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Most neural networks need to predefine the network architecture empirically, which

may cause over-fitting or under-fitting. Besides, a large number of parameters in a

fully connected network leads to the prohibitively expensive computational cost and

storage overhead, which makes the model hard to be deployed on mobile devices.

Dynamically optimizing the network architecture by pruning unused synapses is a

promising technique for solving this problem. Most existing pruning methods focus on

reducing the redundancy of deep convolutional neural networks by pruning unimportant

filters or weights, at the cost of accuracy drop. In this paper, we propose an effective

brain-inspired synaptic pruningmethod to dynamically modulate the network architecture

and simultaneously improve network performance. The proposed model is biologically

inspired as it dynamically eliminates redundant connections based on the synaptic

pruning rules used during the brain’s development. Connections are pruned if they

are not activated or less activated multiple times consecutively. Extensive experiments

demonstrate the effectiveness of our method on classification tasks of different

complexity with theMNIST, FashionMNIST, and CIFAR-10 datasets. Experimental results

reveal that even for a compact network, the proposed method can also remove up to

59–90% of the connections, with relative improvement in learning speed and accuracy.

Keywords: synaptic pruning, developmental neural network, optimizing network structure, accelerating learning,

compressing network

1. INTRODUCTION

Deep Neural Network (DNNs) have achieved state-of-the-art performance for various machine
learning tasks, including image classification (Krizhevsky et al., 2012; He et al., 2015; Simonyan
and Zisserman, 2015), face recognition (Lawrence et al., 1997), video prediction (Deng et al.,
2013), and speech recognition (Hinton et al., 2012; Abdel-Hamid et al., 2014). In spite of their
superior performance, the complex network architectures lead to a significant increase in the
computation and parameter storage costs, which limits their deployment on resource-constrained
devices. Besides, excessive number of parameters will lead to over-fitting. Dynamically optimizing a
fully connected network by removing redundant connections is a promising approach to compress
network and avoid over-fitting.
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To realize the dynamicmodulation of a network structure, two
key issues need to be resolved. First, which synaptic connections
in the network are redundant? Second, when should redundant
synaptic connections be removed? We take inspiration from
the highly efficient and complex central nervous system, which
is a complex neural network and is modulated and pruned
during development. Throughout the developmental process of
childhood and adolescence, synaptic overgrowth followed by
the selective elimination of redundant synapses (Montagu, 1964;
Chechik et al., 1999). The activity of the synapses determines
whether they will be eliminated or retained. When learning tasks,
repeated use will strengthen the synapses, while the rarely used
synapses will becomeweaker and likely to be eliminated (Pascual-
Leone et al., 2005; Mangina and Sokolov, 2006; Johnston et al.,
2009). As a result, redundant synapses are pruned from the brain,
leaving only the most important synapses. This brain pruning
mechanism inspired some minimal-value deletion methods.
They prune the synapses with weights below a threshold
(Chechik et al., 1998a,b; Han et al., 2015). However, these
methods are somewhat arbitrary because they eliminate some
synapses whose weights are incidentally below the threshold.
Moreover, the thresholds need to be carefully defined for
different conditions.

In this paper, we propose a brain-inspired synaptic pruning
(BSP) algorithm based on the synaptic pruning mechanism in
the human brain. Our method prunes unimportant synapses that
have been hardly used for consecutive multiple times. In this way,
during the learning process, the proposed method can effectively
modulate neural network architecture by pruning redundant
synapses while retaining effective synapses. In order to verify
the generality of our method, we test it on classification tasks
of different complexity with the MNIST, Fashion MNIST, and
CIFAR-10 datasets. When applied to the networks with different
sizes and different numbers of training samples, our method
validates its strengths and effectiveness. Experimental results
demonstrate that BSP can significantly compress the network.
More importantly, compared with the initial network and the
dropout network, the pruned network has similar test accuracy,
but the learning speed is much faster.

