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Cross-modal effects provide a model framework for investigating hierarchical inter-
areal processing, particularly, under conditions where unimodal cortical areas receive
contextual feedback from other modalities. Here, using complementary behavioral and
brain imaging techniques, we investigated the functional networks participating in face
and voice processing during gender perception, a high-level feature of voice and face
perception. Within the framework of a signal detection decision model, Maximum
likelihood conjoint measurement (MLCM) was used to estimate the contributions of the
face and voice to gender comparisons between pairs of audio-visual stimuli in which the
face and voice were independently modulated. Top–down contributions were varied by
instructing participants to make judgments based on the gender of either the face, the
voice or both modalities (N = 12 for each task). Estimated face and voice contributions to
the judgments of the stimulus pairs were not independent; both contributed to all tasks,
but their respective weights varied over a 40-fold range due to top–down influences.
Models that best described the modal contributions required the inclusion of two
different top–down interactions: (i) an interaction that depended on gender congruence
across modalities (i.e., difference between face and voice modalities for each stimulus);
(ii) an interaction that depended on the within modalities’ gender magnitude. The
significance of these interactions was task dependent. Specifically, gender congruence
interaction was significant for the face and voice tasks while the gender magnitude
interaction was significant for the face and stimulus tasks. Subsequently, we used
the same stimuli and related tasks in a functional magnetic resonance imaging (fMRI)
paradigm (N = 12) to explore the neural correlates of these perceptual processes,
analyzed with Dynamic Causal Modeling (DCM) and Bayesian Model Selection. Results
revealed changes in effective connectivity between the unimodal Fusiform Face Area
(FFA) and Temporal Voice Area (TVA) in a fashion that paralleled the face and voice
behavioral interactions observed in the psychophysical data. These findings explore the
role in perception of multiple unimodal parallel feedback pathways.

Keywords: psychophysics, conjoint measurement, functional magnetic resonance imaging, dynamic causal
modeling, gender comparison, predictive coding
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INTRODUCTION

Hierarchical processing has long played a prominent role in
understanding cortical organization and function (Hubel and
Wiesel, 1962, 1965; Rockland and Pandya, 1979; Felleman and
Van Essen, 1991; Ferster et al., 1996; Angelucci et al., 2002;
Angelucci and Bressloff, 2006). Feedforward models of receptive
field construction have been recently complemented by the
integration of structure and function in large-scale laminar
models of feedback/feedforward processes engaged in cortical
hierarchy (Kravitz et al., 2013; Baldauf and Desimone, 2014;
Markov et al., 2014). The relevance of connectivity based
structural hierarchy (Markov et al., 2014) is reinforced by
its remarkable agreement with functional hierarchy derived
from inter-areal causal relations based on synchronization of
different frequency bands of the local field potential obtained
with surface electrodes in macaque (Bastos et al., 2015) and
magnetoencephalography recordings in human (Michalareas
et al., 2016). Feedback processes have been studied in relation to
top–down generative networks involved in attention, perceptual
integration, prediction, perceptual learning, mental imagery
and consciousness (Roelfsema and de Lange, 2016; Van Vugt
et al., 2018). Our understanding is further complexified by the
fact that functional connectivity cannot be described uniquely
in terms of a single pair of feedback/feedforward channels
(Gerardin et al., 2018; Bergmann et al., 2019). A multiplicity
of functional pathways is supported anatomically, an example
of such being the dual counterstream architecture (Markov and
Kennedy, 2013; Barzegaran and Plomp, 2021; Federer et al., 2021;
Vezoli et al., 2021).

Despite spectacular conceptual progress in the context of
predictive coding that conceives of feedforward pathways as
transmitting prediction errors and feedback pathways predictions
(Clark, 2013), Jean Bullier’s question “What is fed back” (Bullier,
2006) remains as urgent today as it was when he formulated it.
This is largely because experimentally it is considerably more
difficult to invasively manipulate the top–down processes that
come under the banner of predictions than it is to record
the consequences of changes in the sensorium on bottom-up
processes (Zagha, 2020; Vezoli et al., 2021). In this context,
sensory integration provides an ideal model system to investigate
feedback processes. Here, we have examined face and voice
interactions in a gender comparison task.

Because face and voice perception allow the retrieval of similar
information about others (e.g., identity, gender, age, emotional
state, etc.) and engage similar brain mechanisms, it has been
proposed that they share a privileged link (Campanella and Belin,
2007; Yovel and Belin, 2013; Hasan et al., 2016; Belin, 2017). In
particular the Fusiform Face Area (FFA), a functionally defined
region in the temporal fusiform gyrus, has been shown to respond
strongly to faces (Kanwisher et al., 1997; Kanwisher and Yovel,
2006), while the Temporal Voice Area (TVA), a region in the
lateral temporal cortex, has been proposed to be the equivalent of
the FFA for voices (Belin et al., 2000; von Kriegstein and Giraud,
2004; Pernet et al., 2015).

Face-voice gender recognition is robust and precocious,
appearing as early as 6–8 months in human development

(Walker-Andrews et al., 1991; Patterson and Werker, 2002). The
TVA and FFA are both involved in the unimodal recognition
of gender in their respective modalities (Contreras et al., 2013;
Weston et al., 2015). In addition, both of these areas along
with a supramodal fronto-parietal network have been found
to be activated during face-voice gender categorization with a
functional magnetic resonance imaging (fMRI) protocol (Joassin
et al., 2011). Importantly from a psychophysical perspective, and
contrary to other face-voice properties such as emotion, gender
is defined along a single perceptual dimension (varying between
masculine and feminine), simplifying analyses of responses.
Technically, this makes it possible to generate a continuous
physical variation between male and female stimuli via morphing
of auditory and visual stimuli (Macke and Wichmann, 2010;
Watson et al., 2013).

One study found that incongruent face cues reduced the
proportion of correct gender categorizations of voices, but
incongruent voice cues did not influence gender categorization
of faces (Latinus et al., 2010). In contrast, Watson et al. (2013)
observed using audio and video morphing that voices were more
disruptive for face judgments than were faces for voices, which
they attributed to the greater dimorphism with respect to gender
of voices compared to faces. Both studies used a single-stimulus
gender identification paradigm to measure the probability of a
male/female decision. To access face and voice contributions
on a common scale using only probabilities it is necessary to
model the common underlying decision process. Additionally,
while Watson et al. (2013) were able to detect cross-modal
effects, they were unable to describe the rules by which voice
and face cues are combined qualitatively and quantitatively. We
can obviate these problems by using the psychophysical method
of maximum likelihood conjoint measurement (MLCM) that
links gender comparisons to a signal detection model of the
decision process. This approach formalizes a set of testable nested
models describing several types of face-voice combination rules
(Ho et al., 2008; Knoblauch and Maloney, 2012; Maloney and
Knoblauch, 2020).

In the present report, we examine how visual and auditory
signals are exploited with respect to gender perception, a high
level feature of voice and face perception. In both the visual
and auditory systems, auditory and visual signals, respectively,
provide a readily identifiable top–down mechanism for cross-
modal effects (Petro et al., 2017). Here, we use a psychophysical
task to evaluate models of top–down and bottom–up signaling
in multi-modal interactions. In order to clarify the neural
correlates of the perceptual processes, we employ functional
imaging to elucidate the effective connectivity underlying the
behavioral responses.

MATERIALS AND METHODS

Psychophysics
Design and Procedure
Maximum likelihood conjoint measurement (Ho et al., 2008;
Knoblauch and Maloney, 2012) was used to estimate the voice
and face contributions to gender comparisons between stimulus
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pairs that covaried independently in the gender of the face
and voice. Stimuli that varied gradually in gender along both
modalities were constructed by morphing average male and
female faces and voices, respectively (described in Watson et al.,
2013; see section “Materials and Methods”). In separate sessions
judgments were based either on the face, the voice or both
components (Figure 1). Intuitively, if over many trials the
relative frequency of choosing one face (voice) as more masculine
(feminine) depends on the face (voice) gender difference between
the two stimuli presented, independently of the voice (face)
gender difference, then we conclude that the information from
the voice (face) does not influence the face (voice). If such
independence is violated then we model the mutual influences
of the modality specific gender signals.

