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Current neural network based algorithmic composition methods are very different

compared to human brain’s composition process, while the biological plausibility of

composition and generative models are essential for the future of Artificial Intelligence.

To explore this problem, this paper presents a spiking neural network based on the

inspiration from brain structures and musical information processing mechanisms at

multiple scales. Unlike previous methods, our model has three novel characteristics:

(1) Inspired by brain structures, multiple brain regions with different cognitive functions,

including musical memory and knowledge learning, are simulated and cooperated to

generate stylistic melodies. A hierarchical neural network is constructed to formulate

musical knowledge. (2) Biologically plausible neural model is employed to construct

the network and synaptic connections are modulated using spike-timing-dependent

plasticity (STDP) learning rule. Besides, brain oscillation activities with different

frequencies perform importantly during the learning and generating process. (3) Based on

significant musical memory and knowledge learning, genre-based and composer-based

melody composition can be achieved by different neural circuits, the experiments show

that the model can compose melodies with different styles of composers or genres.

Keywords: spiking neural network, spike-timing dependent plasticity, sequential memory, musical learning,

melody composition

1. INTRODUCTION

Using artificial intelligence as a tool to analyze and create music pieces has been in practice for quite
some time. The first melody generated by computer appeared in 1957, this work was developed by
Mathews at Bell Laboratories (Briot et al., 2017). Like the model of the commonly cited example
“The Illiac Suite,” early methods were mainly based on the complex rules system (Fernandez and
Vico, 2014), combined with markov chain or L-system (Jones, 1981; Nelson, 1996; Lo and Lucas,
2006; Gale et al., 2013; Fernandez and Vico, 2014). In recent years, machine learning techniques,
especially deep learning, have become a fast growing domain and used with increasing frequency
for music analysis and creation. Researchers have developed diverse neural network architecture to
generate music content, as autoencoder (Bretan et al., 2016; Sturm et al., 2016), Boltzmannmachine
(Lattner et al., 2016; Hadjeres et al., 2017), recurrent neural network (Mozer, 1994; Simon andOore,
2017), long-short term memory (Eck and Schmidhuber, 2002; Johnson, 2017; Makris et al., 2017),
generative adversarial networks (Dong et al., 2017; Wu et al., 2017). Some researchers have tried
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to study music using spiking neural network (SNN), for example,
melody recognition (Fujii and Oozeki, 2006), musical memory
(Liang et al., 2020), and interactive environment for human to
create musical pieces (Kerlleñevich et al., 2011). However, the
method on how to generate music pieces using a spiking neural
network has not been explored. Based on the current situation,
we try to propose a spiking neural network to create melodies
with different styles.

Actually, music is part of human nature, it involves the
human experience, social culture, domain specific knowledge
and complex cognitive abilities. Listening and creating a music
piece, engage personal memory, sensory perception, multimodal
integration, action, emotion and etc. (Koelsch, 2012). Jules
Combarieu once said, “music is the art of thinking with sounds.”
How humans learn and make music may be quite different from
the mathematical models mentioned above. When a musician
writes a melody, his memory, emotion, musical knowledge and
skills are involved rather than calculating mathematical numbers
or probabilities. Actually, creative behavior is an extremely
complex process for humans. Scientists have found that musical
creative behaviors and improvisation need the participation
of the memory system and knowledge experience (Dietrich,
2004).Working memory, long-termmemory and auditory short-
term memory have been found to be involved (Dietrich, 2004;
Lu et al., 2015) and interacted with improvisation (Limb and
Braun, 2008). Some neuroscientists have proposed one brain
network, called default mode network (DMN), which is central to
human creativity (Jung et al., 2013). The DMN contains several
brain regions, including dorsomedial prefrontal cortex (DLPFC),
ventromedial prefrontal cortex (VMPFC), lateral temporal cortex
(LTC), inferior parietal lobule (IPL) and etc. (Bashwiner et al.,
2016). This model provided a perspective on how human
creativity might map to the brain. Experiments have implicated
that the DMN is engaged in musical improvisation (Bengtsson
et al., 2007; Limb and Braun, 2008; Bashwiner et al., 2016).
Actually, dorsomedial prefrontal cortex is proved to be involved
in memory system (Fuster, 2000a,b, 2001, 2002), Ventromedial
prefrontal cortex(VMPFC) is relevant to conceptual knowledge
representation and abstract category learning (Bowman and
Zeithamova, 2018) and societal standards of a person’s culture
(Dietrich, 2004).

Inspired by the mechanisms of human creativity, we present
a brain-inspired spiking neural network which is capable of
creating melody based on musical memory and knowledge.
Unlike traditional artificial intelligence methods, our model has
the following innovative features:

• The model is composed of several collaborative subnetworks
which are similar to corresponding regions in brain. Because
of the importance of musical memory and musical knowledge
during creative behaviors, this paper focus on building a
complex sequential memory subsystem to store a large number
of musical pieces, and a knowledge subsystem to learn
musical knowledge.
• The structure of each subnetwork is different. A sequential

memory network is composed of several layers to store the
information of musical tracks, while a hierarchical structure

is employed to learn the musical knowledge including the
information of composers and genres.
• Different brain oscillation activities, including theta and

gamma waves, play a key role during the learning process and
composing process.
• Both excitatory and inhibitory neurons are employed in the

network. The individual neural is simulated by the Izhikevich
model. Excitatory and inhibitory synaptic connections with
different transmission delays are also involved in the
computation. The weights of synapses are updated by spike-
timing dependent plasticity (STDP) learning rule.
• Melodies are generated with specific composer’s styles or

genres (such as baroque, classical, romantic, and modern
genres). Different neural circuits are involved in these tasks.
The musical corpus used in this paper is a public a classical
MIDI dataset (Krueger, 2018), which is composed of a large
number of MIDI files.

