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Organisms must cope with different risk/reward landscapes in their ecological niche.

Hence, species have evolved behavior and cognitive processes to optimally balance

approach and avoidance. Navigation through space, including taking detours, appears

also to be an essential element of consciousness. Such processes allow organisms to

negotiate predation risk and natural geometry that obstruct foraging. One aspect of

this is the ability to inhibit a direct approach toward a reward. Using an adaptation of

the well-known detour paradigm in comparative psychology, but in a virtual world, we

simulate how different neural configurations of inhibitive processes can yield behavior

that approximates characteristics of different species. Results from simulations may

help elucidate how evolutionary adaptation can shape inhibitive processing in particular

and behavioral selection in general. More specifically, results indicate that both the level

of inhibition that an organism can exert and the size of neural populations dedicated

to inhibition contribute to successful detour navigation. According to our results, both

factors help to facilitate detour behavior, but the latter (i.e., larger neural populations)

appears to specifically reduce behavioral variation.

Keywords: detour task, egocentric navigation, allocentric navigation, navigational strategy selection,

consciousness, inhibition

1. INTRODUCTION

Navigation through space, including taking detours, is an essential element of consciousness
(Klein and Barron, 2016; Mallatt et al., 2021). Therefore, exploring the basic mechanisms of these
behaviors contributes to the study of consciousness, even if the early steps in the evolution of
animal navigation were algorithmic-like and lacking in subjective consciousness like in the model
presented in this study. When an organism can no longer follow gradients but must use memory
and map-like cognitive structures to cope with an environment, that organism comes closer to
supporting a representation of space that is not centered on itself. That is, it supports allocentric
representations in addition to self-centered, or egocentric representations. The former affords to
see the self in relation to the environment, like being behind a tree or to the east of a river. The latter
affords direct movement like going forward or turning to the right.

Natural environments may require a diverse number of behavioral strategies to yield optimal
access to resources, while balancing safety and competition concerns. However, this variety can
often be condensed into two major types mentioned above; allocentric map-based navigation or
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egocentric direct approach (Bottini and Doeller, 2020). The
extent to which species are biased toward egocentric or
allocentric navigation is typically dependent on ecological factors
like food availability and the availability of sensory cues (Bruck
et al., 2017). Much work has been done to compare species with
regards to their ability to control the urge to directly approach
salient targets like food, mates, or social groups, and be able
to navigate around obstacles via detour paths (Kabadayi et al.,
2018). In psychology and ethology, this kind of behavior is
investigated using detour tasks. The idea of these experimental
tasks is that an animal cannot directly approach a target, but must
navigate or reach around a barrier first (As shown in Figure 1).
In the case of navigation tasks, there is usually defined a barrier
zone immediately in front of the barrier, and the time the animal
spends in this zone can be used to operationalize an experimental
measure of its inhibitory control, which is the ability to inhibit a
futile direct approach and then take a detour.

Kabadayi et al. (2018) review how detour tasks are used in
animal cognition. They enumerate the various configurations,
measurements, and animal species that have so far been
employed in this context. According to them, the behaviors of a
wide variety of families of species have been measured, including
apes (homo and hominoidae), monkeys (cercopithecoidae and
platyrrhini), lemuriforms (strepsirrhini), canids (canidae), equids
(equidae), birds (aves), reptiles (reptilia), amphibians (amphibia),
fish (pisces), molluscs (mollusca), and spiders (salticidae). Detour
tasks have also been used to elucidate the characteristics of several
cognitive capacities that include inhibitory control, insight
learning, memory, motor and cognitive development, functional
generalization, and social learning.

As mentioned, Kabadayi et al. (2018) enumerate several
configurations of the detour task. One of these is the V-shaped

FIGURE 1 | Configuration of the detour task used in experiments, to scale.