Thirty-six observers (18 male) with normal or corrected-
to-normal vision volunteered for the experiment (mean age ±
SD: 25.9 ±3.6 years). Each was randomly assigned to one of
six experimental conditions so that there were 3 male and 3
female observers per condition. All observers but one (author
PG) were naive, all were right handed, native French speakers.
All observers had normal (or corrected to normal) vision as
assessed by the Freiburg Visual Acuity and Contrast Test (FrACT)
(Bach, 2007), and the Farnsworth F2 plate observed under
daylight fluorescent illumination (Naval Submarine Medical
Research Laboratory, Groton, CT, United States). Normality of
face perception was assessed by the Cambridge Face Memory Test
(CFMT) (Duchaine and Nakayama, 2006). All observers gave
informed consent.

Experiments were performed in a dark room where the only
light source was the stimulus display to which observers were
adapted. Stimuli were displayed on an Eizo FlexScan T562-T
color monitor (42 cm) driven by a Power Mac G5 (3 gHz) with
screen resolution 832 × 624 pixels and run at a field rate of
120 Hz, non-interlaced. Calibration of the screen was performed
with a Minolta CS-100 Chromameter. Observers were placed
at a distance of 57.3 cm from the screen. Head stabilization
was obtained with a chin and forehead rest. Auditory stimuli
were presented through headphones (Sennheiser HD 449), which
also served to mask any ambient noise. Sound calibration was
performed with a Quest QE4170 microphone and a SoundPro
SE/DL sound level meter.

The stimulus set, obtained from Watson et al. (2013),
consisted of video clips of a person saying the phoneme “had,”
and whose face and voice varied by morphing from feminine
to masculine (18 levels of morphing for the face and 19 levels
for the voice yielding a total of 342 combinations). Clips were
converted to greyscale and matched for luminance. An oval mask
fitted around each face hid non-facial gender cues, such as the
hair and the hairline (see Figure 1 for examples).

The software PsychoPy v1.80.07 (Peirce, 2008) controlled
stimulus presentation. Stimuli were displayed in the center of
a gray background (31.2 cd/m2, CIE xy = 0.306, 0.33). Face
luminance varied between 29.7 cd/m2 (CIE xy = 0.306, 0.324) for
the eyes and 51.6 cd/m2 (CIE xy = 0.303, 0.326) for the nose for
all stimuli. Face diameter was fixed at 10 degrees of visual angle
and voice volume between 85.2 and 86.7 dB SPL (A) – Peak.

FIGURE 1 | Stimulus set and conjoint measurement protocol. Pairs of face-voice video sequences with independently varying levels of face and voice gender
morphing were judged by observers according to: (1) face gender, (2) voice gender, or (3) stimulus gender, i.e., taking both face and voice into account. Stimulus
pairs were sampled from a set with 18 levels of morphing for the face and 19 levels for the voice. Six groups of observers judged which face, voice or stimulus was
either more masculine or feminine (6 observers/group, each group balanced with respect to gender, 36 observers total, and 1,500 trials/observer).
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Observers were tested over five sessions of 300 trials, yielding
a total of 1,500 trials per observer [2.57% random subsampling
from the ((19 × 18 – (19 × 18 – 1))/2 = 58,311 total
number of non-matching, unordered pairs]. Given the large
number of possible pairs tested, a subsampling paradigm was
necessary to make tractable the number of trials for which each
subject was tested. As this is a novel approach for performing
MLCM experimentally, simulations justifying this procedure are
presented in Supplementary Section 1. On each trial two stimuli
were randomly selected, assigned and successively presented
(Figure 1). The stimulus duration was fixed at 500 ms with
a 500 ms inter-stimulus interval between each pair. After the
presentation, observers were prompted to make a judgment
comparing the genders of the two stimuli. The next pair
was presented following the observer’s button press response.
Observers were randomly assigned to one of six groups where
each group was composed of equal numbers of males and females.
Groups were defined by instructions to judge on the basis of
the face, the voice or the stimulus, i.e., in the latter no specific
instruction regarding modality, and whether they were instructed
to choose which of the pair was more masculine or feminine. Six
observers were tested in each of the 6 conditions.

Maximum Likelihood Conjoint Measurement
Maximum likelihood conjoint measurement aims to model
the decision process of observers comparing multidimensional
stimuli in order to determine how the observer integrates
information across dimensions to render a judgment. Because
the decision process is noisy, a signal detection framework
is used (Ho et al., 2008) and the resulting model formalized
as a binomial Generalized Linear Model (GLM) (Knoblauch
and Maloney, 2012). Several nested models, corresponding to
increasingly complex decision rules for combining information
across modalities, are fitted to the data using maximum likelihood
so as to maximize the correspondence between model predictions
and observer decisions. These models are compared using nested
likelihood ratio tests to determine the degree of complexity
required to describe the observer’s decisions.

For example, consider two face-voice stimuli defined by their
physical levels of morphing, [φV

i φ
A
i for stimulus 1 or 2], for visual

and auditory gender, S1 (φV
1 φ

A
1 ) and S2 (φV

2 φ
A
2 ), and the task

of deciding whether the first or second stimulus has the more
masculine face, i.e., the visual task. The noisy decision process is
modeled as:

1(S1, S1) = ψ1 − ψ2 + ε = ψ(φV
1 , φ

A
1 )− ψ(φ

V
2 , φ

A
2 )+ ε

= δ+ ε (1)

where ψ1 and ψ2 are internal representations for the gender
of the first and second face, respectively, determined by the
psychophysical function, ψ , ε is a Gaussian random variable
with mean µ = 0 and variance σ2 and 1 is the decision
variable. We assume that the observer chooses the first stimulus
when 1 > 0, and otherwise the second. The log-likelihood

of the model over all trials given the observer’s responses is
given by:

` (1i,Ri)
∑

i

Rilog (φ (δ/σ))+ (1− Ri) log (1− φ (δ/σ)) ,

(2)
where Ri is the response on the ith trial and takes the value of 0 or
1 depending if the subject chooses the first or second stimulus and
8 is the cumulative distribution function for a standard normal
variable. For each model described below, the psychophysical
responses, ψ′s were estimated that maximized the likelihood of
the observer’s responses across all trials, with constraints imposed
to render the model identifiable (Knoblauch and Maloney, 2012).

Under the independence model the observer exclusively relies
on visual information and we define the decision variable:

1 = ψV
1 − ψ

V
2 + ε (3)

where ψV
1 ψ

V
2 are the internal representations of gender evoked

by the visual cues of stimulus 1 and 2, respectively. A similar
model is defined to model independent responses for the auditory
task where the V ’s are replaced by A’s.

In the additive model we define the decision variable as a sum
of the visual and auditory gender signals.

1 = (ψV
1 − ψ

V
2 ) = (ψ

A
1 − ψ

A
2 )+ ε (4)

where the visual and auditory terms of the equation
have been regrouped to demonstrate that the observer
is effectively comparing perceptual intervals along one
dimension with perceptual intervals along the other
(Knoblauch and Maloney, 2012).

Under the interaction model, non-additive combination terms
are introduced. The decision variable can be written as

1 = (ψV
1 − ψ

V
2 )+ (ψ

A
1 − ψ

A
2 )+ (ψ

VA
1 − ψ

VA
2 )+ ε (5)

where the third term on the right side corresponds to an
interaction that depends on each face-voice combination. This
interaction model is usually non-specific as one term is evaluated
independently for each combination of visual and auditory
gender levels. Here, our results, described below, indicated that
the additive terms could be characterized as parametric functions
of the gender levels, f V (φ)and f A (φ), for visual and auditory
modalities, respectively. This allowed us to test two specific
types of interaction.

The Congruence Interaction Model introduces an internal
congruence effect between face and voice gender within stimulus
to yield the decision variable:

1 =
(
f V (φ1)− f V (φ2)

)
+
(
f A (φ1)− f A (φ2)

)
+
(∣∣f V (φ1)− f A (φ1)

∣∣+ ∣∣(f V (φ2)− f A (φ2)
∣∣)+ ε, (6)

This interaction depends on the absolute gender difference
between visual and auditory signals for each stimulus. It has
minimal effect on judgments when for each stimulus, the gender
scale values are the same for both modalities and maximal when
there is the greatest gender difference between modalities.
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The Magnitude Interaction Model introduces a multiplicative
effect of gender information across stimuli for the following
decision variable:

1 =
(
f V (φ1)− f V (φ2)

)
+
(
f A (φ1)− f A (φ2)

)
+(f V(φ1)−f V(φ2)) · (f A(φ1)− f A(φ2))+ ε. (7)

This interaction is minimal when the gender difference between
stimuli within either or both modalities is small and maximal
when the within modality difference is large for both stimuli.
Over many trials these differences cancel out more for stimuli
that are closer to gender-neutral, so overall these gender-neutral
stimuli will be associated with smaller effects for this interaction.