The remaining of this paper is organized as the following
structure: section 2 describes the architecture and the central
methods of the model. Section 3 shows the results of melody
composition. Section 4 gives the summary and discusses the
future work.

2. MODELS AND METHODS

2.1. Model Description
2.1.1. Model Architecture
The architecture of the model is shown as Figure 1A. It mainly
contains a sequential memory subsystem (Liang et al., 2020) and
a knowledge subsystem. Musical memory is critical for creative
behaviors (Dietrich, 2004), researchers have found that music is
stored in different part of brain (Finke et al., 2012), including
hippocampus, medial temporal lobe, dossolateral prefrontal
cortex (Finke et al., 2012; Schaal et al., 2017) as shown in
Figure 1B. However, the neural substrate on how these regions
cooperate is not clear. Based on the existing neuroscience
findings, this paper mainly aims to build a unified network
to learn and store music pieces. As is shown in Figure 1C,
the sequential memory system (Liang et al., 2020) is composed
of pitch subnetwork and duration subnetwork. The pitch
subnetwork (blue area) mainly encodes the pitch information
and learns the ordered relationship between notes. The duration
subnetwork (orange area) is responsible for representing the time
interval between two adjacent notes. The building block of the
pitch and duration subnetworks is non-overlapping functional
minicolumns which is composed of numerous neurons. A
group of neurons in the horizontal direction is called a layer.
Neurons in the same layer are fully connected by inhibitory
synapses, this connection mechanism helps active neurons
to be more competitive at a given time. Synapses between
neurons in different layers are excitatory, which express the
ordered relationship and contextual information. Transmission
delays of excitatory synapses depend on the length of the
connection between two neurons, while inhibitory synapses have
no transmission delays.
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FIGURE 1 | The architecture of the model, (A) describes the total architecture of the model, it contains knowledge and sequential memory subsystems, each

subsystem is composed several areas which are inspired by relative brain regions marked in left top, (B) shows the main brain areas related in human memory and

creativity, (C) draws the internal connection structure of the pitch and duration subnetworks in sequential memory system.

The knowledge subsystem is designed as a hierarchical
structure to learn the information of composers and genres. As is
shown in Figure 1A, the first layer (the gray area) is built to learn
the genre of classical music pieces, such as the Baroque, Classical,
Romantic, and Modern genres. The second layer (yellow area) is
responsible for encoding the names of famous composers. The
last layer (green area) represents the titles of musical pieces.
Connections between these layers are dynamically generated and
updated. Furthermore, neurons in the upper layers project to
those in lower layers. Interneuron cluster, composed of numerous
inhibitory neurons, receives signals from the neurons of the
first (genre) and the second (composer) cluster, and projects the
inhibitory connections to the third (piece title) layer. However,
there are no connections between neurons in each cluster in
this subsystem.

Connections from the knowledge clusters to the memory
subnetworks are dynamically generated and updated. As
Figure 1A shows that neurons in genre and composer clusters
project the excitatory synapses to neurons in the memory
subsystem. However, both feedforward and feedback connections
are generated between neurons in the title cluster and memory
subnetworks. It should be noted that the weights of connections
between interneurons and clusters in the knowledge system
are set to be a fixed value and not changed during the
learning process.

2.1.2. Neuron Model
Considering the balance of biological plausibility and the
computational efficiency, this paper applies the Izhikevich
neuron model (Izhikevich, 2003) to build the spiking neural
network, which can be described as Equations (1)–(3), where
v and u represent the membrane potential and a membrane
recovery variable of a neuron, respectively. a, b, c, and d are
parameters that control the model to fire with different spiking
patterns. I is the input current, which carries information from
external stimuli and synaptic currents from other neurons. The
neuron emits a spike when the membrane potential v exceeds the
peak value (30 mV), and u and v are reset to the initial values.

dv

dt
= η(v, u)+ I (1)

du

dt
= a(bv− u) (2)

η(v, u) = 0.04v2 + 5v+ 140− u (3)

if v ≥ 30 mV, then

{

v← c

u← u+ d
(4)

The Izhikevich model is capable of simulating multiple spiking
patterns of biological neurons with different morphologies and
types. The most typical type of excitatory neurons in mammalian
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FIGURE 2 | The representation of a music piece in our model, the basic information, including the genre, composer and title are encoded by corresponding cluster in

knowledge system, while the music notes are encoded in sequential memory system.

cortex is the regular spiking (RS) pattern with the parameters
a = 0.01, b = 0.2, c = −65, and d = 8. While the inhibitory
cells always exhibit fast spiking (FS) pattern with the parameters
a = 0.1, b = 0.2, c = −65, and d = 2.

2.1.3. STDP Learning Rule
Spike-timing dependent plasticity (STDP) is believed as one of
the most important mechanism for brain learning and memory
(Gerstner et al., 1996; Bell et al., 1997; Bi and Poo, 1999;
Poo, 2008). Synapses between neurons are enhanced when the
postsynaptic neuron fires a short time after the presynaptic
neuron fires. Otherwise, synapses are depressed. STDP learning
rule is described as the Equation (5)

1wij =

{

A+e
1t/τ+ , 1t < 0

−A−e
−1t/τ− , 1t > 0

(5)

where, the wij is the weight of the synapse from neuron j to
neuron i, A+, A− are the learning parameters, and τ+, τ− are
time constants. 1t expresses the time difference between the
presynaptic neuron j and postsynaptic neuron i.