The barrier is semitransparent with vertical opaque stripes, and the agent is

placed facing the apex of the barrier. The diagram shows the goal in red, the

semitransparent barrier with transparent parts with dotted lines, the barrier

zone in gray, the agent in pink, and the surrounding border.

semitransparent configuration. This has been used to test social
learning, problem solving, and inhibitory control in several
canids such as dingos, dogs, and wolves, as well as mammals
like mice, and goats, and reptilians like tortoises. For mice, the
configuration is typically adapted to have a circular border and be
filled with water, while the goal is a platform that allows subjects
to escape from submersion. This is in contrast with e.g., canids,
where the goal is a reward like food or social interaction. Subjects
can either be placed inside the V barrier and having to move out
of it (outward task), or outside it, having tomove in (inward task).
Refer to Figure 1 for an example of the inward task which is used
in this study. The outward task is usually taken to be the more
challenging one as it typically requires subjects to move in the
opposite direction to the goal.

Focusing on inhibitory ability and behavioral control in
the inward, semitransparent V configuration of the detour
task, Marshall-Pescini et al. (2015) investigated how wolves
(Canis lupus) and dogs (Canis lupus familiaris) differ in this
configuration, seeking to test which species can exhibit better
inhibitory control. They found that wolves showed shorter
latency to reach the goal, and persevered for less time at the
barrier. However, dogs had the upper hand in the so-called
cylinder task where subjects are required to get at the reward
by gaining access through the opening of a cylinder. It is
notable that Bray et al. (2015) found that differences appear
to exist between dogs with different levels of excitability, or
temperament. Comparing calm and excitable dogs, their findings
indicate that calm dogs improved their success rate and apparent
inhibitory control with increasing arousal, while excitable dogs
performed poorer. Juszczak and Miller (2016) employed the V-
shaped detour task placed in shallow water to investigate detour
behavior in mice. Theymeasured time in the barrier zone in front
of the barrier, for both transparent and semitransparent barriers.
In their tests, the performance of the mice appeared to depend
both on individual inhibitory skills and experience with the task.
That is, they found that performance tended to improve over
time, and the mice spent less time in the barrier zone as they
gained experience.

The ability to change behavior and strategies for approach
as presented above is referred to as behavioral flexibility
(e.g., Coppens et al., 2010). As the animal studies explain,
behavioral flexibility is thought to involve inhibitory activity to
balance the influence both of learned behavior and approach
motivation toward salient reward stimuli in the immediate
environment. For humans, Uddin (2021) identified large-scale
functional brain networks encompassing lateral and orbital
frontoparietal, midcingulo-insular and frontostriatal regions that
support flexibility across the lifespan.

Spiers and Gilbert (2015) propose a conceptual model in
which the lateral prefrontal cortex (PFC) provides a prediction
error signal about the change in the path, the frontopolar and
superior PFC support the re-formulation of the route plan as
a novel subgoal and the hippocampus (HC) simulates the new
path. Similarly, the ventromedial (vm) PFCmaymediate between
the conflicting behavioral responses indicated by HC or caudate
systems when active (Doeller et al., 2008). The caudate nucleus is
involved in landmark-based, egocentric navigation, while HC is
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FIGURE 2 | Diagram showing model of strategy selection. Green circular objects represent neural populations that receive signals from perceptual modules. Neural

populations are simulated with different numbers of neural units, as described in the text. The red connection indicates inhibition, the level of which is varied between 0

and 1 in simulations. The “Barrier” population is excited by barriers or obstacles immediately in front of the agent, while the “Reward proximity” population is excited by

the width of red-colored objects in the visual field.

involved in boundary-based, allocentric navigation. According to
Piray et al. (2016), the strength of the vmPFC projection tomedial
striatum including the caudate nucleus, biases toward model-
centric choices. Model-centric strategies are typically associated
with allocentric navigation (Doeller et al., 2008). These circuits
for navigation present contingent behavioral sequences that can
be activated. Which of them will be chosen at any given time is
dependent on separate machinery, as explained below.

Neural competition is a cornerstone of many theories of brain
function, particularly for processes involved in selection and
decision making (Amari, 1977; Grossberg, 1978; Erlhagen and
Schöner, 2002). Leaky competing integrator models incorporate
aspects of both the psychological and neurophysiological models
(Usher and McClelland, 2001, 2004; Johnson and Ratcliff, 2014).
Relating to this, Smith (2015) shows that the precision of neural
populations increases with the number of participating neural
units. In the experiments presented in their study, they used units
designed to behave according to an idealized Poisson process,
having an exponentially decreasing probability of activity after
a stimulus. In the context of visual short term memory, they
showed in particular that the signal-to-noise ratio (i.e., the
precision) increases proportionally to the square root of the
neuronal population size. They also showed that normalization of
inputs can be achieved by shunting inhibition, which in practice
allows fractional scaling of inputs without losing temporal
signatures of signals (Prescott and De Koninck, 2003). According
to them, their population-size-dependent normalization model
allows theoretical models of reaction time and decision accuracy
to be reconciled with experimental data.