In other words, under the congruence interaction model,
non-additive effects are assumed to be proportional to the
absolute difference between face and voice gender. Under the
magnitude interaction model, non-additive effects are assumed
to be proportional to the amount of masculinity/femininity in the
face and voice as compared to gender-neutral.

All psychophysical data were analyzed using R (R Core Team,
2019) and the package lme4 (Bates et al., 2015) to take inter-
individual variability into account with generalized mixed-effects
models (GLMM) (Pinheiro and Bates, 2000).

Signal Detection Theory and Optimal Cue Integration
The MLCM approach above describes the measuring and
modeling of how attributes from different dimensions are
combined in judgments of appearance. In this section, we
explore relations to optimal cue combination, which is typically
studied in the context of discrimination, and describe how these
models lead to a more detailed consideration of the interaction
terms in MLCM models.

The fusion of several cues into a single percept can be
described using two classes of models (Clark and Yuille, 2013).
In weak fusion models each cue is first processed separately in
distinct and independent modules, before undergoing rule-based
combination. By contrast, strong fusion models de-emphasize
modularity and allow interaction effects at any processing level.
The modified weak observer model (Young et al., 1993; Landy
et al., 1995) that was established as a variant of weak fusion
includes; (i) early interactions to make cues commensurable,
whereby psychological variables, ψV and ψA along dimensions
subscripted as V and A for visual and auditory, are expressed
in the same units on the same internal perceptual axis directly
allowing summation; (ii) the possibility of other potential
interaction effects when the discrepancy between individual
cues goes beyond that typically found in natural scenes, e.g.,
constraining physical values, φV and φA, such that ψV ≈ ψA to
prevent such effects; (iii) a weighted average cue combination
rule with weights dynamically chosen to minimize variance of the
final estimate. This leads to the following signal detection model
of the psychological response:

ψ = N

(
µv · σ

−2
v + µA · σ

−2
A

σ−2
v + σ−2

A
,

σ−2
v · σ

−2
A

σ−2
v + σ−2

A

)
(8)

where ψS is the perceived level of the fused stimulus, distributed
normally with µi the mean perceived level of the stimulus

along dimension i (i.e., V or A depending on the modality),
and σ2

i of the variance of the perceived level along dimension
i (for derivation and a fuller description of this model see
Supplementary Section 2).

This model leads to increases in variance causing the variance
and the mean of the combined percept to be closer to whichever
estimate is most reliable. The combined percept is expected to
be more precise than either of the isolated unimodal estimates.
Note that the observer is predicted to make binary decisions
about combined stimuli, i.e., to classify them as either feminine
or masculine in proportion to the position of the density
distribution along the perceived gender axis with respect to a
gender-neutral value.

Observers who use this maximization rule with respect to
reliability are referred to as being statistically optimal and this
type of response has been empirically verified in several domains
for human multimodal integration (Ernst and Banks, 2002; Alais
and Burr, 2004; Hartcher-O’Brien et al., 2014).

As already mentioned, one limitation of the maximization
model is its dependency on the condition ψV ≈ ψA. In other
words complementary interaction effects are expected to come
into play in the case of inconsistencies beyond the discrimination
threshold between the cues. In the absence of such interaction
effects, the resulting percept is predicted to be the same when
combining visual and auditory cues as long as the variances and
ψV+ψA

2 remain constant.
An extension of the model includes interaction effects of

congruence. When for example, one modality is very masculine
and the other very feminine, we hypothesize that the stimulus
is perceived as being less reliable than congruent stimuli.
Consequently the variance of each unimodal estimate is increased
in proportion to the distance between modalities in gender space
before applying the optimal integration scheme. This has the
effect of lowering the variance of the combined gender estimate,
which biases the decisions because a higher proportion of the
distribution falls on one side of the gender neutral reference.

Beyond this effect of congruence, it is conceivable that there is
an effect of the magnitude of the gender difference from neutrality
contained in each modality. For example, a face that is very
clearly masculine might generate a more precise representation
than a more gender-neutral face. Such effects would become
more significant with greater incongruence between cues due to
an increase in the difference in precision, and once again the
resulting change in variance of the final estimate biases decisions.

The above models can be implemented by introducing an
internal congruence parameter and/or a multiplicative effect of
gender in order to account for the quality of gender information.

Functional Magnetic Resonance Imaging
Design and Procedure
Twelve observers (6 female, mean ± SD age: 23.3 ± 3.3 years)
participated in the study. All were right handed and screened for
normal vision with the same battery of tests used in experiment
1. The study was approved by the local ethics committee (ID-
RCB 2015-A01018-41). In accordance with the protocol, each
subject was pre-screened by a clinician for suitability to undergo
an fMRI procedure and gave informed consent. All participants
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attended two MRI sessions of approximately 1.5 h each and were
remunerated for their participation.

All experiments were conducted using a MAGNETOM
Prisma 3T Siemens MRI scanner at the Lyon MRI facility
PRIMAGE, France. For each individual, high−resolution
T1−weighted structural image (acquisition matrix
256× 256× 192, TR/TE: 3,500/3.42 ms, flip angle: 8◦, resolution:
0.9 × 0.9 × 0.9 mm) and T2∗-weighted functional images
(acquisition matrix 78 × 78, 49 slices, TR/TE: 2,500/26 ms,
flip angle: 90◦, resolution: 2.7 × 2.7 × 2.7 mm) were collected
with a 64 channel head/neck Siemens coil. In order to control
participants wakefulness, the left eye was monitored with an
SR Research EyeLink 1000 Plus. Sound was provided using
NordicNeuroLab earplugs. As sound stimulation was provided
on top of scanner noise, we checked with each participant that
they could hear the voices properly. This was also controlled
quantitatively for some participants who were asked to perform a
voice gender recognition task (detailed below). Subject responses
were recorded using a Current Designs 904 diamond shaped
4 button device.

Stimuli were selected from a reduced set of those
used in experiment 1 (Watson et al., 2013), consisting of
video clips of a person saying the phoneme “had.” We
used three levels of morphing for the face and voice (the
most feminine, gender neutral and masculine in terms
of physical morphing in both cases) generating a total
of nine combinations. Software PsychoPy v1.84.2 (Peirce,
2008) was used to control stimulus presentation. Stimuli
were displayed in the center of a gray background with a
resolution of 1,024 × 768 pixels. Face diameter was fixed at 10◦
of visual angle.

Face-voice stimuli were presented in an event-related
protocol. Each stimulus lasted 0.5 s and was followed by a fixation
point with a random duration (5, 5.5, 6, 6.5, and 7 s). To prevent
habituation we ensured that no more than three successive
repetitions occurred of the same stimulus sequence (e.g., AAA),
pair of stimuli (e.g., ABABAB), and fixation point intervals.

In order to mirror the tasks of the MCLM experiment, task-
dependent instructions were given to attend to the gender of
the face, the voice or the stimulus and no specific instruction
regarding modality. Unlike the psychophysical paradigm, only
a single face/voice combination was presented and therefore,
no stimulus comparison was required. Attentional focus was
controlled by randomly distributed response trials after which
participants were prompted by a screen with a red feminine
sign on one side and a blue masculine sign on the other
(masculine and feminine sides varied randomly to prevent motor
anticipation). They then had 2s to push a button on the left or the
right side of a response device to indicate the gender perceived
for the modality to which they had been instructed to attend.