2.1.4. Oscillation Activities
Human brain oscillatory activities have been proved to be related
to cognitive processes. Brain rhythms of different frequency

may occur in different brain networks (Sauseng and Klimesch,
2008). Until now, Delta (0–4 Hz), theta(4–8 Hz), alpha(8–13
Hz), beta (13–30 Hz), and gamma (30–80 Hz) waves are found
in human brain. However, researchers have found that theta
oscillations exist in human cortex and hippocampus (Kahana
et al., 2001). This wave are very important in memory encoding
(Sederberg et al., 2003), information held (Jensen and Tesche,
2002) memory and episodic memory (Klimesch et al., 2001a,b).
Researchers also have found that the gamma waves arise from
excitatory and inhibitory circuits in cortex (Llinas et al., 1991).
However, based on the studies mentioned in section 1, the brain
areas involved in human creative activities, especially musical
creativity mainly locate in cortex. Hence, we hypothesize that
neurons in this paper exhibit theta and gamma waves during the
memory and the creative process, respectively. It should be noted
that internuerons exhibit fast spiking patterns, these neurons
are always active at gamma frequency. Hence, we hypothesize
that interneurons have no contributes to the memory process in
this paper.

2.2. Model Implementation
2.2.1. Information Encoding
Encoding is a critical but difficult task, and it should be solved
first. As is shown in Figure 2, a musical piece includes the basic
information of genre, composer, title, and sequential ordered
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TABLE 1 | The important notation description.

Notations Description

n(p,d) A note is represented as a tuple in which contains pitch and

duration

n
(P)
ij The neuron in the layer i of the column j in pitch subnetwork

n
(D)
ij The neuron in the layer i of the column j in duration

subnetwork

v
(P)
ij , u

(P)
ij The membrane potential and recovery variable of the neuron

in layer i of column j in the pitch subnetwork

v
(D)
ij , u

(D)
ij The membrane potential and recovery variable of the neuron

in layer i of column j in the duration subnetwork

v
(T )
i , u

(T )
j The membrane potential and recovery variable of the neuron i

in the title cluster

v
(C)
i , u

(C)
j The membrane potential and recovery variable of the neuron i

in the composer cluster

v
(G)
i , u

(G)
j The membrane potential and recovery variable of the neuron i

in the genre cluster

w
(C,G)
ij The weight between the post-synaptic neuron i in the

composer cluster and the pre-synaptic neuron j in the genre

cluster

w
(T ,G)
ij The weight between the post-synaptic neuron i in the title

cluster and the pre-synaptic neuron j in the genre cluster

w
(T ,C)
ij The weight between the post-synaptic neuron i in the title

cluster and the pre-synaptic neuron j in the composer cluster

w
(P,mn)
ij The weight between the post-synaptic neuron n

(P)
ij and the

pre-synaptic neuron n
(P)
mn in the pitch submetwork

w
(D,mn)
ij The weight between the post-synaptic neuron n

(D)
ij and the

pre-synaptic neuron n
(D)
mn in the duration submetwork

w
(P,G)
ij,k The weight between the post-synaptic neuron n

(P)
ij and the

pre-synaptic neuron k in genre cluster

w
(P,C)
ij,k The weight between the post-synaptic neuron n

(P)
ij and the

pre-synaptic neuron k in composer cluster

w
(P,T )
ij,k The weight between the post-synaptic neuron n

(P)
ij and the

pre-synaptic neuron k in title cluster

w
(D,G)
ij,k The weight between the post-synaptic neuron n

(D)
ij and the

pre synaptic neuron k in genre cluster

w
(D,C)
ij,k The weight between the post-synaptic neuron n

(D)
ij and the

pre-synaptic neuron k in composer cluster

w
(D,T )
ij,k The weight between the post-synaptic neuron n

(D)
ij and the

pre-synaptic neuron k in title cluster

Iext The input current from external stimulation

notes. It’s been found that neurons have specific selectivity
in different brain regions. This property makes a neuron
only respond to its preference. For example, evidence has
shown that neurons in the cochlear nucleus are sensible for
different frequencies of pitches (McDermott andOxenham, 2008;
Oxenham, 2012). Orientation columns in the visual cortex are
excited about their preferred directions (Hubel andWiesel, 1968).
To explain the following parts clearly, the involved notations and
parameters are listed in Table 1.

2.2.1.1. Notes Encoding
A musical piece contains multiple tracks, a track is composed
a sequence of ordered notes. One note has two key attributes,
pitch and duration. The most important task is how to represent

these features. Unlike mathematical methods, neuroscientific
researchers have found that the neurons in brain auditory
cortex have their preferred pitch (Merchant et al., 2013), and
neural populations in medial premotor cortex are sensitive for
different time intervals in hundreds of milliseconds (Kalat, 2015).
Moreover, numerous minicolumns composed of hundreds of
neurons with their specific preferences are distributed widely in
the brain cortex. Based on these mechanisms, we construct a
pitch subnetwork and a duration subnetwork to represent these
two attributes of the ordered notes. Since the MIDI protocol
defines 0–127 digital numbers to define 128 pitches (e.g., 60
for middle C), the pitch subnetwork contains 128 functional
minicolumns to represent them. Here, we set the pitch index as
the preference for each neuron. Neurons in a minicolumn have
the same preference as shown in Figure 3. When the external
stimulation (pitch index) comes, a neuron transforms it to the
input current using the Gaussian filter. If the neuron prefers
the input pitch, it exhibits regular spiking activities. The current
caused by external stimulation of neurons in pitch and duration
subnetworks are calculated by Equation (6).