Earlier we focused on arousal levels in the context of
the noradrenergic system (Balkenius et al., 2018), and found
that neural gain in the form of noradrenergic activation may
contribute to switching between explorative and exploitative
behavioral strategies by e.g., varying the amount of noise
present in the selection process. In this study, we concentrate
on the effect of varying the size of neural populations,
and how that affects precision and integration of sensory
information. Additionally, we explore how inhibitive efficacy and
precision individually and together can contribute to behavioral
strategy selection. Finally, we compare our results with data
from experiments on animal species, specifically mice, dogs,
and wolves.

2. METHOD

In this section, we explain the rationale behind the model, its
properties, and how in particular it is implemented.

2.1. Properties of the Model
To allow selection between the two strategies of egocentric direct
approach and allocentric detour, we appropriated a hypothesized
network proposed by Barker and Baier (2015). This was originally
suggested as a model of approach and avoidance behavior in fish.
But given appropriate input signals, it can be used as a winner-
takes-all network to select between strategies for approach.
In particular, we added one-way inhibition between barrier-
collision signals to the neural units representing egocentric
strategy. This modified network architecture (as shown in
Figure 2 for a diagram) is informed by work on the spatial
pathway from the parietal cortex to vmPFC (Kravitz et al.,
2011) that includes boundary sensitive cells in the subiculum
(Epstein et al., 2017), and projections from vmPFC to the
subthalamic nucleus that can inhibit impulsive behavior (Eagle
and Baunez, 2010). The variation of population size and
inhibitive strength is likewise informed by Smith (2015) and Piray
et al. (2016), respectively.

The spiking model used for the neural elements is as defined
by Izhikevich (2003):

dv

dt
= 0.04v2 + 5v+ 140− u+ I (1)

du

dt
= a(bv− u) (2)

v =

{

c, if v = 30mV

v, otherwise
(3)

u =

{

u+ d, if v = 30mV

u, otherwise
(4)

In this study, Equations (1, 2) define pre-spike behavior, while
Equations (3, 4) define the reset behavior after a spike. In
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TABLE 1 | Numerical values used for simulation.

Parameter Value

a 0.02

b 0.2

c –65.0 + 15 γ 2

d 8–6 γ 2

ω 0.024

ǫ 0.1

λ 0.9

τ 1

Parameters, a, b, c, and d are used for the simulation of spiking units. γ is a noise term

between 0 and 1 used to slightly randomize spiking units, as described in Izhikevich (2003).

ω, ǫ, λ, and τ are used for the leaky integrator.

Equation (1), I is for direct input current; v is the voltage potential
of the unit, and u is a negative feedback variable to v accounting
for positive ionic currents. Refer to Table 1 for parameter values
for a, b, c, and d; these values are in accordance with “regular
firing” units as defined in Izhikevich (2003).

The formula for the leaky integrator is given by:

yt+1 = e(x− (1− l)yt) (5)

where y is the value of the integrator, e is the growth or decay
factor (as shown below), x is the input, and l is the leakage factor
that affects accumulation. These are defined as follows:

e =

{

ω, if x < τ

ǫ, otherwise
(6)

l =

{

0, if x < τ

λ, otherwise
(7)

Equations (6, 7) define the behavior of the integrator when
the input is less than the decay threshold τ . At this point, the
integrator begins leaking, or decaying in value, and the value of
e changes from ǫ to ω. Refer to Table 1 for numerical values for
these parameters.

