of simulation
models, which consist of several coupled and uncoupled dynamic
systems. A variety of generative processes (stochastic and chaotic)
and interaction types (linear, non-linear, and frequency specific)
were chosen to see how well these metrics perform when applied
in different contexts. This way, the generalisability of their
performance in- and outside their respective “comfort zone”
becomes apparent. For eachmodel 100 realisations are simulated,
on which the causality measures are computed. Figure 1 gives
an overview of the simulation models’ connectivity networks (see
below for details).

Each simulation model consists of a dynamical system that is
represented by a set of variables X1, . . . ,XK . The associated K-
variate time series are constructed by simultaneously sampling
the observed variables into the set {x1,t , . . . , xK,t}, t = 1, . . . , n.
All simulated signals are of length n = 1, 000 and sampled with
fs = 256 Hz. The notation X2 → X1 denotes a Granger causal
relationship from X2 to X1, while X2 → X1|Z denotes direct
Granger causality from X2 to X1, accounting for the presence
of the other (confounding) variables, i.e., Z = {X3, . . . ,XK}. A
bidirectional coupling between X1 and X2 is written as X1 ↔
X2. The notation of causal relationships between other pairs of
variables is analogous.
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FIGURE 1 | Overview figure, showing the connection diagrams of the different simulation models that were used in this study. The connections are colour-coded in

function of the source channel.

2.1. Coupled Randomised Signals
(“Random”)
The first model is a simple stochastic system with linear
interactions X1 → X2, X1 → X3, and X4 → X5.

x1,t = w1,t

x2,t = (1− c)w2,t + c · x1,t−3

x3,t = (1− c)w3,t + c · x1,t−2

x4,t = w4,t

x5,t = (1− c)w5,t + c · x4,t−5

wi,t , i = 1, . . . , 5 are drawn from independent Gaussian white
noise processes with zero mean and unit variance. Coupling
strength c = 0.5.

2.2. Coupled Hénon Maps (“Hénon”)
Hénon maps are one of the most studied dynamical systems
that exhibit chaotic behaviour (Henon, 1976). Because the system
becomes unstable for cascades of more than three coupledHénon
maps, the system is split up into two cascades of lengths 3 and 2.

x1,t = 1.4− x21,t−1 + 0.3x1,t−2

x2,t = 1.4− cx1,t−1x2,t−1 + 0.3x2,t−2

x3,t = 1.4− cx2,t−1x3,t−1 + 0.3x3,t−2

x4,t = 1.4− x24,t−1 + 0.3x4,t−2

x5,t = 1.4− cx4,t−1x5,t−1 + 0.3x5,t−2

As the interaction terms involve multiplication of the signal
values, the couplings are non-linear. Coupling strengths are
again c = 0.5.

2.3. Coupled Lorenz Systems (“Lorenz”)
Originally developed as a mathematical model for atmospheric
convection, Lorenz systems consist of three ordinary differential
equations (Lorenz, 1963). The parameter values and initial
conditions are chosen here such that the systems exhibit chaotic
behaviour. Here we show the equations for the first three Lorenz
systems, the 4th and 5th systems are defined similar to the 2nd
and 3rd systems.

ẋ1 = 10(y1 − x1)

ẋ2 = 10(y2 − x2)+ c(x1 − x2)

ẋ3 = 10(y3 − x3)+ c(x2 − x3)

ẏ1 = 28x1 − y1 − x1z1

ẏ2 = 28x2 − y2 − x2z2

ẏ3 = 28x3 − y3 − x3z3

ż1 = x1y1 − 8/3z1

ż2 = x2y2 − 8/3z2

ż3 = x3y3 − 8/3z3

The coupling strength is c = 4. As the interactions are introduced
inside the differential equations, the Lorenz systems are non-
linearly coupled. To obtain the multivariate time series, we
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sample each system along the first dimension (i.e., xi, i = 1 . . . 5)
with a sampling period of 0.5 units.

2.4. Seizure Model (“Sweep”)
The fourth simulation model mimics the propagation of an
epileptic seizure, where seizure activity is modeled as a sine wave
with time-varying frequency. The seizure starts in channel 1, and
propagates to channels 2 and 3 with different delays.

x1,t = sin(2π ftt)+ θ1,t

x2,t = x1,t−2 + θ2,t

x3,t = x1,t−4 + θ3,t

x4,t = θ4,t

x5,t = θ5,t

The frequency ft starts at 12 Hz and decreases linearly until
it reaches 8 Hz at the end of the signal. To mimic the signal
properties of electroencephalography (EEG) signals, the time
series are generated through a set of pink noise processes, θi,t ,
i = 1, . . . , 5, with a 1/f spectral distribution. The noise amplitude
is chosen such that the Signal to Noise Ratio (SNR) equals−5dB.
This seizure model has already been applied with success in
several studies to validate the performance of Granger causality-
based connectivity measures (Lie and van Mierlo, 2017; van
Mierlo et al., 2018).

2.5. Cascade AR Model (“CascadeAR”)
The remaining simulation models are created through stochastic,
autoregressive processes. For the cascade AR model, all
interactions are linear and arranged in such a way that the system
forms a sequential cascade with bidirectional couplings in the
middle (i.e., the couplings are X1 → X2, X2 ↔ X3, X3 ↔ X4,
and X5 → X4).

x1,t =
√
2ρx1,t−1 − ρ2x1,t−2 + θ1,t

x2,t = 0.5c(x1,t−1 + x3,t−1)+ (1− c)
√
2ρx2,t−1 − ρ2x2,t−2 + θ2,t

x3,t = 0.5c(x2,t−1 + x4,t−1)+ (1− c)
√
2ρx3,t−1 − ρ2x3,t−2 + θ3,t

x4,t = 0.5c(x3,t−1 + x5,t−1)+ (1− c)
√
2ρx4,t−1 − ρ2x4,t−2 + θ4,t

x5,t =
√
2ρx5,t−1 − ρ2x5,t−2 + θ5,t

The coupling constants are c = 0.8 and ρ = 0.9, and θi,t ,
i = 1, . . . , 5 are independent pink noise processes.

2.6. Pink (Non-)linear AR Models
[“PinkAR(non)lin”]
This simulation model consists of a set of coupled and uncoupled
AR systems, driven by independent 1/f processes. The following
equations are true for the linear model (“PinkARlin”). For the
non-linear model (“PinkARnonlin”), the interaction termsX1 →

X2 and X1 → X4 are quadratic instead of linear.

x1,t = 0.95
√
2x1,t−2 + θ1,t

x2,t = 0.5x1,t−2 + θ2,t

x3,t = −0.4x1,t−3 + θ3,t

x4,t = −0.5x1,t−2 + 0.25
√
2x4,t−1 + 0.25

√
2x5,t−1 + θ4,t

x5,t = −0.25
√
2x4,t−1 + 0.25

√
2x5,t−1 + θ5,t

θi,t , i = 1, . . . , 5 are independent pink noise processes.