I
(P)
ij_ext = λ1

1

σ
(P)
j

e

−(x−µ
(P)
j )2

(σ
(P)
j )2

(6)

where x is the external stimulation, in other words, it is the input

pitch. µ
(P)
j and σ

(P)
j are the mean and variance of the neuron.

Actually, µ
(P)
j is the preference of the neuron in the ith column.

λ1 is the constant to make the neuron fire in theta waves.
Similarly, neurons in the duration subnetwork receive the

time interval as the external stimulation and fire if they preferred
the external information. Since the MIDI file commonly denotes
480 ticks for a crotchet, we create 64 minicolumns to express
from a demisemiquaver (about 60 ticks) to two semibreves (3,960
ticks). Input current is described as Equation (7)

I
(D)
ij_ext = λ2

1

σ
(D)
j

e

−(x−µ
(D))
j )2

(σ
(D)
j )2

(7)

where, x is the duration of input note, µ
(D)
j and σ

(D)
j is the mean

and variance, respectively. λ2 is the constant to make the neuron
fire with theta frequency.

As the example shown in Figure 3, four ordered notes in the
first track have been encoded by these two subnetworks. The first
note triggers the neurons (red circles) encoding “F5” and “dotted
quaver” in pitch and duration subnetwork to launch spikes,
respectively. Then the following notes cause the corresponding
neurons (red circles) to fire in order.

2.2.1.2. Musical Knowledge Encoding
The basic information, including the genre, composer and title,
can be seen as the corresponding knowledge of a piece, and
represented by genre cluster, composer cluster and piece title
cluster, respectively. Each cluster contains numerous neurons.
Each neuron in the genre cluster stands for a genre (such as
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FIGURE 3 | The description of note encoding, the pitch of a note is represented by the minicolumn which prefers it. The duration subnetwork encodes the duration of

a note in the same way. The ordered relationships of the notes are stored by the layers of these subnetworks.

Baroque), which means that this neuron set the “Baroque” as its
preference. Similarly, each neuron in the composer or title cluster
also represents a composer name (“Chopin”) or a piece title
(“Prelude Raindrop”). Neurons in these clusters are simulated
by Izhikevich model with RS pattern as Equation (8), the input
current Iext is calculated as the Equation (8),

Iext =

{

5, if external stimulation matches the neuron preference

0, otherwise

(8)
where, as the example of Figure 3, the external stimulation is
“Romantic,” “Chopin,” and “Prelude Raindrop” for the neuron in
genre, composer and piece title cluster, respectively.

2.2.2. Music Learning
The learning task is the foundation of melody composition. It is
a complicated process in which musical knowledge and pieces
should be memorized and the relationship between them needs
to be established. In the beginning, neurons are at rest, and the
weights of excitatory synapses are set to zero. In order to describe
the model clearly, we take the first measure of Mozart’s work,
“Sonata No. 16 in C Major (K545)” as an example to explain
the learning procedure, and it’s well-known that Mozart is a
representative and great musician in the western classical period.
As is illustrated in Figure 4,

• Step1

The knowledge clusters allocate neurons to express the strings
of “Classical,” “Mozart,” and “K545,” respectively. Based on the

section 2.2.1, these neurons emit spikes simultaneously using
Equation (8). Meanwhile, the first coming note triggers the
neurons which preferred “C5” and a semibreve (960 ticks) to
fire in pitch and duration subnetworks. These two neurons
inhibit other neurons in the same layer in order to make
themselves more competitive. Note that neurons in knowledge
clusters are synchronous in theta waves, the synapses (red
arrows in Figure 4A) from neurons in knowledge cluster
to those in memory clusters are dynamically generated and
strengthened using STDP learning rule as Equation (5).
Similarly, synapses are generated and modulated between
neurons from superior to inferior layers in knowledge clusters.
Here, the time window for which each neuron continues
to fire is set to 1 s, after which the membrane potential
decays to 0 mV.
• Step2

Similarly, the second note makes the neuron which prefers
“E5” in pitch subnetwork fire, and the one in duration
subnetwork which is sensible for the time length of a crotchet
(480 ticks) also becomes excitatory. Note that neurons in
knowledge clusters remain active throughout the learning
process. It’s reasonable that a person always keeps the name
of a musical piece in his mind when he learns this piece. At
this step, new connections are generated and potentiated using
STDP, as shown in Figure 4B.
• Step3

Neurons representing for “G5” and 480 ticks launch
spikes with theta frequencies. New excitatory synapses
are generated and updated between knowledge clusters to
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FIGURE 4 | The storing process of the work “K545” written by Mozart, (A) describes the learning process of the first note marked by a red rectangle, the second and

the third notes are leaned and the corresponding synapses are potentiated using STDP in (B,C).

memory subnetworks. In addition, neurons which prefer “G5”
and crochet in L3 also exactly receive the spikes from those in
L1 due to the synaptic transmission delays (Liang et al., 2020).