During each acquisition, the nine gender combinations were
presented three times in addition to eight response trials
composed of every combination except a neutral face and
a neutral voice (which would not be informative about the
attentional state of the participant), see Figure 2. All participants
performed two tasks (face and voice, face and stimulus or
voice and stimulus) in two sessions separated by at least 1 day,

each session being composed of five acquisitions. The total
number of repetitions for each condition was 15 for all face-voice
combinations and 40 response trials (for which the responses, but
not brain activity, were analyzed to avoid motor contamination of
fMRI data). Controlling for the order of the sessions (e.g., face
followed by voice task or voice followed by face task) resulted
in six possible pairs, each assigned to one male and one female
participant. We thereby acquired 8 sessions in total for each task.

We identified two regions of interest (ROI) using functional
localizers. During the first session we used a localizer for the
FFA described by Pitcher et al. (2011) and Julian et al. (2012),
in which subjects were presented with blocks of dynamic visual
stimuli belonging to several categories: human faces, human
body parts (hands, legs, etc.), objects, landscapes or scrambled
images (created by spatially shuffling object videos subdivided by
a 15 by 15 box grid). We reasoned that this dynamic protocol
would reveal functional areas involved in our dynamic face-voice
stimuli. In the second session, we used a localizer for the TVA
described by Belin et al. (2000), in which subjects were presented
with blocks of silence or auditory stimuli which were either vocal
sounds (both with and without language) or non-vocal sounds.

Imaging data were first analyzed with Brain Voyager QX
(Goebel, 2012). Preprocessing functional data consisted of slice-
scan time correction, head movement correction, temporal high-
pass filtering (two cycles) and linear trend removal. Individual
functional images were aligned to corresponding anatomical
image. These images were then used for 3D cortex reconstruction
and inflation. No spatial smoothing was applied.

Fusiform Face Area and TVA were identified using a General
Linear Model analysis including fixation periods and movement
correction parameters as nuisance covariates. FFA was defined,
bilaterally, as the set of contiguous voxels in the temporal
fusiform gyrus that showed the highest activation for faces
compared to body parts, landscapes, objects and scrambled
images (Pitcher et al., 2011; Julian et al., 2012). TVA was defined,
bilaterally, as the set of contiguous voxels in the lateral temporal
cortex that showed the highest activation for vocal compared
to non-vocal sounds (Belin et al., 2000). In both cases we used
a significance threshold of p < 0.05 following false discovery
rate correction. There is no reason to assume these functional
areas are the same size across subjects but we checked that there
were no outliers in terms of number of voxels (defined as a
localized area that deviated from the mean number of voxels by
greater than two standard deviations for an individual subject
compared to the others).

Dynamic Causal Modeling
To explore the neural substrate of the multi-modal integration
revealed by the psychophysical experiments, we performed a
series of functional imaging experiments in which we evaluated
the effective connectivity between areas implicated in processing
face and voice stimuli. In particular, we restricted consideration
to two candidate areas, FFA (Kanwisher et al., 1997; Kanwisher
and Yovel, 2006) and TVA (Belin et al., 2000; von Kriegstein and
Giraud, 2004; Pernet et al., 2015). FFA and TVA are ostensibly
unimodal modules involved in face and voice processing. We
translated the MLCM models described above into hypothetical
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FIGURE 2 | Protocol for one acquisition of the face-voice gender fMRI experiment. (Top-right) Within sessions, subjects were assigned the task to pay attention to
face, voice or stimulus gender. (Middle) subjects were presented with face-voice stimuli in succession in an event-related manner. On some trials, subjects received
a signal to respond as to whether the gender of the modality attended was masculine or feminine for the previous stimulus (note that in the actual protocol the
masculine sign was presented in blue and the feminine sign in red). (Bottom-left) For each acquisition all nine face-voice gender combinations were presented three
times in addition to eight “response” trials corresponding to all combinations except gender-neutral face + gender neutral voice.

effective connectivity networks in order to test whether non-
additive interactions involve unimodal areas or exclusively occur
at higher levels. Importantly, observing changes in effective
connectivity between the FFA and TVA is agnostic to the role of
direct communication between these areas or mediation by other
top–down influences.

Figure 3 presents a series of schematic networks of
multimodal integration based on the type of models of inter-
areal connectivity that best describe the range of possible results
of the MLCM experiments. The independence model would
implicate direct communication between unimodal face and
voice areas and the site of gender decision, whereas its rejection
would imply the existence of at least one mandatory site of
multimodal integration prior to the gender decision. Models
including interactions are more challenging to interpretation.
The substrate of interaction effects is presumably a change in
connectivity in an inter-areal network. There are two possibilities:
either the unimodal areas are themselves involved in this
interaction, or the changes occur exclusively at designated
multimodal sites, presumably at levels hierarchically above the
unimodal areas. It is not possible to decide between these

two hypotheses using psychophysical experiments alone, but
the question can be addressed by looking at brain activity
obtained from fMRI.

Dynamic Causal Modeling (DCM) analysis was performed
using MATLAB (R2014a) with SPM12 (6906). Each model was
defined using the two regions of interest, FFA and TVA. DCM
involves defining a series of models based on the following system
of partial differential equations (Friston et al., 2003):

f (x) =
∂x
∂t
= ẋ = A · x

∑
j

(uj · Bj·) · x+ C · u+ ε

y = g(x)+ e (9)

where for i 2 areas and j 2 inputs (visual and auditory
stimulation), x is a vector of length i that describes the state of
all areas at a time t, ẋ is the partial derivative of x with respect
to time; u is a vector of length j that describes the state of each
input at time t with uj the state of a particular input; f is a
function describing the neurodynamic mapping from the state
to its partial derivative, ẋ, that depends on interactions between
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FIGURE 3 | Functional models suggested by MLCM models for face-voice gender integration. (A) The independence model supports a direct link between unimodal
face and voice sites and the site of gender decision. (B) The additive model implies the existence of at least one mandatory site of multimodal integration prior to
gender decision. (C) The saturated model is compatible with several interpretations that can be divided in two groups depending on whether the non-additive
interaction involves unimodal areas or takes place exclusively at a higher level.

areas and experimental modulation; y is a vector of dimension
i of the recorded BOLD signals in each area at time t and g
is a function describing the mapping from states, x, to BOLD
signals y depending on the hemodynamic response; ε and e are
random endogenous errors; C is a matrix of dimensions

(
i, j
)

that describes the strength of each input to each area; A, a matrix
of dimensions (i, i), describing the connectivity in the network
that is independent of experimental manipulation of inputs;
and Bj correspond to a series of j matrices of dimensions (i, i)
that describe changes in this connectivity due to experimental
manipulation. Potential changes in effective connectivity are
therefore captured in the B matrices.

The first step of building DCM models involves deciding
which region of interest receives which type of signal (C in
Equation 9). In our case visual signals were modeled as input
to the FFA and auditory signals to the TVA (red and blue
arrows in Figure 4A). The second step involves defining the A
matrix (A in Equation 9) describing the intrinsic connectivity
in the network, which is assumed to be independent of the

experimental manipulation. Given the automatic nature of
face-voice integration, we considered all possible connections
between and within areas (black arrows in Figure 4A). The
third step is to define for each model a series of B matrices
(Bj in Equation 9), which represent hypotheses about effective
connectivity modulations between experimental conditions. Two
model spaces were defined corresponding to the two tested
interaction effects (Figures 4B,C):

1. Connections from FFA to TVA could either be modulated
or not by adding face gender information (i.e., when faces
were masculine or feminine as opposed to gender-neutral);
and connections from TVA to FFA could either be modulated
or not by adding voice gender information (i.e., when voices
were masculine or feminine as opposed to gender-neutral).
This results in the model space described in Figure 4B, with
four possible models of modulation.

2. Compared to a gender congruent stimulus, connections
between FFA and TVA could be modulated in either or both
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FIGURE 4 | Models of DCM analysis. (A) Inputs and intrinsic connectivity that were applied to all cases. (B) Model space for changes in effective connectivity to test
gender effects. Red arrows represent changes in connectivity from FFA to TVA in response to face gender (compared to gender-neutral). Blue arrows represent
changes in connectivity from TVA to FFA in response to voice gender (compared to gender-neutral). (C) Model space for changes in effective connectivity to test
congruence effects. Red and blue arrows both represent changes in effective connectivity when face and voice gender are incongruent (compared to congruent).

directions by a gender incongruent stimulus (i.e., a masculine
face with a feminine voice or a feminine face with a masculine
voice). This results in the model space described in Figure 4C,
with four possible models of modulations.