2. RELATED WORK

This section introduces some related works on optimizing
network architecture. Pruning network has been widely studied
in recent years. Minimal-value deletion pruned all synapses
whose weights are below a threshold (Chechik et al., 1998a,b; Han
et al., 2015). The experimental results showed that the pruned
network can be significantly compressed without affecting
accuracy. However, this method may prune some useful synapses
whose weights are incidentally below the threshold. Other
works focus on designing appropriate criteria to evaluate the
importance of synapses so that the least important ones are
pruned. Molchanov et al. (2017) considered the l2-norm of
the kernel weights, as well as the mean, standard deviation,
and percentage activation of the feature map. They also used
mutual information between activations and predictions as an

evaluation criterion. A first-degree Taylor expansion method was
proposed in Molchanov et al. (2017) to evaluate the importance
of synapses. LeCun et al. (1990) and Hassibi and Stork (1993)
focused on the second-order term of a Taylor expansion and
calculated the importance of synapses using a diagonal Hessian
matrix. He et al. (2019) proposed a filter pruning method based
on the geometric median to prune the most replaceable filters
containing redundant information. Yu et al. (2018) proposed the
neuron importance score propagation (NISP) algorithm, which
propagates the importance scores of final responses to every
neuron in the network. Then, the convolutional neural network
was pruned by removing neurons with the least importance.
Li et al. (2016) removed the filters with relatively low weights
together with their connecting feature maps. He et al. (2018)
proposed a soft pruning method that enables the pruned filters
to be updated when training the model after pruning. These
methods have little biological plausibility andmainly focus on the
regularization of the neural network. In addition, improving the
regularization is often at the expense of accuracy.

Dropout (Srivastava et al., 2014) is widely used to prevent
over-fitting. In dropout, each neuron is probabilistically dropped
during training but can return during inference. There is no
reduction in the complexity of a network with this method.
DropConnect (Wan et al., 2013) randomly set a subset of weights
within a neural network to zero, which helped in regularizing
the network. In some cases, it outperformed dropout but was
slower at learning than the initial network and the dropout
network. MeProp (Sun et al., 2017) updated a small portion of the
parameters during each backpropagation step. These methods do
not essentially change the structure of the network.

Some methods use evolutionary strategies to optimize a
network structure dynamically. Evolutionary artificial neural
networks optimize network weights and network structure
simultaneously. Some parameters related to network structure
are encoded into the genome, which are optimized by an
evolutionary strategy. An evolutionary strategy evaluates the
performance of a network with a fitness function. Such functions
usually include classification accuracy (e.g., the reciprocal of
the error or the mean squared error Angeline et al., 1994; Yao
and Liu, 1996 or the cross-entropy error Park and Abusalah,
1997) and the network scale (e.g., the number of neurons or
connections Vonk et al., 1995; Ioan et al., 2004). After several
iterations, an evolutionary artificial neural network can find
the optimal network structure. Zhao et al. (2017) proposed
an evolutionary optimization method that prunes a network
to an appropriate network topology. These methods focus on
optimizing the network structure to attain the best balance
between network complexity and test accuracy. However, the
evolution process is time-consuming, and these methods have
some randomness, which may result in significant detours.

In summary, existing network optimization methods rarely
considered the neural development of a biological brain. The
dynamic development in the brain enables a very small network
to complete complex tasks. This paper develops a dynamic
synaptic pruning method inspired by the brain’s pruning
mechanism. Our experimental results on different classification
tasks demonstrate that the proposedmethod can improve the test
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FIGURE 1 | The synaptic pruning strategy of BSP algorithm.

FIGURE 2 | The detailed pruning process of BSP algorithm. The red connections represent the candidate pruned synapses.

accuracy and convergence speed, even when the initial network is
compressed to a very small size.

3. METHODS

In this section, we will introduce BSP method in detail. We first
present the overall framework of BSP method. Next, a more
detailed pruning strategy would be presented. Finally, we will
show the implementation details for a three-layer fully connected
neural network.

Our synaptic pruning method is inspired from the
developmental process in the human brain. When learning
tasks, a proportion of the synapses are strengthened while a
proportion of them are weakened (Hayashi-Takagi et al., 2015).
Synapses that are frequently used will be strengthened and
maintained, while weaker synapses that have not been activated
for a long time will be shrunk and pruned (Sanes and Lichtman,
1999; Rao et al., 2012). The goal of synaptic pruning is to discard
the less used or redundant synapses. In this paper, we first
establish a non-trained three-layer ANN as the initial network
and ensure that the network is sufficiently complex. Then, during
training, we iteratively prune unimportant synapses and update
the weights of remaining synapses through back-propagation. As
depicted in Figure 1, synapses that are continually weaker will be
pruned in each epoch.