Based on the learning process described above, membrane
potentials of neurons in knowledge cluster are updated by the
Equations (9) to (11).

v
(G)
i = η(v

(G)
i , u

(G)
i )+ Iext (9)

v
(C)
i = η(v

(C)
i , u

(C)
i )+ ǫθ (Iext +

∑

j

w
(C,G)
ij ) (10)

v
(T)
i = η(v

(T)
i , u

(T)
i )+ ǫθ (Iext +

∑

j

w
(T,C)
ij +

∑

j

w
(T,G)
ij ) (11)

where, ǫθ (·) is a linear normalized function to control the current
to a suitable value, since neurons exhibit the theta waves in this
learning process. Neurons in pitch and duration subnetworks are
updated by Equation (12) to equation 13.

v
(P)
ij = η(v

(P)
ij , u

(P)
ij )+ ǫθ (Iext +

∑

m,n

w
(P,mn)
ij

+

∑

k

w
(P,T)
ij,k

∑

k

w
(P,C)
ij,k
+

∑

k

w
(P,G)
ij,k

) (12)

v
(D)
ij = η(v

(D)
ij , u

(D)
ij )+ ǫθ (Iext +

∑

m,n

w
(D,mn)
ij

+

∑

k

w
(D,T)
ij,k

∑

k

w
(D,C)
ij,k
+

∑

k

w
(D,G)
ij,k

) (13)

where, all the notations involved have been described in Table 1.
Figure 5 shows the activities of related neurons mentioned

above in this process. The neurons which prefer “Classical,”
“Mozart,” and “Sonate C Major” in knowledge clusters are
stimulated and exhibit theta waves simultaneously. Neurons in
the pitch subnetwork are triggered orderly and also exhibit theta
waves. The graph mainly shows the activated neurons’ activities
during the time windows 1 (s), after which the membrane
potentials will decay to 0 mV. For simplicity, the figure only
shows the results of neurons in the pitch subnetwork, the neurons
in the duration subnetwork have similar activities. Besides,
the synaptic weights between neurons in pitch and duration
subnetwork are shown in Figure 6. Since the synapses are
generated and updated dynamically during the learning process,
the network is not full-connected. There are 331 musical works
in our dataset, the graph only draws the results of the weight after
the network learns 10 notes in track 1 of each piece for simplicity.

2.2.3. Music Retrieval
After the music encoding and memorizing process, how the
model retrieves this musical information is a significant problem.
Actually, the retrieval process is a decoding process in this model.
We have discussed the retrieval problem from two aspects, goal-
based retrieval and episodic retrieval. The goal-based retrieval
means that the model can remember all the sequential notes
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FIGURE 5 | The neural oscillations in the learning process. Neurons preferred external stimulations including “Classical,” “Mozart,” “Sonate C Major” and related

pitches have theta activities. Other neurons stay silent since they are not triggered.

FIGURE 6 | The synaptic strengths between neurons in pitch and duration subnetworks of track 1 during learning process.

given a musical piece title. The episodic retrieval is that given
an episode of a musical piece, the model can accurately recall
the whole piece. Since this paper mainly focuses on melody
composition, the detail of decoding process is described and
emphasized in our previous work (Liang et al., 2020).

2.3. Melody Composition
If we listen to music from different periods, we can hear wide
variations between them. The baroque, classical and romantic

genres have their special styles. Similarly, the works of other
musicians also have strong personal characteristics. For example,
Johann Sebastian Bach, the father of western music, is a great
musician in the baroque era. His works are mainly composed of
religious music and polyphonic music, which are well-conceived
and full of philosophy and logic. However, as a representative
of the romantic ear, Fryderyk Franciszek Chopin’s compositions
demonstrate many characteristics of the romantic period. He is
always trying to express his emotions, thoughts, and feelings in
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FIGURE 7 | The process of the genre-based composition, the example in this graph is to create a melody with a classical genre, the genre

cluster-interneurons-memory system circuits are active in this process.

his music. Based on these inspirations, this paper mainly focuses
on how to create melodies according to genre or composer
characteristics. In this process, all the neurons exhibit gamma
oscillations.Meanwhile, an initial notes array of non-fixed length,
and the melody length should be given at first.

2.3.1. Genre-Based Composition
Since the relationships between genre cluster andmemory system
have been established by learning a large number of musical
pieces with various styles, the genre-based composition can
be achieved by the collaboration of these subnetworks. The
neural circuits of genre cluster-interneurons-memory system are
involved in this process. A simple example is shown in Figure 7.
Suppose that the model has stored two pieces which belong
to classical and romantic genres, respectively. All the synapses
have been trained in the learning process but have been drawn
simplified in this figure. The task is to create a melody with
classical style which contains 30 notes and begins with the notes
n(A5, 240) and n(E4, 120), The time length of a crotchet is set
to 480 ticks. In the beginning, neurons in genre cluster receive
the external stimulation “classical” and transform this simulation
to the input current, the neuron who prefers “classical” fires in
gamma wave. Neurons in the genre cluster can be updated by
Equation (9). However, the current Iext is set to be 30(mA) to keep
neurons fire in gamma frequencies if the external stimulation
is matched with the neural preference. Then each neuron in
knowledge clusters can be updated by Equations (14) to (16).

v
(inh)
i = η(v

(inh)
i , u

(inh)
i )+ ǫγ (

∑

j

w
(inh,G)
ij ) (14)

where, v
(inh)
i and u

(inh)
i are the membrane potential and recovery

variable of the interneuron i, w
(inh,G)
ij is the weight of synapse

from the genre neuron j to the interneuron i. ǫγ (·) is also
a normalization function to control the neuron fire with
gamma frequency.
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where,
∑

j w
(C,inh)
ij is the total inhibitory inputs from

interneurons to the neuron i in composer cluster.
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(T)
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(T)
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w
(T,G)
ij +
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j

w
(T,inh)
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Where, the
∑

j w
(T,inh)
ij is the total inputs to inhibit the neuron to

fire in title cluster.
As is shown in Figure 7, the process can be described as the

following steps.