Note that, despite their apparent similarity, the two model
spaces are very different in terms of data contrasts. For example,
when testing face gender modulation (i.e., models with a red
arrow versus models without a red arrow in Figure 4A),
activation in response to the three stimuli with a gender neutral
face (and varying voice gender) is contrasted with activation in
response to the six stimuli with either a masculine or a feminine
face (and varying voice gender). When testing congruence gender
modulation from the FFA to the TVA (i.e., models with a
red arrow versus models without a red arrow in Figure 4C),
activation in response to the two incongruent stimuli (with either
a masculine face and a feminine voice or a feminine face and
a masculine voice) is contrasted with activation in response to
the seven stimuli that are either completely congruent or gender-
neutral with respect to at least one modality.

For both model spaces, the four models were applied using
the principal eigenvariate of the combined activation of every
voxel within the FFA and the TVA of each subject. For each
model within a given condition (face, voice or stimulus), model
evidence, i.e., the probability of observing the measured data
given a specific model, was computed based on the free energy
approximation using a random-effects (RFX) analysis to account
for between-subject variability (Stephan et al., 2009).

However, the analysis does not focus on the probabilities
of the models per se but instead on the presence or absence
of effective connectivity modulation from the FFA to the TVA

(or TVA to FFA), while modulation in the reverse direction is
controlled. Hence, we performed family comparisons, following
the procedure introduced by Penny et al. (2010). First we
compared a family composed of the two models in which there
is no modulation from FFA to TVA to a family composed of the
two models in which there is modulation (models 1 and 2 versus
models 3 and 4 from Figure 4). Second we compared a family
composed of the two models in which there is no modulation
from TVA to FFA to a family composed of the two models in
which there is modulation (models 1 and 3 versus models 2 and
4 from Figure 4). These partitions were used during the Bayesian
Model Selection procedure to rank families using exceedance
probability, i.e., the probability that a family is more likely than
the others in a partition, given the group data.

RESULTS

Psychophysics
Based on a signal detection model, perceptual scales
(parameterized as d′) were estimated by maximum likelihood for
the contributions of the two modalities to the observers’ choices
in each task under the independence model described above
(Equation 3) and alternative models (Equations 4, 5) in which
both the voice and face signals contribute.

Each observer’s face and voice contributions were estimated
initially with the additive MLCM model (Equation 4) and are
displayed in Supplementary Figures 10–12. The only differences
observed for male and female subjects was the voice task (linear
mixed-effects model, face task: χ2(37) = 30.7, p = 0.76; voice
task: χ2(37) = 77.3, p = 0.0001; Stimulus task: χ2(37) = 49.2,
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p = 0.09). The graph of estimated components of this small
but significant difference suggests that the effect is generated
by female sensitivity to strongly male faces (Supplementary
Figure 13). No differences were observed between groups that
judged “more masculine” or “more feminine,” after the response
reversal was taken into account (linear mixed-effects model, face
task: χ2(37) = 26.3, p = 0.5; voice task: : χ2(37) = 36.8, p = 0.48;
Stimulus task: χ2(37) = 33.5, p = 0.63). Given these results, we
combined the data sets from male and female observers who
responded “more masculine” or “more feminine” for each of the
three tasks in all subsequent analyses.

The graphs in Figure 5 summarize the additive model for
each of the three tasks. Each point is the average from 12
observers. The two sets of points in each graph indicate the
estimated contributions that best predict the observers’ choices
over all stimulus presentations of the face (red) and the voice
(blue) to the decision variable as a function of the morphing
level of the stimulus, varying from most feminine (left) to most
masculine (right). As an example, in the face task, the predicted
internal response for a stimulus with face gender level 10 and
voice gender level 15 is obtained by reading-off the ordinate
value of the red point at 10 on the abscissa (about 1.5) and the
blue point at 15 (about 1) and summing the two values (2.5).
If the same calculation is performed for a second stimulus, for
example, red point at gender 15 (about 3) and blue at 10 (about 1,
summing with the other to 4), the two internal response estimates
can be compared with the greater value (4) determining which
stimulus is predicted to be judged as more masculine in the

absence of judgment noise. The estimated scale values have been
parameterized so that the standard deviation of judgment noise
corresponds to 1 unit of the ordinate values. For this reason, we
specify the scale as the signal detection parameter d′ (Green and
Swets, 1966; Knoblauch and Maloney, 2012).

The contribution of each modality is task dependent. When
observers judge the gender of the face, the face contribution
is strongest with a smaller but significant contribution of the
voice (Figure 5). When observers judge the gender of the voice,
contributions invert, and when the task is to judge the gender of
the stimulus, both modalities contribute about equally. In brief,
effects of the task in this experiment can be conceived as relative
changes of the weights of modality contributions to favor the
contribution of the relevant modality.

Globally, the figures suggest that the task modulates uniquely
the relative contribution of each modality without changing
its functional form. For all three tasks, the voice contribution
varies approximately linearly with gender level with its slope
varying across tasks. Similarly, the face contribution varies in
a nonlinear fashion with gender level but the form remains
constant across tasks. The shape-invariance of the modality
contributions (Supplementary Figure 14) shows the average
values for the visual (left) and auditory (right) components for
each of the three tasks, normalized to a common ordinate scale,
and normalized shapes approximated with a non-linear least
square approach. The voice contribution is well defined by linear
and the face contribution by quadratic functions. We refitted the
MLCM models to the observers’ choices with these fixed curves

FIGURE 5 | Contribution of the masculinity of the face (red) and the voice (blue) to gender decision while evaluating the gender of the face (left), the voice (center),
and the stimulus (right). Abscissa indicates the levels of morphing of the faces and the voices from feminine to masculine and ordinates the contribution to gender
judgment expressed as d′. Each plot represents the fixed effects and their 95% confidence interval from the additive GLMM analysis (lines and envelopes,
respectively) and the mean values of observers corresponding to each level in the additive GLM analysis (points) for 12 observers in each panel (36 in total).
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that varied only with respect to a task specific coefficient using a
GLMM (Bates et al., 2015). The fitted curves with 95% confidence
bands (Figure 5) provide a good description of the average data.

The random effect prediction for each individual
(Supplementary Figures 10–12) confirms that maximum
variation across subjects in face and voice tasks is found
for the relevant modality while the contribution of the
irrelevant modality remains lower. During the stimulus
task the relative contribution across subjects of both modalities
varies (Supplementary Figure 12). In fact, the 12 observers
from the stimulus task fall into three separate groups: those
that respond more like the observers in the face task, those that
respond more like the observers in the voice task and those
that tend to assign nearly the same weight to both modalities
(Supplementary Figure 12). This might be due to differing
strategies in performing the task, or specific inherent sensitivities
to the cues from each modality that differentially influence
gender judgments.

In Figure 5, the contribution of each modality, as indicated by
the points in each panel, follows a similar relation as a function of
gender across tasks. Only the amplitude of the response appears
to vary with the change in task. This was verified by the least
squares fits of the curves, which only vary in amplitude across the
three panels (Supplementary Figure 14). This similarity across
tasks is not imposed by the MLCM procedure for estimating the
points and is not systematically observed (Ho et al., 2008). To
the extent that the additive model accurately characterizes the
subjects’ choices, this indicates that the top–down influence of
the task does not affect overall curve shapes. It is consistent with
an origin of each modality’s contribution to the decision process
prior to the influence of the other modality’s signal, and more
specifically from a purely unimodal source.

In the following analyses, we assumed a fixed-shape
contribution from each modality, i.e., each modality’s
contribution follows a parametric curve as a function of
the physical morphing level on the gender scale, linear for
auditory, quadratic for visual, based on the GLMM analyses
above. This considerably reduces the complexity of the models
as instead of estimating values for each stimulus level and
combination, we only need to estimate individual coefficients
that weight the entire curve shape. In particular, for the non-
parametric independence model the number of parameters was
one less than the number of gender levels, i.e., 17 for face and 18
for voice, but the use of a parametric curve reduces the number
to only the one coefficient that controls the amplitude of the
curve. For the additive model, the 37 parameters used to estimate
the points in Figure 5 are reduced to 2, one coefficient for each
curve. The saturated model would require 18 × 19 – 1 = 341
parameters but the use of the parametric curves reduces this
number to only 3.