2.7. Frequency-Dependent AR Models
[“FreqAR(non)lin”]
The last simulation model also consists of a set of AR systems
driven by 1/f processes, with interactions that are limited to
specific frequency bands. The connections are limited either
to the low (8–12 Hz) or high (25–100 Hz) frequencies. These
frequency bands have been chosen in accordance with the α and
γ bands relevant in the analysis of EEG signals. The frequency-
specific connections are obtained by using band-passed versions
of the 1/f stochastic processes in the relevant interaction
terms. The following equations are true for the linear model
(“FreqARlin”). For the non-linear model (“FreqARnonlin”), the
interaction terms X1 → X2 and X1 → X4 are quadratic instead
of linear.

x1,t = 0.95
√
2x1,t−1 − 0.9025x1,t−2 + θ1,t

x2,t = 0.5θ1γ ,t−2 + θ2,t

x3,t = −0.4θ1γ ,t−3 + 0.25
√
2θ2γ ,t−3 + θ3,t

x4,t = −0.5x1α,t−5 + 0.25
√
2x4,t−1 + 0.25

√
2x5,t−1 + θ4,t

x5,t = −0.25
√
2θ4γ ,t−1 + 0.25

√
2x5,t−1 + θ5,t

θi,t , i = 1, . . . , 5 are independent 1/f pink noise processes.
The model is constructed such that the system is separated into
two fictitious brain regions with high-frequency intra-regional
(X1 → X2, X2 → X3 and X4 → X5 in the γ band) and low-
frequency inter-regional connections (X1 → X4 in the α band),
concordant with the current hypothesis of the different roles of
these frequency bands in communication within the brain. The
connections are restricted to their respective frequency bands by
using a bandpass-filtered version of the respective sources (θiα,t
and θiγ ,t).

3. CAUSALITY MEASURES

In this section we give a short explanation of the causality
measures used in this study, which were selected based on their
popularity in literature. It should be noted that most causality
measures require the input signals to be stationary (i.e., the
mean and variance don’t change in time). If this is not the
case, the signals must always be pre-processed to make them
stationary, e.g., by working with one of their derivatives (if these
are stationary) or by using pre-whitening algorithms.
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3.1. Cross-Correlation
Cross-correlation is a statistical concept that estimates the linear
interdependence between two signals as a function of the time
shift of one relative to the other. Its value depends on this time
shift, τ , and is formulated as follows:

ρ̂x,y(τ ) =
1

N − τ

N−τ∑

n=1

(xn − x̄)(yn+τ − ȳ)

σxσy
(1)

Resulting values range between −1 and 1 and indicate the
strength of the linear relation between the two variables. The
cross-correlation is zero in absence of a linear relationship
between the variables, and reaches 1 or −1 in case of perfect
correlation or anti-correlation, respectively. By looking for the
time shift where the magnitude of the cross-correlation is
maximal, this technique can also be used to estimate the delay
between observed signals (see section 4). Cross-correlation is
a bivariate measure, but can easily be applied to multivariate
systems by repeating the analysis for all possible signal pairs.
However, when two variables are driven by a common source a
spurious connection may be found between the first two, even
though manipulation of one of these variables won’t necessarily
influence the values of the other. Cross-correlation is thus
unable to differentiate relations caused by latent confounding
variables. Moreover, correlation only detects linear relationships.
This is the least advanced metric used in this study and will
probably be unable to reliably detect the connections in all
simulation models. Cross-correlation is included here because it
is still a widely used measure, and will act as a baseline against
which performance of the other measures can be compared.
Before computing the cross-correlation the data is pre-whitened
with a non-parametric approach based on the Singular Value
Decomposition (SVD) of the covariance matrix of the time-series
(Hansen and Jensen, 2005).

3.2. Granger Causality Index
Many causality measures are based on the concept of Granger
causality, which investigates whether observations of one signal
can be used to predict another (Seth et al., 2015). Y is said
to Granger-cause X if it can be shown that the past values
of both X and Y give a better prediction of X, compared to
predictions based on the past values of X alone. The predictions
are based on autoregressive (AR) modelling, where signals are
decomposed into a linear combination of their past values plus
additional uncorrelated white noise. Multivariate AR (MVAR)
can be expressed as:

X(n) =
p∑

m=1

A(m)X(n−m)+ E(n) (2)

Here, X(n) = [x1(n)x2(n) . . . xK(n)]
T is the signal matrix at time

point n, E(n) = [e1(n)e2(n) . . . eK(n)]
T is the noise matrix at time

point n, p is the model order and A(m) is the K × K coefficient
matrix for delay m. The model order determines the number of
past values included in the predictions. The optimal model order
can be determined automatically using several metrics. In this
study we use Schwarz’s Bayesian Criterion (Schwarz, 1978).

Bivariate Granger causality from Y to X can be derived by
comparing the residuals of X obtained by fitting a univariate AR
model and a bivariate model of X and Y. The Granger Causality
Index (GCI) is computed using the following expression:

GCIxy = ln(
Vx|x
Vx|xy

) (3)

where Vx|x is the variance of the residuals in the univariate case,
and Vx|xy is the residual variance for the bivariate model. If
the past values of Y don’t improve the predictions of X, then
Vx|x ≈ Vx|xy and hence Gxy ≈ 0 (Granger, 1969). Improved
predictions will reduce the bivariate variance Vx|xy, which results
in a GCIxy larger than zero. The larger the improvement of the
prediction, i.e., the more influence Y has on X, the larger the
GCI value. Because of the linear characteristics inherent to AR
modelling, the application of GCI is limited to the detection
of linear connections. It should also be noted that AR models
require the input signals to be stationary to obtain reliable results.

3.3. Conditional Granger Causality Index
Since GCI is a bivariate measure, it is incapable of dealing with
latent confounding variables and often leads to false positives.
In order to partly mediate this problem, we can apply its
multivariate extension called the Conditional Granger Causality
Index (CGCI). By considering all K variables at the same time, it
can account for possible effects caused by common drivers in the
rest of the system (Z). The effect of Y on X is now calculated by
looking at the residuals of a VARmodel with all K variables and a
VAR model of all variables except for Y.

CGCIY→X|Z = ln(
Vx|xz
Vx|xyz

) (4)

where Vx|xz is the variance of the restricted model (all variables
except Y) and Vx|xyz of the unrestricted model (all K variables).