2.2. Implementation
The neural simulation model was implemented using the
Processing framework v.3.5.3 (Reas and Fry, 2007) with the
pOSC library v.0.9.9, while the agent and environment were
implemented in the Unity game engine v.3.5. Refer to Figure 1

for task configuration in Unity. The neural simulation and the
agent world were connected using the Open Sound Control
(OSC) protocol (Wright and Freed, 1997). In this way, the
agent sends out sensory signals while the neural simulation
processes these signals, and computes a motor response that is
transmitted back and executed by the agent. This back-and-forth
communication happens continuously and asynchronously. The
set of signals is described in Table 2.

The simulation supports two-approach strategies; egocentric
direct approach and allocentric approach using a map. The

TABLE 2 | List of OSC messages used to communicate state of agent in

simulated environment.

Signal Description

/camera_r Red channel from camera

/depth/camera Depth rendering from camera

/borders The position and size of the border walls

/obstacles The position and size of the obstacles

/goals The position and size of the goal

/agents The position and size of the agent

/config An int denoting the current task configuration

/camera/rotation The relative camera rotation since last step

/camera/absrotation The absolute camera rotation

/ready A signal telling the neural simulation that agent

is in the initial position and can receive motor

commands

/barrierareas The position and size of the barrier areas

former is implemented by slicing a vector of pixels from the color
channels of the cameras, then using pixels from the green and
blue channels to remove anything but the purely red pixels in
the vector from the red channel. The red pixels are counted, and
their center point is calculated. Together, this yields a weighted
homing signal that can be used for a direct approach such that
the sensor information and the motor signals together form a
feedback control circuit.

The allocentric map navigation is based on the classical
wavefront algorithm (WFA) (Dijkstra, 1959).To facilitate the
building of wavefront maps, the agent world sends bounding
boxes of all necessary borders, obstacles, and goals, as well
as the position of the agent itself. These bounding boxes are
used to render a matrix of binary values, making up a map
of the environment that can be used by the WFA. The WFA
then calculates a gradient from the goal to the agent at every
simulation step (to tell if it is getting closer), which gives the agent
a direction to move in. This enables the agent to take detours
around the obstacles.

As a source of bias for the allocentric strategy, we sliced a
vector from the middle of the depth texture from the camera, and
transformed it into a two-dimensional matrix. The four topmost
rows of this matrix then represent obstacles at various distances
from the agent. The rows were weighted and summed up, and the
resulting sumwas used as a direct input to the spiking population
named “Barrier” in Figure 2. The spatial pixel density, thus,
forms a kind of receptive field similar to those associated with
boundary and obstacle cells in medial temporal areas (Epstein
et al., 2017; Poulter et al., 2018). Similarly, the aforementioned
sum of red pixels taken from the color camera was used as
direct input to the parallel spiking population named “Reward
proximity” in Figure 2. These populations were connected to
populations representing either the allocentric strategy or the
direct approach strategy, with the output of the obstacle bias
also connected to the direct approach unit via an adjustable
inhibitory weight. Again, refer to Figure 2 for a diagram of the
network. The output of the two strategy units was connected to

Frontiers in Systems Neuroscience | www.frontiersin.org 4 November 2021 | Volume 15 | Article 752219

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Tjøstheim et al. Direct Approach or Detour

TABLE 3 | Summary statistics for simulations with varying population size and inhibition level, listing summary statistics including mean with SD, median with interquartile

range (IQR), as well as minimum and maximum values.