The detailed pruning strategy has the following three steps:

(1) Evaluate the importance of connections and select candidate
pruned synapses. We measure the relative importance of a
connection by its absolute weight. In each iteration, we select

synapses with smaller absolute weights as candidate pruning
synapses. These synapses have little effect on the final output
and could be considered as weaker synapses. The candidate
pruning synapses are determined by the pruning rate rather
than the threshold. In this way, pruning is fairer and more
adaptive. The red connections in Figure 2 represent the
candidate pruned synapses.

(2) Calculate the number of consecutive times that a synapse
is a candidate to be pruned. If a synapse always belongs
to the weaker ones, the number of consecutive times will
be large, indicating that the synapse is unimportant. If a
synapse is sometimes used, we will keep it and monitor it.
In Figure 2, the values in parentheses represent the number
of consecutive times that the connections have belonged to
the set of candidate pruned synapses.

(3) Prune the synapses whose number of consecutive times
exceed the threshold. Directly removing the candidate
pruned synapses may result in a sharply and potentially
irrecoverable drop in accuracy. Only prune the synapses
that have not been used for a long time can ensure
that the pruned synapses are redundant. In Figure 2, the
threshold is 3, so pruning starts on the fourth epoch. Pruning
permanently eliminates unused synapses and reduces the
network complexity.

Next, we describe the implementation detail on a three-layer fully
connected neural network. First, we define some parameters used
by BSP algorithm. The core parameters are the pruning ratio
pr and the threshold for the number of consecutive times pc.
Let N be the number of synapses in the initial network, Ns the
remaining number of synapses in the current iteration, and Nc
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the number of candidate pruned synapses, where Nc = Ns × pr .
The set of candidate pruned synapses is Cw. The set of pruned
synapses is Pw, and the number of pruned synapses is Np.

In this paper, we verify the performance of BSP algorithm
on classification tasks with different complexity. The parameters
pr and pc are dynamically modulated for different conditions.
Suppose the initial number of neurons in the hidden layer isNneu,
and the number of training samples is Nsam. Then, pr increases
with an increase of Nneu. The larger Nsam is, the smaller the pr
will be. Thus, we define pr as follows:

pr =
α × loge (Nneu)

loge
(

β × (Nsam/B)
)2

(1)

pc decreases with an increase of Nneu, but increases with Nsam.
Thus, we define pc as as follows:

pc = 2N/(N−Np)×
A

Nneu + µ
×

[

[

loge

(

β ×
Nsam

B

)]2

+ 1

]

(2)

The constants in Equations (1) and (2) are carefully defined based
on our experience: α = 0.048, β = 50, µ = 146, A = 1244, and
B = 60000. Here, pc changes exponentially with the number of
pruned synapses, which prevents the network from being over-
pruned. If the number of remaining synapses is too small, pc will
automatically increase to limit pruning.

In this paper, the weights of the pruned synapses are set to
zero during both training and testing phases. That is, the pruned
synapses have no effect on the later feedforward process and
will not be updated during the feedback process. Consider the
jth neuron in the hidden layer. xi is the input to neuron hj in
the hidden layer, yj denotes the output of neuron hj, and wij

and bj are the weight and bias, respectively. If Pw is the set of
pruned synapses, then the feedforward and feedback functions
are as follows:

yi = f

(

n
∑

i=1

p
(

wij

)

wijxi + bj

)

(3)

wij = p
(

wij

)

×

(

wij − η
∂E

∂wij

)

(4)

where f is the activation function, E is any loss function (for
example, the mean squared error function), and η is the learning
rate. Function p is calculated with

p
(

wij

)

=

{

1, wij /∈ Pw

0, wij ∈ Pw
(5)

If the synapse belongs to the set of pruned synapses Pw, it will not
be used or updated. The detailed framework of BSP algorithm is
shown in Algorithm 1.