• Step1

the first given note n(A5, 240) make the corresponding
neurons in L1 of the pitch and duration subnetwork to fire with
gamma frequencies.
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FIGURE 8 | The neural oscillation during composition process. The neurons fire with gamma waves, however, the neurons a5 and e4 have slow or no activities since

they fail in competitions.

• Step2

Similarly, the neurons in L2 of pitch and duration
subnetworks are stimulated by the second note n(E4, 120) and
exhibit spikes.
• Step3

Since the synapses in the model have been trained, both
neurons representing “C4” (red circle) and “A5” (purple circle)
in L3 of pitch subnetwork can be activated. However, the
neuron encoding “C4” also receives the stimulation from the
one which represents “classical” in the genre cluster. Hence,
this neuron (red circle) emits spikes firstly and inhibits the one
which encodes “A5” in the same layer because of inhibitory
connections. The neuron which represents a quaver in the
duration is triggered at the same time. These neurons can be
updated by the Equations (17) and (18).

v
(P)
ij = η(v

(P)
ij , u

(P)
ij )+ ǫγ (

∑

m,n

w
(P,mn)
ij +

∑

k

w
(P,G)
ij,k

) (17)

v
(D)
ij = η(v

(D)
ij , u

(D)
ij )+ ǫγ (

∑

m,n

w
(D,mn)
ij +

∑

k

w
(D,G)
ij,k

) (18)

• Step4

Similarly, the neurons which encode “D4” and “120 ticks”
in L4 in pitch and duration subnetworks also exhibit gamma

activities, these neurons are also updated by Equations (17)
and (18). However, it is important to note that the excitation
of neurons in the genre cluster can cause the activities in
the composer and title cluster due to the trained feedforward
connections. However, the activities of genre-neurons prompt
the interneurons to fire, and ultimately inhibit the neurons in
the composer and title cluster.

Based on this process, Figure 8 draws the neurons’ activities
in each step mentioned above, they mainly exhibit gamma
oscillations in this process. The neurons which prefer “c4” and
“d4” in step3 and step4, respectively, are more active. However,
the neurons that prefer “a5” and “e4” fail in the competition.
Interneurons exhibit fast spiking (FS) pattern and also fire with
gamma waves.

Figure 9 shows three melodies generated by our model.
Figures 9A,B are generated based on different seed notes with the
baroque genre. Figure 9C is produced with the romantic genre
but based on the same seed notes as Figure 9B.

2.3.2. Composer-Based Composition
As is discussed in section 2.3, the styles of melodies can be
very different due to the composers. This paper hopes to
create melodies with composers’ characters. Similarly, the neural
circuits of composer cluster-interneurons-memory system are
employed in this task. In order to explain the process clearly, an
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FIGURE 9 | Three examples of melodies generated by the model, (A,B) have the same genre but begin with different seed notes, (B,C) are generated by the same

seed notes but with the different genre characteristics.

illustration is shown in Figure 10, the process actually is similar
to the genre-based composition.

The task is to generate a Mozart style melody with 20 note-
length, the seed note is n(C4, 480). Based on the task description,
a 30mA current is injected into the neuron which represents
the “Mozart” firstly, then the activities of this neuron make the
interneurons inhibit the neurons in title cluster. The genre cluster
keeps to be silent throughout the process. Since only one note
n(C4, 480) is given at the beginning, the neurons (marked as
red circles) in L1 of pitch and duration subnetworks receive the
injected currents and fire with gamma frequencies. Then the
trained synapses(red arrows) will trigger new neurons to fire
orderly. The neurons in pitch and duration subnetworks are
updated by Equations (19) and (20), which are similar to those
in genre-based composition process.
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w
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ij +

∑

k

w
(D,C)
ij,k

) (20)

These formulas demonstrate that, besides the input from their
adjacent neurons in the same subnetwork, these neurons mainly
receive the input from the composer cluster rather than the
genre cluster. The following notes generated by the model are
n(E4, 120), n(C4, 240), n(D4, 240), and etc. Only a part of the

generated notes are shown in this figure for simplicity, the
model can generate a melody with 20 note-length according
to the requirements of the task. Similarly, three generated
melodies based on different seed notes with different composers’
characteristics are illustrated in Figure 11.

Figures 8, 11 only show the samples created by our
model. More generated melodies can be found in the
Supplementary Material.

3. RESULTS

3.1. Dataset
We use a public corpus (Krueger, 2018), which provides 331
classical pieces from 25 famous musicians recorded by MIDI
format for training our model. MIDI standard is a world protocol
that connects digital musical instruments, computers, tablets
and smartphones. A musical piece can be recorded as symbolic
patterns in MIDI format. The musicians and their genres are
summarized in Table 2. The genre is divided to baroque, classical
and romantic genres. In fact, there are more detailed divisions
of the genre in the romanticism period, however, these genre
branches are not considered for the time being in article.