Population size Inhibition Mean SD Median IQR Min Max

1 0.00 26.39 31.03 12.40 8.42 7.40 110.90

1 0.10 11.44 7.82 9.25 5.83 5.50 35.60

1 0.20 15.59 19.95 5.95 4.20 4.40 70.90

1 0.40 10.36 8.34 6.85 5.40 4.30 33.70

1 0.60 5.82 1.49 5.70 1.50 2.20 8.20

1 0.80 5.77 3.88 4.85 0.65 3.20 17.60

1 1.00 5.28 2.19 4.50 1.80 2.10 11.30

2 0.00 15.16 17.91 7.35 4.95 5.80 71.70

2 0.10 6.65 3.21 6.00 0.70 4.80 17.70

2 0.20 11.04 20.32 5.30 0.88 4.60 81.50

2 0.40 7.08 7.46 4.85 1.32 4.10 32.70

2 0.60 10.10 11.62 5.80 3.88 3.70 47.40

2 0.80 6.39 3.64 5.10 1.95 3.70 17.80

2 1.00 5.00 0.99 4.90 1.40 3.60 6.90

5 0.00 13.67 16.34 7.10 2.20 2.40 54.70

5 0.10 5.32 1.02 5.70 1.67 3.30 6.60

5 0.20 5.06 1.83 5.05 0.75 2.00 9.60

5 0.40 4.43 1.46 4.40 0.80 3.00 8.70

5 0.60 9.07 15.84 4.20 1.50 2.10 61.40

5 0.80 7.06 7.94 4.65 1.85 2.10 32.40

5 1.00 5.12 1.76 5.30 1.63 2.00 8.20

10 0.00 9.94 7.17 7.20 3.50 5.30 32.30

10 0.10 5.63 0.64 5.70 1.02 4.70 6.50

10 0.20 5.36 1.32 5.05 0.88 4.00 9.50

10 0.40 5.19 1.11 4.90 0.45 4.00 7.90

10 0.60 4.58 1.32 4.45 1.15 3.00 8.60

10 0.80 4.28 1.12 4.25 1.20 2.80 7.30

10 1.00 3.96 1.12 4.25 1.22 1.20 5.30

leaky integrator units to be able to transform the spiking trains
to scalars suitable for identifying the index of the channel with
the largest value (argmax selection). This index was then used
to select the winning motor commands for transmission to the
agent motor system.

During experiments, the level of inhibitory weight was
controlled and set to progressively be from zero to one (refer
to Table 3). The agent was given a starting point in view of the
target (refer to Figure 1), then left to find its way. The maximum
number of steps was set to 1,200, and the simulation was run at
10 Hz, giving a maximum time of 120 s. This makes it possible
to compare times in seconds with animal experiments (120 s
was also the maximum time limit used for dogs and wolves
in Bray et al., 2015). A successful approach to the target was
defined as the agent coming within a set radius (5 world units)
of the center of the target. After reaching the goal, or the time
limit being exceeded, the simulation was reset, parameters for the
spiking units were slightly randomized (refer to Table 1), and the
agent returned to its initial position. Fifteen trials like this were
carried out for each inhibitory weight and neuron population size
pair. The information gathered from each trial is given again in
Table 3, and the data was then used to produce statistics.

The statistics was done using Jupyter notebook software
(Kluyver et al., 2016), the python programming language
(Van Rossum and Drake, 1995), and the Pandas (McKinney,
2010), Seaborn (Waskom, 2021), numpy (Harris et al., 2020), and
scipy (Virtanen et al., 2020) libraries.

To calculate the mean and SD of time in the barrier
for the animals in Figure 4, we used published data from
Marshall-Pescini et al. (2015) for dogs and wolves, and Juszczak
and Miller (2016) for mice. Our model does not support
learning, hence we calculated statistics only for the subset
of data that was recorded at the first trial to minimize the
effects of learning and experience. Where different barrier
configurations were used, we chose only data from the
inward-V configuration.

3. RESULTS

In this section, we show results suggesting that increasing
the population size of spiking neurons in the neural network
generally reduces behavioral variability of the agent, while
increasing the weight of inhibition tends to reduce waiting

Frontiers in Systems Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 752219

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Tjøstheim et al. Direct Approach or Detour

FIGURE 3 | The plot of log10 median time with 95% confidence interval in barrier zone for different simulation configurations. Actual times are indicated by the pale

blue and pink dots. (A) Simulated neuronal populations each consist of a single neuron. Zero inhibition level yields the highest variance and highest median time in the

barrier zone, an while inhibition level of 1 gives the lowest median barrier time. (B) Neuronal populations consist of two neurons, (C) shows with five neurons, and

(D) shows with 10 neurons per population. Barrier times and variation generally trend downwards with an increasing number of neurons. Note that median is used

instead of mean in these graphs to better accommodate the asymmetric density of the recorded data.

time in the barrier zone. Both of these factors work together
to consistently favor the allocentric navigation strategy upon
detection of a barrier.