4. RESULTS

We evaluate our method on different tasks, including different
datasets, training samples with different complexities, and

Algorithm 1 : The BSP algorithm.

Input: Initial fully connected neural network with enough
complexity;
Output: Pruned neural network;

1: Initialize Cw = [ ] , Pw = [ ] ,Nc = Np = 0;
2: Calculate pr , pc according to Equation (1) and (2);
3: for iteration do

4: Forward computation from Equation (3);
5: Backpropagation computation from Equation (4)

and (5);
6: Choosing the candidate pruned synapses Cw =
{

w1,w2, . . . ,wNc

}

;
7: for each wi ∈ Cw do

8: Counting the number of consecutive times wc
i that

connection wi belongs to Cw;
9: if wc

i > pc then
10: Pw = Pw

⋃

wi;
11: end if

12: end for

13: Pruning the least important synapses Pw;
14: end for

different network scales. Our method is applied to a three-
layer ANN with one input layer, one output layer, and one
hidden layer. The activation function for neurons in the input
and hidden layers is the sigmoid function. We use the softmax
activation function in the output layer. The learning rate is 0.1,
and the number of iterations is 500.

The goal of this work is to explore whether BSP algorithm
can improve the classification accuracy and convergence speed
even when many connections are discarded. To verify the
generalization of our method, we test it on classification tasks
of different complexity with the MNIST, Fashion MNIST, and
CIFAR-10 datasets. We compare our method with the dropout
method, which is an effective method for avoiding over-fitting.
We set the dropout rates with the best performance of the
dropout network. We evaluate our method using the network
compression, the improvement in classification speed and test
accuracy compared with the initial neural network and the
network with dropout. The network compression is the ratio of
the number of zero weights in BSP network to the number of
connections. The improvement in learning speed L is calculated
as follows:

L =
Tc
i

Tb
i

, s.t. abi = aci , i = max
i

∣

∣

∣
Tb
i − Tc

i

∣

∣

∣
(6)

where the vectors Tb and Tc represent all the times at which BSP
algorithm and the compared method (either the initial network
or the dropout network, respectively) have the same accuracy.
For any ith element in Tb and Tc, the accuracy of BSP algorithm
abi is equal to the accuracy of the compared method aci . We then
find the index i with the maximal difference between the learning
times for BSP algorithm Tb

i and the compared method Tc
i .
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4.1. Experiments on MNIST
The MNIST dataset contains 10 classes of handwritten digits
from 0 to 9, with 60,000 training samples and 10,000 test samples
(Lecun et al., 1998). Each sample is represented by a 28×28 digital
image. The initial ANN has 784 neurons in its input layer and
10 in its output layer. To verify the general performance for the
MNIST dataset, we use 10, 100, and 500 neurons in the hidden
layer at the beginning of the ANN training. We train the models
on either 1,200 or 60,000 training data points. The dropout rates
for theMNIST dataset are listed inTable 1.We do not compare to
the dropout method with 10 neurons because the dropout could
not improve performance when there are only 10 neurons in the
hidden layer.

TABLE 1 | Dropout rates for different numbers of training samples and network

sizes for the MNIST dataset.

Number of samples 10 neurons 100 neurons 500 neurons

60,000 0 0.3 0.4

1,200 0 0.4 0.6

TABLE 2 | Comparison of test accuracy, improvement in learning speed, and

network compression for 60,000 MNIST training samples.

10 neurons 100 neurons 500 neurons

Ainit (%) 91.76 95.61 96.15

Adropout(%) – 95.90 (+0.29) 96.77 (+0.62)

ABSP(%) 92.32 (+0.56) 95.94 (+0.33) 96.84 (+0.69)

LBSP-init 1.2188 2.76 1.67

LBSP-dropout – 1.92 2.71

Network compression 59.26% 83.38% 87.96%

The bold values mean the improvement of accuracy compared to the initial network.