3.4. Partial Directed Coherence
Using Fourier methods the AR model can be decomposed
into its frequency domain representation, which allows for
spectral causality analysis. Intuitively, these measures quantify
the fraction of the spectral power, at a given frequency f , of the
driver X that contributes to the future of the response variable
Y . Analysing the connectivity in the frequency domain offers
several advantages when working in fields where frequency-
specific connections and modulations are assumed, such as in
neuroscience applications. The Fourier transformation of the AR
model is calculated as:

E(f ) = A(f )X(f )

where

A(f ) = −
p∑

m=0

A(m)e
−i2π

f
fs
m

(5)

with fs the sampling frequency and A(0) = −I the
negative identity matrix. E(f ), A(f ) and X(f ) are the Fourier
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transform of the white noise, AR coefficient and time series
matrices, respectively. The Partial Directed Coherence (PDC)
was defined by Baccala and Sameshima with the following
equation (Baccalá and Sameshima, 2001):

PDCij(f ) =
|Aij(f )|2

∑K
k=1 |Akj(f )|2

(6)

PDCij(f ) values lie within the interval [0,1] and give, for each
frequency f , the ratio of the information transfer from channel j
to i, normalised w.r.t. the total outflow from channel j. Because
of the normalisation to channel outflow, unidirectional flows
are enhanced compared to multiple flows of the same intensity
that leave from a channel. PDC therefore emphasises on sinks,
rather than sources. PDC detects only direct information flow,
contrary to the Directed Transfer Function (DTF), which also
detects indirect information flows (see below).

3.5. Directed Transfer Function
Directed Transfer Function (DTF) is, next to PDC, a second
widely used spectral causality measure. The computation starts
from the transfer matrixH(f ), which is the inverse of the Fourier
transformed MVAR coefficient matrix:

X(f ) = A−1(f )E(f ) = H(f )E(f )

The DTF is expressed through the equation
(Kaminski and Blinowska, 2014):

DTFij(f ) =
|Hij(f )|2

∑K
k=1 |Hik(f )|2

(7)

DTFij is normalised w.r.t. the total incoming information flow
toward channel i, and therefore emphasises sources rather than
sinks. As mentioned earlier, DTF detects direct as well as indirect
connections. In some cases this can be useful, e.g., to find the
driving node of a network (i.e., the one that has the most
influence, direct or indirect, on the other nodes in the network).
This has been used with success for example to identify the
seizure onset zone in patients with epilepsy (Staljanssens et al.,
2017). Both PDC and DTF are computed within the frequency
range f = [1 − 30]Hz, except in the clinical application. Here a
frequency range f = [3− 30]Hz is used (see section 5).

3.6. Partial Mutual Information on Mixed
Embedding
All previous methods fit a mathematical model to the observed
time series by minimising an optimisation function (e.g., least
means squares error). However, in practice we rarely know
the generative processes behind the observed signals and they
may not be well-represented by the assumed model. This
results in bad model fits and often false connections that are
returned with high confidence. Because of these problems,
several measures coming from information theory are gaining
in interest. Information theory provides a natural framework
for non-parametric methods to detect statistical relationships
between signals. These methods can therefore be applied to

all kinds of generative processes and interaction types, also for
systems with non-linear coupling dynamics (which can’t be
detected with any of the previous methods).

Information theoretic measures are based on the concept
of Mutual Information (MI), which quantifies the amount of
information that is gained about a variable by observing a second
variable. Partial Mutual Information on a Mixed Embedding
(PMIME) uses this principle to construct a mixed embedding
vector that best explains the future of the response variable X1.
At each iteration, conditional mutual information (CMI) is used
to find themost informative (lagged) variable which is then added
to the embedding vector. If the amount of added information
is too little, the embedding procedure is stopped. This way we
obtain a mixed embedding that contains various delays of all K
variables X1, . . . ,XK , that best explain the future of the response
variable X1, defined as x

h
1,t = [x1,t+1, . . . , x1,t+h]. The embedding

vector, wt , can be decomposed into the subsets wX1
t , wX2

t and wZ
t

which contain the lagged components of the response variableX1,
driving variable X2 and confounding variables in Z, respectively.
The PMIME metric is then defined as:

PMIMEX2→X1|Z =
I(xh1,t;w

X2
t |wX1

t ,wZ
t )

I(xh1,t;wt)
(8)

PMIME can be considered a normalised version of the Partial
Transfer Entropy (PTE) for optimised non-uniform embeddings
of all K variables. The values of PMIME range between zero
and one, where zero indicates the absence of components from
X2 in the mixed embedding vector and, consequently, no direct
Granger causal relationship from X2 to X1. The search space for
the mixed embedding vector is limited by a maximum lag, Lmax.
This parameter can be set to an arbitrarily large number without
affecting the performance, but the computational cost increases
dramatically due to the many evaluations of CMI between the
lagged variables. Here we use Lmax = 5, for more information
on this measure we refer the reader to the original paper by
Kugiumtzis (2013). The k-nearest neighbours method is used for
estimation of MI and CMI.

3.7. Surrogate Testing: Phase Shuffling
Each causality measure returns a value that quantifies the
strength of the detected relationship between the observed
variables. To evaluate which values are significant, a suitable
threshold must be found that allows to distinguish between
non-zero outputs caused by noise or genuine interactions.
Based on a comparative study of different statistical tests
(see Supplementary Data Sheet 1), we perform this test with
the help of phase-shuffled surrogate data. In this study we
provide a comparative evaluation of the outcome of the
connectivity analysis when combined with parametric tests,
block permutation surrogates or phase shuffling surrogates. The
use of phase shuffling surrogates showed the best performance
overall, with better robustness to conditions that deviate from
the underlying assumptions compared to the other tests. The
aim is to create a large set of artificial time series, based on the
original signals, wherein any possible causal influence between
the variables is destroyed whilst preserving as much as possible
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the other signal characteristics. By re-computing the causality
measures on this surrogate dataset, we obtain a null distribution
to which the original connectivity value can be compared.

Generating surrogate data with phase shuffling involves, as
the name suggests, shuffling the signal phases. Because phase
changes in the frequency domain are associated with temporal
translations in time domain (and vice versa), changing the phase
of a signal has a similar effect as creating time-shifted surrogate
data and can effectively destroy temporal relationships between
time series. Compared to sample shuffling, phase shuffling has the
advantage of preserving the spectral distribution of the original
signal and hence creates surrogate time series with dynamics that
better approach the original signals. The phase shuffled surrogate
data is created by transforming the signal to the frequency
domain using the discrete Fourier transform, and then assigning
random phase values (taken uniformly from the range [0, 2π]) to
each spectral component. With the inverse Fourier transform the
signal is brought back to the time domain and the surrogate time
series are obtained. If the surrogate data needs to be a real signal
(i.e., not complex), one should take care that the phases are made
anti-symmetric before applying the inverse Fourier transform.

Since the output values are assumed to be zero for all measures
in the absence of causality, a one-sided rank test can be used to
evaluate the significance of the original causality measure value.
If r is the rank of the original estimate of the causality measure,
the p-value is p = 1− r/(nsurr + 1), with nsurr = 100 the number
of surrogate datasets. Connectivity values are deemed statistically
significant if the p-value is smaller than 0.05.