Figure 3 shows barrier wait times for the simulated agents,
grouped by inhibition level and the size of the involved neuronal
populations. The general trend displayed by this figure is that
time in the barrier reduces as the size of the neuronal population
grows. Similarly, the variance as indicated by SD reduces. Within
a group of the same population sizes, there is an analogous trend
of barrier time reduction as inhibition level increases, going from
a median of 12.4 (mean = 26.39, SD = 31.03) at zero inhibition
and a single neuron per population, to a median of 4.5 (mean
= 5.28, SD = 2.19) at inhibition level of one. At the other end
of the scale, with 10 neurons per population, the median at zero
inhibition is 7.2 (mean = 9.94, SD = 7.17), and 4.25 (mean = 3.96.
SD = 1.12) at inhibition of one. It is also noticeable that between
the extreme points, both barrier time and variation jump around
somewhat for all population sizes except the maximum 10. In this
study, the reduction in barrier time is monotonic (as shown in
Table 3).

Figure 4 shows a scatter plot of mean barrier time vs. SD (i.e.,
variability). Both animal and simulation data are shown, allowing
the animal data to be related to the simulations. Qualitatively,
mice spend the least time in the barrier zone and have the least
variance, followed by wolves, and with dogs having both the
longest time in the barrier, as well as the most variance. Dogs
also differ most from the simulated data, spending longer time
in the barrier.

4. DISCUSSION

In this final section, we first look at possible explanations for the
somewhat surprising position of mouse data on our comparative
plot and identify stress as one plausible factor. After that, we turn
to the role of inhibition in behavior selection, how the ability to
make use of allocentric navigation strategies is an elemental part
of consciousness, and how inhibition could be of different use
to predator and prey species. We then move to some indications
that neural population numbers might not automatically predict
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FIGURE 4 | Plot of mean vs. SD for time in barrier zone for different species

and simulations. Both the simulation and the animal data appear to be

approximately linear. For the three animals, dogs are at the top end of barrier

time and variability, and mice at the other extreme. Reducing inhibition yields

longer mean time in barrier, while reducing population size increases variability

in the form of higher SD. Due to the somewhat stochastic nature of spiking

networks, the simulation data naturally displays the noisiness of Figure 3.

inhibitive capabilities and discuss how our results might inform
findings from animal experiments.

Comparison of behavior between species requires careful
controls to take into account differences in anatomy, body
structure, and sensory adaptations. Larger bodies tend to require
larger brains to control them, and hence direct comparisons
of neural numbers are less useful than neural numbers relative
to body volume or weight. Another difference between species
that can confound comparisons is their dependence on chemical
sensation or olfaction. Species for which olfaction is less
important are termed microsmatic, while those that depend to a
large degree on olfaction are termed macrosmatic (Santacà et al.,
2019a,b). Mice, dogs, and wolves are, hence macrosmatic, while
e.g., guppies are considered microsmatic (Santacà et al., 2019a).

One of the interesting inferences one might draw from our
results is that mice appear to have more inhibitive powers and
larger neuronal populations than do dogs and wolves. One
could infer this because mice spend less time at the barrier
and more time detouring, so in Figure 4 they group with
the high-inhibition and large-population points. This inference,
however, is unlikely to be the actual case. Instead, the reason
why mice move out of the barrier zone quickly rather than
staying like dogs and wolves could be due to the different
experimental designs. Mice are averse to being immersed in
water, which is a stressor, and they seek the relief of the above-
water platform. This means that the mice engage in escape
behavior, or avoidance from an aversive stimulus instead of
an approach to a rewarding one, as do dogs and wolves.
Furthermore, mice are typically aversive to moving into open
spaces, which likely also contributes to them spending less time
in the barrier zone (e.g., Bailey and Crawley, 2009). According