Results for 60,000 Training Samples
The test accuracy, improvement in learning speed, and network
compression are compared in Table 2. The first three rows
show the test accuracies of the initial network Ainit, the
dropout network Adropout, and our method ABSP. Our method
outperforms the initial and dropout networks in all cases. With
10 neurons in the hidden layer, dropout could not improve the
accuracy while our method improves the accuracy from 91.76
to 92.32%. The next rows show the improvement in learning
speed compared to the initial network LBSP-init and the dropout
network LBSP-dropout. The BSP method can accelerate learning
and improve test accuracy at the same time compared with the
initial and dropout networks. The network compression is shown
in the final row. We can conclude that our method compresses
the network significantly in all cases.

In summary, BSP algorithm improves accuracy and learning
speed compared with the initial and dropout networks.
Moreover, the networks can be significantly compressed.
Figure 3 shows the change in the error during the iteration.
It is obvious that our method has the quickest learning speed
compared with the initial and dropout networks. Besides, BSP
algorithm improves performance with faster learning speed
whereas dropout slows down the learning speed.

Results for 1,200 Training Samples
A network with good generalization should work well on both
large and small training sets. For a small task with 1,200
training samples, comparisons of the test accuracy, improvement
in learning speed, and network compression are shown in
Table 3. Compared with the initial network, our method has
better accuracy to some extent. When the network is too small
(with 10 neurons in the hidden layer), dropout cannot improve
classification performance compared to the initial network,
whereas our method works. With 500 neurons in the hidden
layer, the accuracy for our method is not better than that of the
dropout method, but it is still better than the initial network. This
indicates that our method can avoid over-fitting to some extent.

FIGURE 3 | Test error as a function of the number of iterations when the number of neurons in the hidden layer was 100 (A) or 500 (B) for 60,000 MNIST training

samples.
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TABLE 3 | Comparison of test accuracy, improvement in learning speed, and

network compression for 1,200 MNIST training samples.

10 neurons 100 neurons 500 neurons

Ainit (%) 82.55 85.05 86.53

Adropout(%) – 87.43 (+2.38) 88.92 (+2.39)

ABSP(%) 82.74 (+0.19) 87.5 (+2.45) 87.69 (+1.16)

LBSP-init 1.0357 3.83 5.47

LBSP-dropout – 1.6 1.33

Network compression 81.85% 85.95% 90.31%

The bold values mean the improvement of accuracy compared to the initial network.

Note that LBSP-init and LBSP-dropout are always larger than 1, which
indicates that our method has a faster learning speed compared
with the initial and dropout networks. Finally, our method can
significantly compress the network and reduce the amount of
storage space needed.

In summary, for both 1,200 and 60,000 MNIST training
samples, our method can significantly compress the network
and improve the learning speed compared with the initial and
dropout networks. The BSP algorithm has better test accuracy
than the initial network and comparable test accuracy with the
dropout network.

4.2. Experiments on Fashion MNIST
The Fashion MNIST classification dataset contains 10 classes: T-
shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers,
bags, and ankle boots. It has 28 × 28 grayscale images of 60,000
training samples and 10,000 test samples (Xiao et al., 2017). To
verify the general performance on the FashionMNIST dataset, we
use 10, 100, and 500 neurons in the hidden layer at the beginning
of the ANN training. We train the models on either 1,200 or
60,000 training data points. The dropout rates used are the same
as that for the MNIST dataset. The detailed comparisons are
as follows.

Results for 60,000 Training Samples
The test accuracy, improvement in learning speed, and network
compression are compared in Table 4. Our method can improve
the test accuracy and learning speed compared with the initial
network. For 100 and 500 neurons in the hidden layer, our
method could not exceed the accuracy of the dropout method,
but can accelerate the learning. In summary, BSP algorithm
can improve learning speed while significantly compressing the
network, and avoiding over-fitting, to some extent.

Results for 1,200 Training Samples
Table 5 compares the test accuracy, improvement in learning
speed, and network compression for 1,200 training samples.With
10 neurons in the hidden layer, the accuracy of BSP algorithm
is lower by 0.7 percentage points compared with the initial
network, while the learning speed is improved and the network
is compressed by 81.74%. For the network with 100 and 500
neurons in the hidden layer, BSP algorithm can improve the test

TABLE 4 | Comparison of test accuracy, improvement in learning speed, and

network compression for 60,000 Fashion MNIST training samples.