3.8. Evaluation Metric: Matthew’s
Correlation Coefficient
Evaluation of the causality measures is based on their ability
to detect causal effects between each possible pair of variables,
and at the same time robustly reject spurious connections in the
simulated systems. To quantify the measures’ performance we
use Matthew’s correlation coefficient (MCC), a robust measure
of the quality of binary (two-class) classification algorithms.
MCC is regarded more informative than other measures, such
as accuracy, sensitivity, specificity, and F1 score, as it takes into
account the balance ratios of all four confusion matrix categories
[i.e., true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN)]. The MCC is equal to the correlation
between the predictions and the truth, and its values range
between−1 and 1. and is computed as follows:

MCC = (TP · TN)− (FP · FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(9)

4. LAG ESTIMATION

The dynamics of a network are governed by connections between
different network nodes that allow them to communicate with
and influence each other. This communication never happens
instantaneously and time delays are therefore an integral part
of all real-world networks. Variations in this delay (or lag)
between communicating variables can lead to large changes in
the dynamics of the entire system (Jirsa, 2008). However, while a

large effort has already been put in trying to retrieve the correct
connectivity pattern, estimating the lag between the variables has
been largely overlooked. In this paper, we evaluate four methods
for estimating the lags in multivariate time series, based on cross-
correlation, autoregressive modelling, and information theory.

4.1. Cross-Correlation
Inferring connectivity from cross-correlation involves finding the
time shift for which the strength of correlation between two
observed signals becomes maximal. The lag value for which this
maximum is reached can therefore be used as an estimator of the
interaction delay between the time series.

τdelay = arg max
τ∈Z

(ρ̂x,y(τ )) (10)

where ρ̂x,y(τ ) is the cross-correlation of time-series x and y,
evaluated at time-shift τ . Just like the connectivity estimate, lag
estimations through cross-correlation are subject to the same
limitations caused by the underlying linear assumptions (see
section 3.1).

4.2. Autoregressive Model
In this section we introduce two new methods for estimating the
lag between time series, based on autoregressive modelling. AR
models allow for more robust detection of linear relationships
between multivariate time series and are therefore expected
to outperform cross-correlation in estimating the lags between
communicating variables from multivariate systems. We follow
two approaches, one in the time domain and one in the
frequency domain.

4.2.1. Time Domain

Looking at Equation (2), the matrix A(m) contains the AR
coefficients for delay m. For model order p, each signal Xi,
i = 1, . . . ,K of a K-variate system is modelled by the
following equation:

Xi(n) =
K∑

j=1

p∑

m=1

A(i, j,m)Xj(n−m)

The influence of the lagged values of Xj on the response variable
Xi is thus expressed through the coefficients in A(i, j,m), m =
1, . . . , p. If a lagged component has no predictive value its
coefficient will be close to zero, whereas strongly predictive
components will lead to coefficients with a large magnitude.
Similar to the cross-correlation method, we can thus identify the
lagged component of the variable Xj that is most predictive for Xi

using the argmax function:

τdelay(i, j) = arg max
m=1,...,p

(|A(j, i,m)|) (11)

The AR-based lag estimation in time domain involves finding the
maximal values along the third dimension of the K × K × p
coefficient matrix A, that’s constructed by appending the AR
coefficient matrices to each other in order of ascending delay.
The relative magnitude of the lagged components is more or less

Frontiers in Systems Neuroscience | www.frontiersin.org 7 October 2021 | Volume 15 | Article 620338

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Heyse et al. Directed Causality and Lag Estimations

independent on the model order, p, which should thus be chosen
large enough to incorporate all possible interaction delays. In this
study we use a fixed model order p = 20 for the AR(p)-based
lag estimations.

4.2.2. Frequency Domain

By againmaking use of the interplay between phases in frequency
domain and shifts in time domain, we can estimate the delay
between communicating variables by looking at the phases of
the AR model. From Equation (5), the spectral components
of the Fourier-transformed coefficient matrix A(f ) are formed
by a summation of the AR coefficient matrices for each delay,

weighted with an exponential function e
−i2π

f
fs
m
. Each spectral

component can thus be decomposed into a sum of vectors with
magnitude A(m) and phase−2π(f /fs)m. If a specific component
in A(m) is significantly larger than the other values, its associated
phase will dominate the phase of the spectral components.

The most prominent phase value across all considered
frequencies is thus an indicator of a large component in
A(m). To estimate which phase predominates in the spectral
components, we use a kernel density estimation on the phase
values of the coefficients in each array A(i, j, f ), with f ranging
over all considered frequency values and (i, j) fixed depending
on the considered driving and response variables (Xj and Xi,
respectively). Kernel density estimation is a non-parametric
method to make inferences on the probability density function,
based on a finite data sample. It uses a linear combination of time-
shifted kernels to estimate the true underlying density function
and can be seen as a smooth and continuous alternative for
histograms. The phase value at the maximum peak of the density
function, φmax, is then transformed to the most predictive lag
component as:

τdelay =
φmax

2π

fs

f
(12)

4.3. Partial Mutual Information on Mixed
Embedding
PMIME lends itself naturally to estimate the lag between
variables, as the method consists of creating a mixed embedding
vector by iteratively adding the lagged component that holds the
most information on the future of the response variable Xi. If
we want to estimate the lag of the effects coming from driving
variableXj, we simply look at the lagged component ofXj that was
added first to the embedding vector. The non-parametric nature
of PMIME should allow this method to also robustly estimate the
lag between variables with non-linear interactions.

4.4. Simulation Models for Evaluating the
Lag Metrics
To evaluate the performance of the proposed lag estimation
methods, we designed slightly altered versions of the
“Sweep,” “FreqARlin,” and “PinkAR(non)lin” simulation
models, where we introduce a variable lag between two
communicating variables. This way, we can track whether the
lag estimation metrics are able to detect the correct lag between
communicating variables.

The first system consists of a bivariate compression of the
“Sweep” model, where only the variables X1 and X3 are retained.
With this system we can evaluate how the metrics perform on
bivariate systems with periodic signals. Then we move to signals
of an autoregressive nature by extracting the X1 and X3 variables
from the “PinkARlin” system. In the third system, we apply the
lag estimation methods on the entire multivariate “PinkARlin”
model, where again the lag for the connection X1 → X3 is
made variable. We also check how the metrics behave for non-
linear interactions by doing the same analysis as with the previous
system, but applied on the “PinkARnonlin” simulation model
(where the connection X1 → X3 is quadratic, see section 2).
Lastly we have a model with frequency-specific connections,
where we start from the “FreqARlin” system and made the lag
between X1 and X2 variable. Because changes in the lags can
introduce instabilities in chaotic simulation models, these were
not included in this analysis. Each system is realised 100 times
for each lag value, ranging from 1 to 20 sample points.

5. APPLICATION ON SEEG SEIZURE DATA

To validate the conclusions of the simulation study, the same
methods for connectivity and lag estimation are applied to a
stereo-electroencephalogram1 (sEEG) that contains ictal activity.
The seizure was recorded during a clinical protocol where
trains of repetitive electrical stimulations were applied to contact
pairs in order to map cortical functions and excitability. The
entire sEEG setup consists of depth electrodes in the frontal
lobe, posterior cingulate, parietal lobe, and hippocampus, both
on in the left and right hemisphere. Upon stimulating the
most medial contacts of the right amygdala (RA1-2), a focal
seizure was elicited in the right mesio-temporal brain region.
Figure 2 shows the intracranial EEG measured from a selection
of contacts, together with the position of the electrodes in the
right hemisphere. Two red bars indicate the start of stimulation
and of the seizure, which can be identified as fast, high-frequency
activity in some of the contacts in the right anterior and posterior
hippocampus (RHA and RHP, respectively). The signals from the
RA1-2 contacts cannot be interpreted because they are riddled
with artefactual activity due to the stimulation current blocks.