to Schwabe et al. (2010), mice that were subjected to stress
preferred an egocentric strategy more often than an allocentric
one. Hence, it would be expected that once a goal is detected,
they would engage in a direct approach to that goal and, thus,
be likely to persevere at the barrier. But the submerged mice
in the detour experiments used the allocentric strategy instead.
This demands some further explanation: approach and avoidance
activate different behavioral pathways in the brain (Namboodiri
et al., 2016), where the avoidance pathways are typically less
focused on one particular goal-site and instead result in a kind
of “anywhere but here” escape behavior (Gray, 1982; Graeff,
1994). In such panic behavior, animals are even prone to crashing
into obstacles in an effort to get away. Gray (1982) argues
that the mammalian defense system is hierarchical, with the
undirected escape system as the most basic one, and which is
active at the most acute level of stress. At lower arousal levels
with no stress or panic, the behavioral hierarchy allows goal-
directed escape. Some support for this hypothesis might come
from Juszczak and Stryjek (2019). They found that administering
scopolamine to mice tended to increase perseverance behavior
and time in the barrier zone. Given that scopolamine inhibits
cholinergic activity by antagonistically binding to muscarinic
receptors (Birdsall et al., 1978), and that the cholinergic system
contributes to the level of arousal, e.g., in fight or flight behavior
(Skinner et al., 2004), one interpretation is that the lowered
arousal level induced by scopolamine reduces escape motivation
enough that the water-stress configuration used formice becomes
more similar to the approach to reward configuration used for
other species; i.e., allowing more decision time at the barrier and
more time variance in making the decision to detour. Together
these factors might explain the surprising position of mice in
Figure 4.

Figure 4 shows an approximately linear relationship between
mean barrier delay and its variance: more neurons correlate with
more inhibition and less delay in successfully choosing to detour.
This is in agreement with findings from the animal cognition
literature that brain size and neuronal density tend to accompany
success rate in tasks that require inhibition (Herculano-Houzel,
2017). Hence, biological neural population numbers can be
compared at least relatively to simulated population sizes. This
yields the prediction that unstressed mice should display more
behavioral variability than dogs in an approach oriented version
of the semitransparent V-shaped detour task (i.e., mice in a
food-seeking version on dry ground).

Escape behaviors can be automatic, or stimulus-response
processes in animals. Such processes are generally believed
to be less reliant on consciousness than those necessary for
making detours. Consciousness seems to depend on back-and-
forth (recurrent) communication between neurons and on the
resultant rhythmic synchronization and resonance (e.g., Engel
and Singer, 2001; Meador et al., 2002; Engel and Fries, 2016).
However, in our model, there are no recurrent connections,
and neural populations are not synchronized with rhythmic
inhibition. Additionally, as described above, the simulated
populations have randomized parameters to explicitly increase
activation variance. Hence, there is no direct correlation between
neural population activity, and populations are not synchronized.
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Therefore, the model indicates that synchronizing populations is
not necessary to achieve useful signal integration for behavioral
strategy selection in navigation.

Behavioral selection without subjective consciousness also
appears to be possible through subcortical pathways to the
amygdala. These pathways are held to be evolutionarily older
than cortical pathways and are found in both fish and reptiles,
as well as mammals (McHaffie et al., 2005). For vision, one
such pathway projects from the retina, via the brainstem
superior colliculus and the thalamic pulvinar nucleus, to the
amygdala. This pathway is generally assumed to be responsible
for phenomena like blindsight, where people with cortical
blindness can still guess the position of objects in their near
environment. In particular, signals indicating dangerous stimuli,
like the presence of snakes and spiders (and angry faces), are
mediated via this pathway to the amygdala, which can then
engage defensive behaviors. Furthermore, it appears that even
routine, non-escape behavior like touching the position of a
light signal may be supported by subcortical pathways, without
requiring conscious perception. This is evidenced by studies on
monkeys (Cowey and Stoerig, 1997).

How could we go from a simple, nonconscious allocentric
navigation strategy (Figure 2) to one that uses consciousness?
Merker (2007) argues that consciousness functionally can be
understood via a “tripartite” division into (i) target selection
(ii) action selection, and (iii) motivational ranking. Although
these functions may operate on their own, they typically interact
such that motivational ranking can influence target selection,
which again can influence the selection of actions. Merker (2007)
further argues that these functions need to operate in real
time, and that they are integrated via a form of simulation. It
is this simulation process that effectively constitutes conscious
experience. Both target and action selection processes are related
to spatial cognition and allow an animal to cope with spatially
distributed resources, e.g., that shelter, food, and mates are not
all found in the same place. As mentioned above, allocentric
maps particularly support navigation to targets that are not
directly approachable, or even in the direct vicinity. Hence, a
system that allows an animal to be conscious of resource-place
associations that are spread out potentially provides evolutionary
benefits. Klein and Barron (2016) argue that insect brains may
be capable of subjective consciousness since in the proposal of
Merker (2007), this is mediated by evolutionary old, subcortical
structures like the midbrain and the basal ganglia, and insects
have structures that are functionally analogous to these. Similarly,
the apparent lack of sufficient spatial perception or sensing in
plants is used as a an argument by Mallatt et al. (2021) against
plants having consciousness.