10 neurons 100 neurons 500 neurons

Ainit (%) 83.73 86.56 87.78

Adropout(%) – 88.34 (+1.78) 89.08 (+1.3)

ABSP(%) 84.33 (+0.6) 86.91 (+0.35) 88.4 (+0.62)

LBSP-init 1.0526 1.14 2.12

LBSP-dropout – 2.19 2.65

Network compression 61.49% 83.08% 87.87%

The bold values mean the improvement of accuracy compared to the initial network.

TABLE 5 | Comparison of test accuracy, improvement in learning speed, and

network compression for 1,200 Fashion MNIST training samples.

10 neurons 100 neurons 500 neurons

Ainit (%) 76.15 77.97 79.13

Adropout (%) – 79.87 (+1.9) 80.8 (+1.67)

ABSP (%) 75.5 79.25 (+1.28) 79.75 (+0.62)

LBSP-init 1.4174 2.56 1.95

LBSP-dropout – 1.5 1.67

Network compression 81.74% 85.72% 89.61%

The bold values mean the improvement of accuracy compared to the initial network.

TABLE 6 | Comparison of test accuracy, improvement in learning speed, and

network compression for CIFAR-10 training samples.

10 neurons 100 neurons 500 neurons

Ainit (%) 37.6 46.81 51.62

Adropout (%) 38.23 (+0.63) 51.63 (+4.82) 56.52 (+4.9)

ABSP (%) 39.08 (+1.48) 48.68 (+1.87) 53.55 (+1.93)

LBSP-init 1.84 1.78 1.46

LBSP-dropout 4.5 1.33 1.57

Network compression 68.75% 83.33% 87.91%

The bold values mean the improvement of accuracy compared to the initial network.

accuracy compared to the initial network and has comparable
accuracy with the dropout method. Besides, our method can
significantly accelerate learning and compress the network.

4.3. Experiments on CIFAR-10
The CIFAR-10 dataset consists of 50,000 training images and
10,000 test images, which can be divided into 10 categories:
airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships,
and trucks (Krizhevsky, 2009). For networks with 10, 100, and
500 neurons in the hidden layer, the dropout rates are equal to
0.3. Table 6 compares the test accuracy, improvement in learning
speed, and network compression. For a network with 10 neurons
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FIGURE 4 | Histograms showing the distribution of weights for the initial network (A), the dropout network (B), and our method (C).

in the hidden layer, BSP algorithm has a higher test accuracy
compared with the initial and the dropout networks. For the
networks with 100 and 500 neurons in the hidden layer, BSP
algorithm has a better test accuracy than the initial network
but is inferior to the dropout network. This indicates that BSP
algorithm can avoid over-fitting, to some extent. Besides, BSP
algorithm can accelerate the learning and compress the network
compared with both the other networks.

4.4. Effect on Sparsity
In this section, we discuss the effect of our method on the sparsity
of the network structure. Taking 1,200 training samples from
the MNIST dataset and training with 500 hidden neurons as
an example, the histograms in Figure 4 show the distributions
of the weights for the initial network, the dropout network,
and our method after 500 iterations. Clearly, our method has
fewer synapses and the weights are more sparse than those
of the other networks. Though dropout randomly inactivates
some neurons during training, this has only a small impact on
the weights of the connections. Our method can significantly
compress the network, leaving only 9.69% synapses from the
initial network while still improving the performance and
learning speed.

5. CONCLUSION

Inspired by the synaptic pruning mechanism during the
brain’s development, this paper proposes a BSP algorithm that
adaptively modulates a neural network architecture by pruning
redundant synapses during learning. The BSP algorithm prunes
consecutively unused synapses and retains only the important
ones. To assess the performance of our method, we test it on
classification tasks of different complexity with different datasets.

Our experimental results show that the pruned network can
be significantly compressed, and more importantly, the pruned
network has a similar test accuracy but much quicker learning
speed compared with the initial and dropout networks. In
summary, our method shows three improvements for an ANN:
avoiding over-fitting, compressing the network, and improving
the learning speed.
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