The independence model, for example, for the visual input
becomes:

1 = βV({φV
1 }

2
− {φV

2 }
2)+ ε (10)

with the single parameter βV and the exponent of 2 is included
because of the quadratic shape of the face contribution for all
three tasks, and an equivalent, but linear, model for an auditory

input with single parameter βA. Similarly, the additive model
becomes:

1 = βV
· ({φV

1 }
2
− {φV

2 }
2)+ βA

· (φA
1 − φA

2 )+ ε (11)

with only two parameters.
This framework is extended to mixed-effects model by

including a random effect of observer over the coefficients. The
independence (visual) model, then, becomes:

1 = βV
· ({φV

1 }
2
− {φV

2 }
2)s + bs · ({φ

V
1 }

2
− {φV

2 }
2)s + ε (12)

The coefficient βV is a fixed effect estimate common to every
subject while the bS are random effect predictions assumed to be
normally distributed with mean 0 and variance σ 2

s .
Generalization to the additive model is trivial but note

that we did not include a random interaction term (only the
random visual and auditory terms) for the mixed interaction
models because the increased complexity of the random effects
structure led to singular models, suggesting data overfitting
(Bates et al., 2015).

Nested models were fitted and likelihood ratio tests run
to re-test differences between male and female subject and
between observers who judged the stimuli to be more masculine
or more feminine based on the parametric curve estimations
for each dimension. The results (Table 1) confirm previous
findings suggesting that there are no differences between male
and female observers for the face and stimulus tasks and only
marginal evidence for a male/female observer difference in
voice judgments, also supported by the change in AIC (face:
χ2 (2) = 1.61, p = 0.57; voice: χ2 (2) = 6.6, p = 0.04; stimulus:
χ2 (2) = 2.25, p = 0.33). Moreover, there was no evidence for a
difference in the fits due to the type of judgment made on any of
the tasks (face: χ2 (2) = 1.13, p = 0.57; voice: χ2 (2) = 2.98,
p = 0.23; stimulus: χ2 (2) = 2.06, p = 0.36).

Likewise the independence for the additive and two
interaction models described below were fitted using the
parametric curves. This allowed rejection of the independence
model in favor of the additive model for all three tasks (face:
χ2 (2) = 1, 425, p< 2e-16; voice: χ2 (2) = 11, 335, p< 2e-16;
stimulus: χ2 (2) = 5, 566, p< 2e-16).

The two interaction models were fitted to the data and
evaluated: one in which the interaction depended on gender
congruence (Equation 6) and one on gender magnitude
(Equation 7). The gender magnitude interaction was tested
against the additive model and found to be significant for face and
stimulus tasks (face: χ2 (1) = 10.98, p< 0.001; voice: χ2 (1) = 1.2,
p = 0.27; stimulus: χ2 (1) = 6.42, p = 0.01). In contrast, an
interaction due to the gender congruence of the stimuli was only
significant for face and voice tasks (face: χ2 (1) = 71.8, p < 2e-
16; voice: χ2 (1) = 21.7, p = 3.2e-6; stimulus: χ2 (1) = 3.55,
p = 0.06).

To summarize, instructions to judge whether the face, voice
or stimulus was “more masculine” vs. “more feminine” has no
influence. In addition, male and female observers performed
similarly, despite a slightly larger contribution in women of
the face to the voice task. After combining conditions, the
independence model was rejected for all three tasks (face, voice,
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and stimulus comparison), indicating observers fail to completely
suppress non-attended modalities. In addition, the invariance of
the curve shapes suggests that unimodal sensory signals were
acting prior to the decision process.

The two interactions tested, gender magnitude and intra-
stimuli gender congruence, fit some conditions better than a
simple additive model. Interestingly, gender magnitude and
congruence were independent, with magnitude being non-
significant for the voice task and congruent for the stimulus
task. This could indicate distinct neural bases, which we explore
further below with functional imaging experiments.

We examined the trial-by-trial accuracy of model predictions.
Inclusion of both interactions increased the model accuracy
across all three tasks (face: 78.96–79.22%, +0.26%; voice: 83.26–
83.44%, +0.18%; stimulus: 80.49–80.58%, +0.09%). In other
words the initial accuracies with additive models were high
and the improvements in fit, while significant under the
likelihood ratio tests and as indicated by the differences in
AIC (Table 1) were modest. Nevertheless, improvements mirror
the statistical results in that accuracy was least improved for
the stimulus task.

Comparison of empirical results with simulated data
in which interaction effects are modeled using the signal
detection hypotheses developed in the section “Materials
and Methods” and Supplementary Section 2 explores
how additive and interaction model predictions differ
(Supplementary Figure 9B). While the difference between
additive and interaction models is much smaller than the
main effects (compare ordinate scales between Figure 5 and
the empirical plots of Supplementary Figure 9B), the shape
of each interaction displays a distinct signature. Interactions
were mostly driven by the gender magnitude effect in the

TABLE 1 | Model comparison for psychophysical data.

Chisq df p dAIC

Masculine/feminine

1.1312 2 0.568 −3

2.98 2 0.23 −1

2.06 2 0.36 −2

Male/female

1.61 2 0.45 −2

6.60 2 0.04 3

2.25 2 0.33 −2

Independence/additive

1,425.3 2 <2.2e-16 1,421

11,335 2 <2.2e-16 11,331

5,566.5 2 <2.2e-16 5,563

Additive/gender interaction

10.98 1 1e-4 9

1.20 1 0.27 −1

6.42 1 0.01 4

Additive/congruence interaction

71.76 1 <2.2e-16 70

21.73 1 3 e-6 20

3.55 1 0.06 1

stimulus task (resulting in a fan-like shape), by the congruence
effect in the voice task (resulting in an inverted U shape)
and by a mixture of the two in the face task. The fact that
qualitatively similar changes occurred in empirical and
simulated results suggests that the signal detection model
needs to be modified to introduce magnitude and congruence
interaction effects.

In summary, the psychophysical results show that the
contributions of each modality varied according to the task by
increasing the relevant and attenuating the irrelevant modality.
The rejection of the independent model for all tasks means
that both face and voice contribute significantly to gender
evaluation in all three tasks, i.e., there are irrepressible cross-
contributions of the voice during face gender evaluation and
of the face during voice gender evaluation. Interestingly, the
first two graphs of Figure 5 show an asymmetry; the voice
contribution is higher in the voice task than the face contribution
in the face task and the face contribution is lower in the voice
task than the voice contribution in the face task. Finally, we
found two independent interaction effects; an effect of gender
congruence that was significant in the face and the voice
tasks, and a multiplicative effect of gender magnitude that was
significant in the face and the stimulus tasks. These effects were
qualitatively compared to simulated results derived by extending
the optimal cue combination model under the principles of
Signal Detection theory as specified in Equations 6, 7 (see also
Supplementary Section 2).

Functional Magnetic Resonance Imaging
Results
Regions of Interest (ROI)
We selected two areas, the FFA and TVA, activated significantly
by our face and voice functional localizers, based on a GLM
analysis described in the “Materials and Methods” section.
Figure 6 illustrates the localization of these areas in one
participant; Supplementary Figures 15, 16 show the localizations
for individual participants. We computed functional signal-
to-noise ratios across these ROIs for responses to the face-
voice stimuli used in the main protocol. We found that the
mean activity in the TVA was higher than baseline in every
condition while the activity in the FFA was higher than
baseline during the face and stimulus tasks but not during
the voice task (Supplementary Figure 17). Scanner noise was
present both during stimulation and baseline, and was therefore
independent from this result. We attribute the large error bars
in Supplementary Figure 17 to the small sample size used.
We then explored the effects of attentional modulation of
response in terms of effective connectivity between FFA and TVA
using a DCM analysis.

Face-Voice Gender Task
So as to engage the attention of a specific modality during
imaging sessions in a manner similar to that imposed by the
response instructions during the psychophysical experiments,
subjects performed a pre-specified gender identification task with
respect to either the face, voice or stimulus on randomly signaled
trials that were excluded from the subsequent imaging analyses
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FIGURE 6 | Fusiform Face Area (top row, yellow) and Temporal Voice Area (bottom row, orange) as localized in one of the 12 participants of Experiment 2. Sagittal,
coronal and transverse views are shown centered around the right FFA/TVA.