Carnivorous predator species and herbivorous prey species
have adapted different usage for behavioral inhibition. Whereas,
predators could benefit from inhibiting direct approach to prey
to avoid detection (Hasson, 1991; Radford et al., 2020), a prey
species may use inhibition to stop an approach to potential
danger, as well as to “play dead” to reduce attack motivation in
a predator (e.g., Gallup et al., 1971). In the case of predators,
the perception of an eye pattern in the prey can indicate that
the prey is turned in the direction of the predator; this can

induce behavioral freeze and change the motivation from a
direct approach to detour behavior. This would correspond to
the perception of a barrier in our model, and the consequent
switch to an allocentric navigation strategy. Similarly, the
eyes of predators tend to be front-facing, which is useful for
estimating distance (Detwiler, 1955). Prey species, on the other
hand, often have side facing eyes since it facilitates surveying
larger surrounding areas and hence the detection of potential
predators. Although predator and prey speciesmay use inhibition
differently to adaptively control behavior, what exactly mediates
inhibitory capability in different species is still not completely
understood. We turn to this issue next. We have argued above
that larger populations of neurons can confer increased precision,
but that inhibitive efficacy is not fully dependent on population
size. Kabadayi et al. (2017) explored the hypothesis that neuronal
population size in the avian pallium might predict success rates
on the cylinder task. Given that ravens are very adept at this
task, and ravens have a densely populated pallium, they sought
to investigate whether other birds with similarly high neural
densities perform equally well. Parrots are birds that, like ravens,
have comparatively dense palliums. Using parrots as subjects,
they did not find evidence for a positive relationship between
population size and success on the cylinder task. The parrots
performed much poorer than did ravens. The authors interpret
these results in two ways. Either that inhibition might not be
correlated with pallial neuron count, or that the cylinder task
does not measure motor inhibition. Our results lend support to
the former of these interpretations (neuron number does not
matter in this study) but with a slight twist, namely that there
may be differences in inhibitive populations that are independent
of total population size but that affect inhibitive efficacy.

Moving from birds to arthropods, Long (2021) compared
brain sizes of different spider species and classified the spiders
into four groups, where the first group had the smallest brain and
the fourth group the largest. Interestingly, a species belonging to
the first group, the spitting spider Scytodes pallidus, is hunted by
a species of the fourth group, the jumping spider Portia labiata.
Notably, P. labiata sometimes changes its hunting strategy
depending on whether its prey is a male or female, and whether
the female is carrying eggs (Jackson et al., 2002). An egg-carrying
female is apparently less dangerous since it must drop its egg to
spit. In this case, P. labiata makes use of faster, direct-approach
strategies. But when hunting a female without eggs, P. labiata
instead takes longer detours, to attack from behind. This more
complex behavior might only be possible due to the larger and
more complex brain of Portia.

In summary, we have presented a model of navigational
strategy selection that shows how a direct approach vs. detour
might be influenced by the interplay of both neuronal population
size and inhibitive efficacy. The former appears to confer
precision that improves signal integration, while the latter
facilitates the suppression of direct approach strategies and
the usage of allocentric navigation around obstacles. Together
both processes contribute to behavioral flexibility in navigating
complex environments. Comparing the results presented in
this study with data from animal experiences may elucidate
differences in inhibitive capabilities in various species.
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The work presented in this study opens up several new
avenues of exploration and complements earlier simulation work
we have presented on awareness (Balkenius et al., 2018) and
memory (Balkenius et al., 2020). Combining the present study
with the former might further elucidate processes of arousal and
how they might affect navigation and behavioral selection in the
context of making detours. The latter work on episodic memory
and decision making offer exciting opportunities for exploring
path-learning and how an agent might react when such paths
are changed. In the animal cognition literature, the mechanism
by which animals are able to take advantage of shortcuts is an
example of this that is of particular interest.
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