The connectivity and lag values are estimated by applying the
aforementioned metrics on four epochs of 2s (fs = 1 kHz) from
the sEEG signals before stimulation (i.e., resting state, t = 150−
152 s), during stimulation but before the seizure (t = 156−158 s),
at the beginning of the seizure (t = 166− 168 s), near the end of
the seizure (t = 203−205 s), and at the end of the sEEG recording
when no seizure activity and stimulation artifacts are present (t =
985−987 s). The sEEG signal and electrode locations can be seen
in Figure 2. Because sEEG signals have a more complex structure
than the simulation models, the surrogate data, used to detect
only significant interactions, is generated using the iterative
amplitude adjusted Fourier transform (iAAFT) method. This is
an improved version of the phase shuffling method that was used
for the simulation models, and preserves the autocorrelation and

1sEEG is an invasive procedure where electrodes are implanted in targeted brain

areas to identify where epileptic seizures originate.
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FIGURE 2 | (A) Local field potentials as measured from the contacts included in the connectivity analysis. The two red lines indicate the start of the stimulation in the

right amygdala, and the onset of the epileptic seizure. The green boxes highlight the epochs on which connectivity is computed (t = 150− 152, 156− 158,

166− 168, and 203− 205 s). The epoch at the end of the EEG recording is not visualised because it lies far outside the displayed window (t = 985− 990 s).

(B) Position of the implanted electrodes in the right amygdala (RAD, red), anterior hippocampus (RHA, blue), and posterior hippocampus (RHP, green). Because of the

implantation angle of the electrodes, some contacts are not visible on the axial plane (e.g., for the right anterior hippocampus, the most medial contacts cannot be

seen), so coronal views (right) are also added. On each electrode, the most medial contact corresponds to contact 1.

amplitude distribution of the signals (Schreiber and Schmitz,
1996). For the simulation models the phase shuffling method
is still used to reduce the computational cost and because the
simple data structure makes the added value of iAAFT redundant
and without any impact on the results. The frequency-dependent
causality measures (PDC and DTF) are computed within the
frequency band f = [3 − 30] Hz. The variability of the lag
estimations is also investigated by computing the lag metrics on a
sliding window of 2s throughout the entire seizure (t = 168−210
s). The included channels are: the first two contacts in the right
anterior and posterior hippocampus (RHA/RHP1-2), where the
seizure activity is most prominently present. The first contact in
the left parietal and frontal anterior regions (LPT/LFA), which
were unaffected by the seizure. The first two contacts in the left
anterior and posterior hippocampus (LHA/LHP1-2) to inspect
the hippocampal network during the seizure. The stimulated
contacts (RA1-2) are not included in the analysis because they are
polluted with stimulation artifacts which would skew the results.

6. RESULTS

6.1. Causality Measures
Here we evaluate all selected causality measures and inspect
how their performance changes when they are computed over
the different simulation models. All connections are tested
for statistical significance based on the phase shuffling test,
except for PMIME where all non-zero values are statistically
significant by design (see Supplementary Data Sheet 1 for more
details). Figure 3 shows the distribution of the MCC values
for each causality measure using a violin plot.2 We found
that all causality measures had similar results with overlapping

2A violin plot is a hybrid visualisation technique that contains the same statistics

of a box plot (i.e., median and interquartile ranges), with additional information

on the probability density function represented by the width of the box. The

probability density function is estimated using a Gaussian kernel density estimator.

FIGURE 3 | Violin plot of the MCC values for the different causality measures.

The white dots and black lines indicate the median and quartile values. The

width of the violin illustrates the density of the MCC distribution. Statistically

significant differences (one-sided T-test) are annotated with a black line and

star (*p < 0.05, **p < 0.005).

distributions except for a clearly lower performance of cross-
correlation. A one-sided T-test confirmed that the MCC values
of cross-correlation are significantly lower than those of the other
causality measures (significance level α = 0.05). This trend was
also observed during the evaluation of the statistical tests (see
Supplementary Data Sheet 1). On average PMIME shows the
best performance, but the difference with the other measures is
small and the MCC distributions largely overlap.

The measures’ performance for the different simulation
models is shown in Figure 4. A large difference in performance
can be seen for all measures between the simulation models
“Random” and “Henon.” PMIME gives the best performance for
the chaotic models (“Henon” and “Lorenz”) and the non-linear
AR model “PinkARnonlin,” but doesn’t do well on the systems
with frequency-specific connections. For the latter systems and
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FIGURE 4 | Bar graph showing the performance of the causality measures on each simulation model separately. The measures are computed on 100 iterations of

each simulation model and performance is quantified by the MCC values.

linear AR models, PDC and DTF show the best results. The
exact MCC values as well as the sensitivity and precision values
are summarised in Supplementary Tables 1, 2, respectively. In
general we observe a higher sensitivity compared to the specificity
(i.e., more false positives than false negatives). We also did a
sensitivity analysis to further investigate the relationship between
some of the model parameters (signal length n and AR model
order p) on the outcome of the causality measures. The resulting
MCC values can be seen in Supplementary Table 3. The results
show a general trend of increased performance for longer signal
length and higher AR model order.

A detailed analysis of the average reconstructed networks over
the 100 realisations of the simulationmodels is shown in Figure 5
for the most illustrative systems: “CascadeAR,” “PinkARlin,”
“PinkARnonlin,” and “FreqARlin.”

Looking at the reconstructed connectograms for the
“CascadeAR” model, many (false) indirect links are returned
by GCI and to a lesser extent also by DTF (specificity 52
and 77%, respectively, see Supplementary Table 1). Better
results are obtained with CGCI, PDC, and PMIME which
compute networks that closely resemble the ground truth.
Similar observations can be made for the results of the “Henon”
model, but here the difference between GCI and CGCI is less
pronounced. For this model, only PMIME is able to separate the
two groups of connected signals, and returns an almost perfectly
reconstruction of the true network topology.

For “PinkARlin” the network returned by PDC corresponds
most to the ground truth. Both DTF and PMIME have a high
probability of returning the indirect connection X1 → X5.

When non-linear interactions are introduced, such as in
“PinkARnonlin,” we see that only PMIME retains its good
performance and returns a network similar to the ground truth.
PDC and DTF on the other hand now return a large amount of
spurious connections.

In “FreqARlin” we see a relatively good performance from
GCI, CGCI, PDC, and DTF, except that none of the measures is
able to detect the low-frequency interaction X1 → X4. In the
Supplementary Materials, an overview figure is included with

the connectograms for every combination of causality measure
and simulation model (see Supplementary Figure 1).