3.2. Encoding Experiments
Musical pitches and durations have been defined as 0 127 digits
and several ticks, respectively, by MIDI standards. For example,
the pitch “c5” is represented as 72, a crotchet always lasts
480 ticks. This paper employs a famous classical piano work,
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FIGURE 10 | The process of the composer-based composition, a melody with Mozart’s style is required to generate based on the composer

cluster-interneurons-memory system circuits.

“Sonate C Major, K545” written by Mozart as an illustration.
Figures 12A,B shows the encoding results of pitch and duration
subnetwork, respectively, as the time passes, neurons preferred
the notes of this piece emit spikes orderly. The neurons which
prefer the “Classical,” “Mozart,” and “Sonate C Major” in
knowledge subnetwork continue to fire throughout the whole
process. This graph only shows the results of 10 notes in track
1 of this example for simplicity.

3.3. Composition Experiments
To evaluate the quality of the generated melodies, 41 human
listeners, including 19 males and 22 females, are involved to
complete a user study. Five (all females) of them majored in
piano or composition, and the rest had no music experience.
We considered those five people who have music backgrounds
as professionals for short. Our experiments are based on these
two groups of subjects, professional and non-professional groups.
We design three experiments to evaluate the melodies generated
by our model, the details are discussed in the following sections.
Actually, the capacity of the memory system needs to be
measured, the details and results can be found in our previous
work (Liang et al., 2020), this paper focuses on the issue of
melody composition.

3.3.1. Evaluation on the Composition Quality
The purpose of the first experiment is to evaluate whether the
melodies produced by our model are pleasant to hear. In this

task, we randomly collected 15 melodies as a testset, ten of which
were generated by our model, the rest were extracted from the
melodies written bymusicians in our dataset. Subjects were asked
to listen to these 15 melodies and score them, and they were not
told about the testset contains the pieces created by musicians.
The score ranges from 1 to 5, 1 means bad, 5 means very pleasing.
Figure 13A shows the statistical result of each melody. The blue
bars represent the average value graded by the professional group,
the orange bars express those from the non-professional group.
The gray line calculates the mean value of each melody based
on the scores from two groups. The first ten melodies (marked
as “Gen1” to “Gen10”) are generated by our model, and the
rest melodies are extracted from the works written by Liszt,
Chopin and etc. We have found that the results from professional
and non-professional groups are basically consistent. The score
4.62 of melody coming from Tschaikovsky is the highest one
since this melody is really pleasing, however the one coming
from the work “Liszt_ep3” only obtain the low score 2.25. The
generated melodies, “Gen1”(3.51), “Gen4”(2.94), “Gen7”(3.2),
and “Gen8”(3.59) sound nice, the scores of these four melodies
are even higher than those written by musicians. Figure 13B
shows the total average results of melodies created by the model
and musicians. Totally, musicians write better melodies, our
model can write several nice pieces. Furthermore, it is interesting
that the professional group gives a higher score than the non-
professional group about the generated melodies. Through the
feedback from the subjects, we conclude the possible reasons

Frontiers in Systems Neuroscience | www.frontiersin.org 12 March 2021 | Volume 15 | Article 639484

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Liang and Zeng Brain-Inspired Melody Composition Model

FIGURE 11 | Three examples of melodies generated by the model, (A,B) have the same composer’s style but begin with different seed notes, (B,C) are generated by

the same seed notes but with the different composers’ characteristics.

as follows, (1) Most subjects in non-professional groups have
never heard classical music, they really do not like classical music.
Hence they give the lower scores. (2) Subjects in the professional
group know a lot about classical music, they argue that the
melodies generated by the model are not much worse than those
produced by humans.

3.3.2. Evaluation on Genre-Based Composition
The second task is to evaluate whether the styles of generated
melodies are similar to genre characteristics. The professional
and non-professional groups still participate in this experiment.
Since the dataset involves baroque, classical and romantic three
genres, we randomly select five melodies generated by the model
as a testset for each genre, respectively. We mixed two melodies
which belong to other genres into the genre testset as the noises.
The participants were asked to listen to five representative works
of each genre, and then listen to the corresponding testset. To
avoid bias, the subjects also did not know the details of each
testset. The score also ranges from 1 to 5, however, 1 means the

TABLE 2 | The basic information of musicians and their genres.

Genre Musician

Baroque Bach

Classical Haydn, Mozart, Beethoven, Schubert,

Clementi,

Romantic Mendelssohn, Liszt, Chopin, Schumann,

Brahms, Burgmueller, Debussy, Godowsky,

Moszkowski, Mussorgsky, Rachmaninov,

Ravel, Tchaikovsky, Albéniz, Balakirew,

Borodin, Granados, Grieg, Sinding

melody has no genre features, 5 means that the melody style
is quite similar to the genre. The average values of generated
melodies are summarized in Figure 14. The blue and orange bars
represent the mean values graded by the professional and non-
professional groups of each melody, respectively. Figure 14A
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FIGURE 12 | The encoding results of the Mozart’s famous work “Sonate C Major, K545.” (A) Shows the firing results of neurons in pitch subnetwork, the vertival axis

presents the pitch index that the neuron prefers, the horizontal axis presents the time. (B) Exhibits the activities of neurons in duration subnetwork, the vertical axis is

the duration(ticks defined in MIDI standard) which the neuron prefers, the horizontal axis indicates the time.