(see Figure 2 for a full illustration of the fMRI protocol). Prior to
the fMRI data analyses, we checked the results of these response
trials to evaluate if participants had correctly performed the tasks.

Table 2 shows, for each task performed during the imaging
experiments, the mean and standard deviation over eight subjects
of the performance in stimulus identification. There were 40
response trials in total but only 30 were analyzed for each task.
In particular, trials that could not be analyzed in terms of an
unambiguous correct or incorrect response were excluded from
analysis:

TABLE 2 | Results of the behavioral task during fMRI recording.

Correct Incorrect Miss

Face task

Mean 28.50 (95%) 0.75 (2.5%) 0.75 (2.5%)

SD 0.93 (3.1%) 0.89 (3%) 0.89 (3%)

Voice task

Mean 28.50 (95%) 0.50 (1.7%) 1.00 (3.3%)

SD 1.60 (5.3%) 0.53 (1.8%) 1.77 (5.9%)

Stimulus task

Mean 26.88 (89.6%) 2.5 (8.3%) 0.62 (2.1%)

SD 1.25 (4.2%) 1.20 (4%) 0.74 (2.5%)

• for the face task the 10 trials with a gender neutral face;
• for the voice task the 10 trials with a gender neutral voice;

and
• for the stimulus task the 10 trials with incongruent face and

voice.

The column labeled “Correct” indicates the number of
responses that were congruent with the gender of the attended
modality (for example in the face task if the masculine sign was
on the left, the face was masculine and the observer pressed
the left button). “Incorrect” indicates the number of responses
that were incongruent with the gender of the attended modality
(for example in the previous case if the observer pressed the
right button). “Miss” indicates the number of times that the
observer did not respond within the 2 s limit. Participants
responded in accordance with the attended modality (95%)
with less than one incorrect or missed trial per acquisition.
Standard deviations were low, indicating little subject variation.
In summary, the evidence supports that subjects performed
the task correctly, which we considered as a validation for the
subsequent fMRI data analyses.

Dynamic Causal Modeling Analysis
Dynamic Causal Modeling with Bayesian Model Selection (Penny
et al., 2010; Penny, 2012) permits evaluation of the capacity
of activity in one brain area to cause or generate activity in
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another (effective connectivity). If such changes of effective
connectivity are observed under the same conditions that we
observe behavioral interaction effects, it is reasonable to conclude
(1) that these changes indeed reflect a neural correlate of
interaction and (2) that unimodal areas are involved.

Family comparison results (see section “Materials and
Methods”) are shown in Figure 7, where black and colored
bars indicate the exceedance probability of model families,
respectively, without and with the arrow corresponding to the
model spaces of Figure 4. For example, the first plot in the top left
of Figure 7 corresponds to the condition where participants were
instructed to pay attention to face gender in our paradigm. Its left
side labeled “FFA- > TVA” illustrates the comparison (in terms
of how well they describe our data) between the “family” (i.e.,
ensemble) of models that includes the assumption of a change in
effective connectivity from FFA to TVA when face gender changes
(M03 and M04 in Figure 4B, red bar) and the family of models
that do not include this assumption (M01 and M02 in Figure 4B,
black bar). Exceedance probability in this case represents the
distribution of probabilities (e.g., 90 vs. 10%) for presence (red
bar) vs. absence (black bar) of the “FFA- > TVA” assumption,
given the data. Following previous work (Penny et al., 2010), we
used a probability of 0.9 as strong evidence in favor of a family
compared to the other but note that thresholds are less critical in
this context than in a frequentist framework.

The pattern of results is similar to that obtained from the
analyses of the psychophysical data. When subjects’ task was to
focus on the gender of the face, the interaction effect of gender
magnitude in the psychophysics experiments was mirrored by
strong evidence of effective connectivity from FFA to TVA in
response to face gender information (as opposed to gender-
neutral faces). A similar pattern was shown in the modulation
of effective connectivity from TVA to FFA in response to
voice gender information (as opposed to gender-neutral voices).
Similarly, there was an interaction of gender congruence in the
psychophysical results and also evidence for effective connectivity
modulation of FFA to TVA in response to incongruence of gender
between the face and the voice. Interestingly, in addition there
was evidence in favor of an absence of modulation (as opposed
to simply no evidence in favor) from TVA to FFA in response to
gender incongruence.

When the subjects’ task was to attend to the gender of
the voice, there was no gender magnitude interaction in the
psychophysical analyses and similarly no evidence for effective
connectivity modulation in response to gender. While there
was weak evidence for interaction of gender congruence in the
psychophysical analysis during the face task, likewise there was
weak evidence for effective connectivity modulation from FFA to
TVA in response to gender incongruence.

When subjects were focusing on the gender of the stimulus,
there was evidence of the gender magnitude interaction observed
in the psychophysical analyses, and similarly evidence for
modulation of the effective connectivity from FFA to TVA in
response to face gender information. There was no interaction of
gender congruence observed in the psychophysical experiments
and similarly no evidence of modulation of effective connectivity
in response to gender incongruence.

In summary, the results show that changes in effective
connectivity parallel the MLCM interaction effects. In addition,
both the gender magnitude and gender congruence interactions
should be considered as early cross-modal effects as described
in Figure 3 because they correspond to modulation of effective
connectivity between unimodal areas.

DISCUSSION

Perceptual integration of face and voice information is
distributed over a network of uni- and multimodal cortical
(and subcortical) areas (Belin, 2017; Grill-Spector et al., 2017;
Aglieri et al., 2018). While functional models of these processes
have stressed the role of direct links between unimodal areas,
there is extensive evidence from functional imagery for sites of
multimodal integration (Young et al., 2020), raising important
issues concerning the links between functional and neural
models of face and voice processing. One proposition is that
stable features, such as identity can be efficiently processed via
unimodal sites while more transient features, such as emotional
state, require higher order integration (Young et al., 2020). Here,
we studied gender perception, which can be considered a stable
feature and might usefully be viewed as a component of identity
processing. Consistent with the above hypothesis, we found both
behavioral and functional imaging evidence for cross-modal
effects involving unimodal areas. As described below, however,
we do not exclude a role for multimodal integration in the
perceptual decision process proper.

We find that the interaction of face and voice information in
gender perception can be described by a weighted combination
of contributions from each modality. Further, these weights are
modified by top–down influences, that is by prior instruction
to subjects to base their judgments on a particular modality or
on both. For example, instructing subjects to judge gender on
the basis of the face led to an average fivefold ratio of the face
to the voice contributions while instructing subjects to judge
gender on the basis of the voice yielded a nearly eightfold ratio
of the voice to face contributions. Thus, for the same stimulus
set, there is a 40-fold variation in weighting due to the difference
in attention, confirming that the weights are strongly influenced
by top–down processes.

The MLCM technique enabled us to quantify the specific
contributions of each modality. This quantification revealed that
functional dependence on the relative gender of the stimulus
of each modality’s response was invariant. In other words, the
shape of the curve describing each modality’s contribution did
not change with the top–down instruction, suggesting that the
contribution of each modality depended on early unimodal
pathways, and that the top–down effects could be described as
a simple re-weighting of an invariant function of each modality.
This result was not unexpected given that multimodal effects
have been reported as early as primary visual cortex (Petro
et al., 2017). Nevertheless, gender decisions could be attributed
to a multi-modal combination site because both modalities
contributed significantly to the decisions independently of the
task (Figures 3A,B). Such a re-weighting effect (as opposed
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to simply increasing the contribution of the relevant modality
without affecting the other) supports an optimal exploitation of
limited resources.