6.2. Lag Estimation
Figure 6 shows the results of the simulation models with variable
lags, with the estimated lags plotted in function of the true
underlying lag. At first glance we can immediately observe a poor
performance of the AR(f) lag estimation metric, which always
has an estimated lag value distribution centred around zero.
Cross-correlation works well for the bivariate periodic (Sweep)
and AR models, apart from a small mishap in the AR model
where the negative lag is returned due to an incorrectly assigned
directionality. In the other models cross-correlation is unable
to detect the correct lag. The time-domain AR metric [AR(p)]
is able to assign the correct lag value in all models with linear
connections, but not in the non-linear one. In the frequency-
specific and multivariate linear AR models a deviation from the
true lag values is seen as we approach the model order (p = 20).
Lag estimations based on PMIME work perfectly for all models,
except for the one with frequency-specific connections.

6.3. Application on sEEG Seizure Data
The same connectivity and lag estimation methods are
applied to a sEEG dataset containing a seizure triggered by
electrical stimulation. Figure 7 shows the seizure networks,
as reconstructed by the different connectivity metrics for all
four sEEG epochs. In the connectivity matrices, each element
(i, j) represents the strength of the connection from signal i
toward signal j, taking into account only the interactions that
were indicated as statistically significant after surrogate testing
with iAAFT.

If we look at all AR-based measures together (GCI and CGCI
in time domain, and PDC and DTF in frequency domain),
a general trend can be spotted in the network behaviour
during the different epochs. Pre-stimulation the connections
are mostly intra-regional, with a strong cluster in the left
hippocampus and to lesser extent also in the right counterpart.
During stimulation the inter-hippocampal connections become
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FIGURE 5 | Connectograms estimated by the different causality measure for a selection of four simulation models. The connections are colour-coded in function of

the source channel and the width is proportional to the number of significant interactions found over 100 realisations of the simulation model. The first column

contains the ground truth network.

stronger, mostly from the right to the left hippocampus. At
the beginning of the seizure the connectivity pattern shows low
overall connectivity and no clear clustering of contacts. DTF
shows high outgoing connections from one of the contacts in the
right anterior hippocampus (RHA1). At the end of the seizure
the connectivity pattern resembles a bit more the resting state
network, albeit a more interconnected version, with mostly intra-
regional connections. The connectivity matrices from the final
epoch at the end of the recording also show a resemblance with
those obtained from the pre-stimulation epoch, especially for
GCI and CGCI.

We will look a bit more in detail at the epoch at the
beginning of the seizure, because this is the one expected to
best represent the actual ictal network. The connectivity matrices
and a schematic reconstruction of the hippocampal network
during seizure are presented in Figure 8. The GCI and CGCI
results are very similar, with a main direction of information
flow from the left to the right hippocampus. The two most
prominent interactions in the CGCI network are LHA1→RHA1
and RHA1→RHA2. PDC and DTF both return networks
with a directionality from the right to the left hippocampus.

DTF puts an emphasis on the outgoing connections from
the RHA1 contact. Figure 8B contains a simplified schematic
representation of the intra- and inter-hippocampal networks as
returned by PDC and DTF.

The connectivity matrices returned by cross-correlation and
PMIME show no clear structure, and both contain outgoing
connections from the left frontal contact (LFA1) toward other
contacts in the left hemisphere.

The lag estimation results are displayed in Figure 9. For the
lag matrices, each element (i,j) represents the estimated lag value
of the connection from contact i to j. Because the lag values
right after the seizure onset are hard to interpret and show no
clear pattern, we also took a closer look at the variability of the
lag estimations. Figure 9C shows the box plots of the lag values
estimated from epochs taken throughout the entire seizure. The
box plots are grouped into clusters containing the values for
outgoing connections from the contact that is indicated on the
x-axis. Within each cluster, the same order of contacts is used i.e.,
the first box shows the lags from LFA1→LFA1, the second box
from LFA1→LHA1, and so on. These plots clearly show the large
variance and apparent absence of a clear pattern in the lag values.
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FIGURE 6 | Shaded error bar plots showing the lag estimation in function of the true underlying lag values. The shaded area shows the standard deviation of the

estimated lag over 100 realisations of the simulation model.

The correlation plot in Figure 9C shows the interaction between
the CGCI connectivity strength and the AR(p) lag variability.

7. DISCUSSION

7.1. Causality Measures
The large overlap between the MCC distributions for the
causality measures indicates that there’s no one measure that
clearly performs better in all contexts. It is therefore informative
to check how the measures relate to each other at the level of the
simulation models. Here we see a surprisingly bad performance
on the simplest simulation model (“Random”), while the best
results are seen for “Henon.” This difference could be explained
by the stronger internal structure of the signals in the latter
model, whereas in the “Random” model the signals essentially
consist of pure noise. For the linear AR models and the AR
models with frequency-specific interactions PDC and DTF give
the best performance, with similar results obtained using GCI
or CGCI. However, if we take these measures outside of their
comfort zone and analyse chaotic models or introduce non-linear
interactions, they are significantly outperformed by PMIME.
These results indicate the importance of choosing a causality
measure based on the expected characteristics of the system that’s
being analysed.

With the average connectograms we can go into even more
detail and investigate if and where in the different systems there
is a tendency to consistently make the same mistake. With its
long cascade of information transfer, the “CascadeAR” model
lends itself perfectly to show the influence of indirect links on

the different measures. While the network of the bivariate GCI is
severely impacted by the presence of these indirect connections,
its multivariate extension CGCI is able to better tell the difference
between direct and spurious indirect connections. At the same
time it can also be seen that DTF finds these indirect connections
as well, mostly toward variable X3 which is a sink in the network.
This leads to a lower MCC value for DTF, even though these are
not really false positives as DTF is meant to find these indirect
connections (see section 3.5).

Looking at the reconstructed networks for the “PinkARlin”
models, those from PDC, DTF and PMIME clearly correspond
most to the ground truth. If we then introduce non-linear
interactions in “PinkARnonlin” we see that only PMIME retains
its good performance. This was expected since its non-parametric
nature makes it the only metric that’s able to detect non-
linear interactions. However, what is unexpected is that the
other measures return completely disrupted networks. Our
hypothesis was that these AR-based metrics would only miss
non-linear connections but maintain their performance in the
rest of the network. These results now indicate that the effect
of non-linearities can be propagated throughout the entire
network and lead to a significant increase in false positives. It
is therefore important to always interpret results from these
AR-based metrics with caution, especially when dense networks
are returned.