FIGURE 13 | The statistical results of a user study, for people (blue bars) with musical backgrounds and (orange bars) without musical backgrounds, (A) shows the

average value of each melody in the testset, panel (B) exhibits that the total mean value of melodies generated by the model and musicians.

shows that the melodies generated with baroque style got a
higher score than the other two noise ones. It demonstrates
that our model can produce melodies with baroque style well.
Similarly, Figures 14B,C shows that the melodies with classical
and romantic styles also got a high score compared with
noisy melodies. However, the melody “Gen1_romantic” and
“Gen5_classical” in Figure 14C nearly got the same score(3.03
and 3, respectively). It means that the style of “Gen5_classical”
is ambiguous. In general, the result of genre-based melody
composition is inspiring.

3.3.3. Evaluation on Composer-Based Composition
Similar to the section 3.3.2, this experiment is to evaluate whether
the generated melodies have the composers’ styles. We randomly
picked 3 out of 25 composers as the targets, and collected 5
generated melodies as a testset for each target composer. We also
mixed 2 melodies generated by our model with other composers’
styles into the testset as the noises. Figure 15 shows the total
results of this task. In this figure, Bach, Schumann, and Albeniz
are picked as target composers, the blue and green bars describe
the average values of each test melody by professional and
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FIGURE 14 | The statistical results of genre-based composition, (A) shows the results given by professional (blue bars) and non-professional (orange bars) groups on

whether the melody have the characteristics of Baroque period, (B,C) exhibit the results of classical and romantic periods.

FIGURE 15 | The statistical results of composer-based composition, (A) shows the results given by professional (blue bars) and non-professional (green bars) groups

on whether the melody have the Bach’s style, (B,C) exhibit the results of Schumann and Albeniz.

non-professional groups. Figures 15A,B indicate that the scores
of melodies with Bach and Schumann’s styles generated by the
model are significantly higher than the noisy melodies. However,
Figure 15C shows that the melody named “Gen3_albeniz” got
the lowest score, even lower than the noisy melodies. Actually,
the differences of melodies in Albeniz’s group are not remarkable,
“Gen1_albeniz” and “Gen2_albeniz” got 2.87 and 2.86, while the
scores of “Gen4_bach” and “Gen5_mozart” are 2.76 and 2.79.
We discussed with the participants, the possible reasons may be
that the melodies of Albeniz have not significant characteristics
because of no accompaniments, the generated melodies have
not remarkable styles either. Furthermore, the participants have
their own preferences. They say their assessments are indeed
very subjective.

4. DISCUSSION

This paper introduces a brain-inspired spiking neural network
to learn and create the musical melodies with different styles.
Based on the brain mechanisms, we build two subsystem, the
knowledge and memory subsystems, to achieve our goals. A
hierarchical structure is utilized to learn and store the basic
information of a musical piece. The genre, composer and title
cluster encode and memorize the corresponding information
of a piece. Besides, interneurons are involved in this system
to perform the composition task. Sequential memory system

encodes and stores the orderedmusical notes. All the neurons are
simulated by the Izhikevich model, both regular and fast spiking
patterns are used in our model. During the learning process,
synapses between neurons are updated by the STDP learning
rule. Genre-based and composer-based melody composition can
be achieved depending on the different circuits, different neural
clusters are activated in these tasks. The experiments shows
that our model can generate melodies with different styles of
genres and composers. Some of them sound nice and have
strong characteristics.

Based on the experiments mentioned in section 3, the model
runs on the supercomputer. In fact, the scale of the network
is increasing with the number of the input musical pieces,
the network scale and storing capacity have been discussed in
our previous work (Liang et al., 2020). Since the algorithm
is not parallel, the model has no special requirement for
CPU, but it requires 22 GB of memory. The learning process
needs about 50 h. However, the time cost of the composition
process depends on the length of generated melodies. In our
experiment, the shortest and the longest melodies contain 20 and
50 notes, the time cost of generating one melody ranges between
3 and 20min.

To our best of knowledge, this work is the first attempt to
create musical melodies using a spiking neural network based
on neuroscientific findings. There are many hypotheses in our
method since the corresponding brain mechanisms are not clear.
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The experiments are inspiring, however, there are many issues
needed to be discussed further.

• The knowledge learning problem in this paper needs to
be developed further. Knowledge involves the semantic
information, it involves multi-modal concepts in brain. The
representation and learning problems are needed to be
explored deeply in the future work.
• The melody generation in this paper mainly depends on the

sequential memory system, this process is similar to musical
improvisation. However, the creation of a beautiful musical
piece needs more musical theories, such as chords, harmony,
rhythms, and etc. The feedback from people who have musical
backgrounds indicated that the rhythms of our generated
melodies are not steady. Actually, this is our key task in the
next paper.
• This paper focuses on the melody composition. However, a

music piece has more than one part or voice. How to generate
accompaniments or four part harmony is our important work
in future.
• Actually, to compare our method with the existed models,

we have investigated many methods achieved by traditional
artificial neural networks (ANNs). We have found that the
task of our model is very different from those achieved by
the existed methods. First, we mainly generate the melodies,
this task can be called composition in musical theory, while
many tasks achieved by traditional methods always have
accompaniments. The comparison is not fair. Second, our
task is based on classical music, some tasks using ANNs
focus on Jazz, blues, pop music, or other musical genres. The
comparison is still difficult. However, the model needs to be
improved deeply in our future work, including generating
accompaniments, learning more musical styles and etc.
• A more perfect evaluation system is a big challenge for this

topic. Actually, people who took part in our experiments have
told us that their assessments were very subjective, quite a few
of them have no idea about classical music. How to explore a

more reasonable and effective method is very important in our
future work.
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