Comparing the top–down influences of the tasks, there
appears to be an auditory dominance. The auditory contribution
increases more in the voice task than the visual contribution
in the face task, and the visual contribution decreases more in
the voice task than does the auditory contribution in the face
task. Watson et al. (2013) observed the same asymmetry in a
gender identification task using a nearly identical stimulus set
in which they analyzed the probability of choosing one gender
[but see Latinus et al. (2010)]. One explanation for the auditory
dominance is that there is a greater sexual dimorphism in the
auditory than the visual domain for faces; female and male voices
differ significantly in fundamental frequency (Puts et al., 2011),
and in the stimulus set that we used the voices obviously change
in pitch when varying from female to male. Visual changes with
gender tend to be widely distributed across the face and are
perhaps more difficult to define (Macke and Wichmann, 2010).
With the current stimulus set, our subjective impression was
that gender differences appear to be related to the sharpness of
contours, which is in accordance with previous results linking
face gender perception and contrast (Russell, 2009). However, if
the differences in the sensory ranges between modalities were so
large, we might expect the auditory signals to dominate in the
stimulus task, which is not the case; instead both dimensions
contribute about equally. Additionally, the response range along
the d′ scale of the visual component in the face task is only

about one-third smaller than that for the auditory component
in the voice task. These observations suggest that integration
mechanisms are capable of adjusting modality specific weights to
compensate for differences in the range of input signals as has
been demonstrated in anomalous color vision (MacLeod, 2003;
Knoblauch et al., 2020; Tregillus et al., 2020).

The additive model provided a good overall account of
the data, predicting observers’ choices with on average 80%
accuracy across all conditions. However, small but significant
improvements were obtained by including specific interaction
effects related to the congruence of gender between modalities
and to the magnitude of the gender signal (i.e., differences
from neutral gender) within each modality. We simulated these
interaction effects in terms of contributions to decision noise
based on an optimal cue combination decision rule within a
signal detection model and found that simulated results agree
qualitatively with the estimates from the data (Supplementary
Section 2). According to these simulations, when the gender
information across modalities is inconsistent, the integration
process has an increased variance leading to a decision bias. For
the gender magnitude interaction, the closer the gender within a
given modality is to neutral, the larger the variance assigned to it,
which similarly leads to decisional biases.

The two interaction effects do not manifest under the same
conditions. Significance of the congruence interaction occurs
during the face and the voice tasks; significance of the gender
magnitude interaction occurs during the face and stimulus tasks.
One interpretation of the lack of significance of the congruence

FIGURE 7 | Results of family Bayesian Model Selection for all conditions, model spaces and partitions. (Top row) Modulations of effective connectivity by face/voice
gender information. (Bottom row) Modulations of effective connectivity by face/voice gender incongruence. (Left column) Modulations when subjects attend to
face gender; (Middle column) when they attend to voice gender; (Right column) when they attend to stimulus gender. Within each graph, left are the respective
exceedance probabilities for the family of models without modulation from FFA to TVA (black) versus the family of models with this modulation (red). Right are the
exceedance probabilities for the family of models without modulation from TVA to FFA (black) versus the family of models with this modulation (blue). Probability of
0.9 is indicated as a reference for what can be considered strong evidence in favor of a family.
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interaction during the stimulus task is that there is a stronger
prior applied in this task to assume that the gender cues from
face and voice are congruent, and thus, to base the judgments
only on the within modality differences, while ignoring the cross
modality conflicts. An alternate possibility is that congruence
depends on the task relevance of the modality, so that congruence
is ignored when both modalities are relevant. In the case of
the gender magnitude interaction, supposing that face gender is
more ambiguous than voice gender, for the reasons stated above,
observers may be more likely to be influenced by the gender
magnitude when the face is a relevant factor, i.e., in the face and
stimulus task, compared to when it is not as in the voice task.

These results led us to explore the effective connectivity
between cortical areas implicated in face and voice processing
for neural correlates of the interactions. Using an equivalent
face-voice gender categorization task with DCM, we found that
modulations of connectivity between the FFA and the TVA
mirrored the behavioral interaction effects, consistent with the
hypothesis that these effects do not exclusively depend on higher-
order multi-modal integration sites (Figure 3C).

Mirroring the conditions in which the congruence interaction
occurs, the effective connectivity from FFA to TVA was
modulated for the face and voice tasks. Such an effect is not
observed during the stimulus task, perhaps reflecting the reduced
weight assigned to the auditory component observed in the
psychophysical experiments and its minimized role in integration
in the presence of gender incongruence across modalities.

There was no impact on effective connectivity with changes
in gender magnitude from neutral during the voice task but
there was a modulation from FFA to TVA and from TVA to
FFA during the face task as well as a modulation from FFA
to TVA during the stimulus task. These findings parallel the
psychophysical results for the gender magnitude interaction,
which, also, was significant for the face and stimulus tasks
but not for the voice task. In the case of the stimulus task,
this might represent a mechanism generating a change in
weight in both modalities to equalize their contributions to
the judgments. Given the default auditory dominance described
above in the psychophysics, a similar explanation might apply in
the face task. We hypothesize that task-dependent reweighting
of the contributions of the modalities constitutes a behavioral
correlate of the task-dependent dynamic switching of inter-areal
hierarchical relations observed in macaques (Bastos et al., 2015).

The two interactions modeled in the psychophysical analyses
correspond to two types of discrepancies in the cues that must
be processed in order to make a gender judgment. In the
case of the congruence interaction, there is a conflict between
voice and face gender identity. On the other hand, the gender
magnitude interaction depends on the strength of the gender
signal and, thus, could be related to the precision of its encoding
(or lack thereof).

These differences could be related to the multiplicity of
feedback pathways (Markov et al., 2014) having distinct
functional roles (Markov and Kennedy, 2013; Roelfsema and de
Lange, 2016; Shipp, 2016; Bergmann et al., 2019).

One computational theory about the role of feedback signals
is that they contribute to the construction of generative models

of the outside world (Mumford, 1992; Rao and Ballard, 1999;
Friston, 2002, 2005). In this framework each processing step
is conceived as striving to predict its feedforward inputs based
on the feedback signals it receives. Predictions (which can be
interpreted as an internal representation) are transmitted to
lower levels via feedback signals, and prediction errors (which can
be interpreted as a function of model residuals) are transmitted
to upper levels via feedforward signals. In this context a conflict
in the integration of two signals would lead to an error signal
propagated from lower to higher areas. In this framework,
gender incongruence modulation in which there is an increase
in effective connectivity from FFA to TVA when face and voice
genders are different can be interpreted as an error signal.

Anatomically, the FFA and TVA belong to streams of two
different modalities, making their hierarchical relations indirect.
Support for the hypothesis that the TVA is hierarchically
higher than the FFA can be found in the macaque where
a face responsive patch comparable to the FFA is situated
in the TEpd area (Lafer-Sousa and Conway, 2013) and voice
responsive neurons that have been argued to form a TVA-
like patch (Perrodin et al., 2011; Belin et al., 2018) are
situated in the parabelt area. Analysis of anatomically derived
measures of hierarchy that are based on laminar connectivity
patterns (Markov et al., 2014) indicate that the TEpd is indeed
hierarchically lower than the parabelt area PBr.

Current studies indicate that feedforward and feedback
influences are mediated through distinct signaling channels
across the cortex (Bastos et al., 2015, 2018) and via laminar
connectivity, through distinct anatomical pathways (Markov
et al., 2014). A natural progression of the current work would be
to investigate the layer-specific modulations of the interactions
revealed here using high resolution, laminar resolution fMRI
(Lawrence et al., 2019), a method that has recently been used to
study visuo-auditory processes (Gau et al., 2020).

The present findings are paradoxical as they suggest that
unimodal top–down influences modulate the weight of visual and
auditory contributions in a simple gender perception task rather
than leading to a perceptual blending or integration of auditory
and visual responses, an issue that was previously suggested by
Clark (2013). Many previous studies have examined feedback on
early sensory areas, such as V1, with respect to low level stimulus
features encoded early in the hierarchy, such as orientation (De
Lange et al., 2018). For example, error signals can be generated
by manipulating the subject’s expectation of these features across
trials. Here, we studied a multi-modal gender perception task
in which error signals were generated by providing conflicting
information to one modality while subjects made decisions based
on information from a different modality, thus allowing us to
probe such interactions among higher order areas. The results
are relevant to current hypotheses on the generative role of
feedback pathways, which are speculated to relay expectations
and ensure inference of the causes of sensory stimulus (Rao and
Ballard, 1999; Bastos et al., 2015) and emphasize the generative
role of multiple feedback processes in cross-modal interactive
processes that are highly distributed at low levels of the cortical
hierarchy, coherent with the high-density of the cortical graph
(Vezoli et al., 2021).
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