Even though PMIME seems to perform well on all previously
mentioned models, it doesn’t do well in the presence of
frequency-specific connections. The mechanism behind why
PMIME performs this poorly in this context is not completely
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FIGURE 7 | Connectivity results from the sEEG data. Each row contains the connectivity matrices from one of the causality metrics when applied on each of the

epochs before/during stimulation, at the beginning/end of the seizure, and after the seizure.

clear and will require some further investigation in the
future. However, this issue is presumed to be mediated by
the reconstruction of separate functional networks for each
frequency band of interest. In the simulation models that contain
frequency-specific connections, the other causality measures
(GCI, CGCI, DTF, and PDC) give the best performance. Here
PDC and DTF seem the more logical choice as a causality
measure, since the frequency-dependency of the connections is
already embedded in its computations and can also be extracted
from the results. Notably, none of the measures is able to detect

the low-frequency connection X1 → X4. This can be explained
by looking at the spectral characteristics of both signals. Whereas
the power spectrum of X4 follows a simple 1/f distribution, X1

has an additional peak around 35 Hz. If the connection X1 → X4

were to occur in the γ frequency band (i.e., [25–100 Hz]), this
peak in the spectrum of X1 would lead to a large impact on X4

as the gamma power of the latter is close to zero. The larger the
impact, the easier it will be to correctly detect this interaction.
This effect will however be less for low-frequency connections,
and therefore the coupling is more difficult to detect (Figure 10).
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FIGURE 8 | Connectivity results from the sEEG epoch at the beginning of the seizure (t = 166− 168 s). (A) Connectivity matrices for each connectivity measure.

(B) Simplified schematic representation of the intra- and inter-hippocampal networks based on the PDC and DTF results.

7.2. Lag Estimation
The lag estimation models were evaluated on a set of simulation
models with variable lag and designed to cover a range of
characteristics: periodic and stochastic processes generating
bivariate and multivariate systems with linear, non-linear, and
frequency-specific couplings. As the AR(f) method seems to
randomly select lags around zero in all cases, this model is
clearly unable to detect the lag between communicating variables.
Cross-correlation can be used to reliably detect the lag in
bivariate systems except with frequency-specific connections,
albeit sometimes with the wrong directionality. The AR(p)
method performs well in all linear cases, bivariate as well as
multivariate, and is the only one able to find the correct lag in the
frequency-specific model. These results are in line with what we
saw in the connectivity results, where the ARmetrics could detect
the correct network in the FreqARlin while PMIME performed
poorly in this context. As expected, only the PMIME based lag
estimation performs well also for non-linear couplings.

Due to its easy and fast computation AR(p) presents itself as
an ideal candidate to identify the lag between coupled variables,
as long as the interaction is linear. If the coupling is non-linear,
the correct lag can be identified with PMIME. The latter can
also be used in all other contexts as long as the interaction is
not frequency-specific, however computation is more complex
and time-consuming.

7.3. Application on sEEG Seizure Data
When we look at the results from all connectivity measures on all
sEEG epochs (see Figure 7) it’s clear that the AR-based measures
all return similar networks. This similarity can be expected and
is largest between GCI and CGCI. The difference with their
frequency domain counterparts (i.e., PDC and DTF) is larger,
their networks show the same overall patterns but are more
sparse. They appear to return more sharply defined networks,
which allows for a focussed analysis of the important connections
at play.

During stimulation we see a sharp transition in the network
structure with strong inter-hippocampal connections from the

right to the left hippocampus (except for GCI which shows more
a left-to-right directionality, but this is probably erroneous and
caused by the periodicity of the signals). This hyper-synchrony
caused by the stimulation is a very probable driving factor in
the development of the seizure activity, and the directionality
from the right to the left hippocampus is in agreement with
what we expected based on the location of the stimulation
contacts (RA1/2).

At the beginning of the seizure the networks are sparser
and more unstructured. This might seem counter-intuitive
since epileptic seizures are associated with hyper-synchrony, but
desynchronisation is often observed right before and after the
onset of ictal activity (Mormann et al., 2003; Schiff et al., 2005;
Schindler et al., 2010). Other analyses have reported increased
connectivity at seizure onset (Schindler et al., 2007; Kramer
et al., 2010). Differences between these results may arise from a
multitude of reasons including seizure type, coupling measure,
electrode locations etc. The exact mechanisms of brain functional
connectivity at the seizure onset are not completely understood
and remain an active area of research. Further discussion of the
hippocampal seizure network will be given in the next paragraph.

At the end of the seizure the networks are partly restored
and resemble a more densely connected version of the resting
state network. High levels of synchronisation are often observed
in late stages of the seizure and may play a role in facilitating
termination of the seizure (Schindler et al., 2007). For an
extensive overview and discussion on the dynamics of functional
connectivity during seizure progression, we recommend the
review from Kramer and Cash (2012).

At the end of the recording, when there is no longer seizure
activity and/or stimulation artifacts present in the signal, the
connectivity networks again resemble those obtained from the
pre-stimulation epoch. The resemblance is most strong for the
GCI and CGCI networks, which might therefore be the most
suitable candidates for resting state connectivity analysis in
EEG. The pre-stimulation and post seizure connectivity matrices
are expected to show some differences, because resting state
networks are variable in time.
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FIGURE 9 | Lag estimation results from the sEEG seizure data. (A) Lag estimation at the beginning of the seizure (t = 166− 168 s). (B) Correlation plot of the lag

variability during the seizure in function of the connectivity strength, as estimated by the AR(p) and CGCI measures, respectively. Each blue cross represents a data

point, the red line shows a linear fitted model with the 95%-confidence bounds as dotted lines. (C) Box plot of the lag values for each channel pair, estimated during

the entire seizure.

The choice of the epoch length always has an impact on the
results. Too short epochs don’t contain sufficient data points
to fit the models while too long epochs might contain non-
stationary behaviour, which EEG signals are notorious for. We
investigated the effect of the epoch length on our connectivity
results by comparing the connectivity matrices for epoch lengths
of 0.5, 1, 2, 3, and 5 s. The results of this analysis can be seen in
Supplementary Figures 2–5. For short epochs the metrics are no
longer able to detect all relationships and the returned networks
are sparser, especially for PDC and DTF. GCI, a bivariate model,
shows more stable results when the epochs become shorter due
to the lower number of parameters that need to be fitted. With
longer epoch lengths we see the strongest difference in the

networks from the pre-stimulation epoch, whichmay be assumed
to contain the most non-stationary behaviour. The epoch during
stimulation, dominated by the constant stimulatory component,
is mostly stationary. These networks are less impacted by an
increased epoch length. The results for epoch lengths 2 and 3 s are
very similar and the optimal epoch length is therefore expected to
lie within this range, justifying our choice of 2 s.

Because the epoch right after the seizure onset best represents
the seizure network, these networks are analysed a bit more in-
depth (see Figure 8). The networks returned by GCI and CGCI
are very similar, with CGCI returning a slightly sparser version
of the GCI network. Both measures indicate an information flow
from the left to the right anterior hippocampus, mainly through
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FIGURE 10 | Power spectra of signals X1 and X4, obtained from a realisation of the “FreqARlin” simulation model.

the link LHA1→RHA1. This directionality is contradictory to
our expectations, as the seizure activity clearly starts in the
right hippocampus (see Figure 2). Apart from the unexpected
directionality, the role of the RHA1 contact is in line with
our findings on the source analysis with the spectral measures
(PDC and DTF). These measures clearly detect the right-to-
left-directionality of information flow and return very plausible
reconstructions of the ictal network. From the PDC network it is
already apparent that the largest information spread originates
in the right anterior hippocampus (RHA1 and RHA2), but it
is hard to see which of the two contacts is driving the ictal
network. DTF on the other hand clearly identifies RHA1 as the
main source. This concurs with our observations of the local
field potentials during the seizure onset. The random nature
of the cross-correlation connectivity matrix further confirms its
poor performance as a connectivity measure, as we also saw in
the results from the simulation models. PMIME also returns a
network that’s very distinct from those of the AR-based methods.
This could indicate the presence of a network with non-linear
interactions, but the strong outgoing connections from the LAF1
contact are hard to explain and suggest an erroneous network.
This might be caused by the frequency-specific nature of the
connections, which showed to cause wrong outputs from PMIME
in the simulation models. This is also in line with the hypothesis
of frequency-specific connections in brain communication.

At first sight the lag estimation shows no clear pattern that
relates to the connectivity network found during seizure onset.
The large variance of the lag estimations during the seizure, seen
in the box plots, suggests there’s no stable relationship between
the connectivity and lag estimation results. This is further
endorsed by the lack of correlation between the connectivity
strength and lag variability. These results are inconsistent with
how we approach connectivity in the brain and raise some
important questions. Based on the neuron doctrine, a line of

thinking has emerged where connections between brain regions
have been regarded as a causal influence of region A on region
B with a certain delay related to the propagation of action
potentials across axons and synapses. However, when network
structures become more complex with back-connections, self-
connections, loops etc. this concept of causality becomes less
clear and other models (e.g., chaotic systems) might be more
fitting. The apparent independence of the lag and connectivity
strength needs to be further investigated to check whether
this is related to unreliability of the lag estimation methods
or indeed we have to rethink our conceptual approach on
brain connectivity.

Limitations and Future Perspectives
In this paper we compare a set of popular causality measures
in simulated systems in an attempt to characterise their
performance in different environments. However, this is not an
exhaustive comparison and is not aimed at providing a single
answer on how to perform causality analysis on a given dataset.
Many other causality measures and adaptations thereof exist that
can be combined with different statistical tests.

Several simulation models were used in an attempt to
reproduce the signal characteristics that we might encounter
in true observations. Some models are focused on recreating
the spectral behaviour (e.g., the 1/f spectral distribution
of all AR signals), while others are aimed at simulating
different possible coupling characteristics (linear, non-linear,
and/or frequency-specific). Simulation models such as “Sweep”
and “FreqARlin” were designed to produce specific clinically
relevant signal attributes based on theoretical principles of brain
networks (i.e., the spreading of epileptic seizures and frequency-
specific communication between brain regions, respectively). The
resulting signals may sometimes diverge from what we see in
reality, but all models were designed and chosen carefully to
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TABLE 1 | Overview of the different signal characteristics covered in this paper, in terms of generative processes and interaction types, and the causality measures that

were found to perform best under these circumstances in the simulation models.

Linear Non-linear

Stochastic General CGCI or PDC for network reconstruction, DTF to find the network

sources. CGCI can be used to get a more dense representation of

the network, which might be helpful to compute graph measures.

PMIME

Frequency-specific PDC for network reconstruction, DTF to find the network sources. ???

Periodic PDC for network reconstruction, DTF to find the network sources.

Beware for directionality issues.

PMIME

Chaotic PMIME PMIME

This is only a general indication and should not be interpreted as a plug-and-play roadmap for selecting a causality measure.

provide as much insight as possible in how the causality measures
are affected by and handle different types of data.

The effect of changes in SNR, signal length, number of
channels and sparsity of the network were not taken into account
here, and sensitivity tests to these parameters might very well lead
to other relevant insights. Also, the simulation models used here
were designed to resemble EEG signals, but other conclusions
may hold for signals with very different characteristics (e.g.,
low temporal resolution signals such as in functional magnetic
resonance imaging).

We applied the same methods to sEEG signals to get an
impression of how the conclusions of the simulation study can be
translated to real-world applications. However, we want to stress
that this is only one example and connectivity results in other
analyses should always be interpreted with caution.

8. CONCLUSION

This work consists of three main components. First, we provided
an extensive evaluation of some of the most known causality
measures that are being used in the context of functional
connectivity analysis. Based on a set of simulation models with
distinct characteristics (chaotic vs. stochastic processes, linear
vs. non-linear, and general vs. frequency-specific couplings)
we were able to show the context-dependent ability of these
measures to correctly reconstruct the underlying network. For
multivariate systems of a stochastic nature with purely linear
interactions, PDC and DTF performed best. Information-theory
based measures such as PMIME are preferred for chaotic
systems and/or if non-linear interactions are present. Notably,
PMIME performed poorly when the interactions are frequency-
specific. Another interesting result is that the effects non-linear
couplings seem to, in stochastic systems, propagate through-
out the entire network and completely disrupt the results from
linear measures such as PDC and DTF. This issue warrants
the use of both linear and non-linear causality measures when
examining data of an unknown nature (e.g., for the analysis of
physiological data such as EEG). If the reconstructed networks
differ strongly and the network returned by the linear measure
is very dense, this suggests the presence of non-linearities and
advocates caution when interpreting the results from the linear
measure. Table 1 contains an overview of the main conclusions

from the simulation models on when to apply which measure.
These conclusions may serve as an indication of which causality
measure is best fitted for the expected signal characteristics but
should under no circumstance be interpreted as a plug-and-
play guide to choose one metric. Because of the bad results
of PMIME on the models with frequency-specific interactions,
further investigation is needed to find a suitable candidate for
connectivity analysis in systems with non-linear, frequency-
specific interactions.

In the second part of this study we proposed and evaluated
four methods to estimate the lag between coupled variables.
The PMIME-based method was shown to be an excellent lag
estimator and correctly identified the true lag for all realisation
of most models, even to some extent for frequency-specific
connections. Using the magnitude of the (time-domain) AR
coefficients also detected the correct lag, but only for models
with purely linear interactions. Therefore, the PMIME-based lag
estimation is preferred over the AR(p) method, unless the system
is known to only contain linear interactions. In this case the
AR(p) method might be preferred as its easier and faster to
compute. Also due to its computation-expensive nature PMIME
poses a limit on the number of variables in the system and the
depth of the embedding dimension that can be used (i.e., how
many samples we can look back in time).

In the end, we applied the same connectivity measures and
lag estimation methods on a sEEG recording of a stimulation-
induced epileptic seizure. Overall, the functional connectivity
results show a good correspondence with the results from the
simulation models. The AR-based spectral methods returned
a plausible network that agrees with the observations of the
measured signals and known concepts of desynchronisation and
synchronisation during seizure progression. The lag estimation
results show an unexpected independence between the estimated
lag and connectivity strength. Further investigation is required
to check if we need to fine-tune the lag metrics, or rethink
our concepts of causality in regard to the complex dynamics of
brain networks.
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