
ORIGINAL RESEARCH
published: 09 December 2021

doi: 10.3389/fnsys.2021.752320

Edited by:

Florian Ph.S. Fischmeister,
University of Graz, Austria

Reviewed by:
Janina Seubert,

Karolinska Institutet (KI), Sweden
Kathrin Kollndorfer,

Medical University of Vienna, Austria

*Correspondence:
Torben Noto

torben.noto@gmail.com

Received: 02 August 2021
Accepted: 08 November 2021
Published: 09 December 2021

Citation:
Noto T, Zhou G, Yang Q, Lane G and

Zelano C (2021) Human Primary
Olfactory Amygdala Subregions Form

Distinct Functional Networks,
Suggesting Distinct Olfactory

Functions.
Front. Syst. Neurosci. 15:752320.
doi: 10.3389/fnsys.2021.752320

Human Primary Olfactory Amygdala
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Three subregions of the amygdala receive monosynaptic projections from the olfactory
bulb, making them part of the primary olfactory cortex. These primary olfactory areas
are located at the anterior-medial aspect of the amygdala and include the medial
amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The
vast majority of research on the amygdala has focused on the larger basolateral and
basomedial subregions, which are known to be involved in implicit learning, threat
responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC,
with most conducted in rodents. Therefore, our understanding of the functions of these
amygdala subregions is limited, particularly in humans. Here, we first conducted a review
of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and
unbiased k-means clustering techniques to show that the anatomical boundaries of
human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting
connectivity patterns alone, suggesting that their functional networks are distinct, relative
both to each other and to the amygdala subregions that do not receive input from
the olfactory bulb. Finally, considering that distinct functional networks are suggestive
of distinct functions, we examined the whole-brain resting network of each subregion
and speculated on potential roles that each region may play in olfactory processing.
Based on these analyses, we speculate that the MeA could potentially be involved in the
generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly
in approach/avoid contexts. The CoA could potentially be involved in olfactory-related
reward processing, including learning and memory of approach/avoid responses. The
PAC could potentially be involved in the multisensory integration of olfactory information
with other sensory systems. These speculations can be used to form the basis of
future studies aimed at clarifying the olfactory functions of these under-studied primary
olfactory areas.
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INTRODUCTION

After being sampled from the air by olfactory sensory neurons
in the nose and synapsing through olfactory bulb glomeruli,
olfactory stimuli undergo parallel processing in the brain,
through at least six cortical regions, all of which receive direct,
monosynaptic projections from the olfactory bulb (Carmichael
et al., 1994; Lane et al., 2020). These regions, which include parts
of the amygdala, comprise the primary olfactory cortex (Price,
1990, 2009; Wilson and Sullivan, 2003; Illig and Wilson, 2009
Gottfried, 2010; Mainland et al., 2014; Vaughan and Jackson,
2014; Ennis et al., 2015; Porada et al., 2019). Roughly a third
of the neurons in the human primary olfactory cortex are in
the amygdala (Allison, 1954), located within three subregions:
the medial amygdala (MeA), the cortical amygdala (CoA), and
the periamygdaloid complex (PAC) (Figure 1) (Allison, 1954;
Nieuwenhuys et al., 2008; Marino et al., 2016; Weiss et al.,
2021). These three amygdala subregions are poorly understood in
humans. In order to explore these subregions in the human brain,
this manuscript has been divided into two sections. In the first
section, we reviewed the existing literature on the MeA, CoA, and
PAC, comprised mostly of rodent work. In the second section,
we used resting-state fMRI and unbiased k-means clustering
techniques to show that the anatomical boundaries of human
MeA, CoA, and PAC can be accurately parcellated based on their
whole-brain resting connectivity patterns alone, suggesting that
their functional networks are distinct, relative both to each other
and to the amygdala subregions that do not receive input from
the olfactory bulb. Further, considering that distinct functional
networks are suggestive of distinct functions, we examined the
whole-brain resting network of each subregion and speculated
on potential specific roles that each region may play in olfactory
processing.

In order to make this manuscript easier to read, we use the
shorthand ‘‘olfactory amygdala’’ to refer collectively to the MeA,
CoA, and PAC. The use of this shorthand is intended to minimize
the need to list all three regions every time they are mentioned,
and to reflect the fact that these are the only regions of the human
amygdala that receive direct bulbar input. However, this term is
not intended to imply that these regions are exclusively olfactory:
in fact, they likely perform functions beyond olfaction, which
remain unknown. We want to emphasize that while we focus
our interpretations and framing on olfactory-guided behaviors,
our findings do not show that the functions of these regions are
olfactory in nature. The networks we identify may provide insight
for future studies into the role of these areas in both olfactory and
non-olfactory functions.

SECTION 1: LITERATURE REVIEW OF THE
MeA, CoA, AND PAC

The amygdala consists of a collection of subregions, located
in the anterior-medial temporal lobes. These subregions are
distinct from each other, characterized by different cell types and
connectivity (Swanson and Petrovich, 1998; Benarroch, 2015).
Circuits through the amygdala are involved in a wide range of

FIGURE 1 | Human brain atlas with subregions of the amygdala labeled.
Subregions that receive olfactory bulb input are labeled in red; others are
labeled in black. Olfactory subregions include the medial amygdala (MeA),
cortical amygdala (CoA), and the periamygdaloid complex (PAC). Other
amygdala subregions listed for reference: the lateral amygdala (LA),
ventromedial part of the basolateral amygdala (BLVM), basomedial amygdala
(BM), central amygdala (Ce), and the dorsolateral part of the lateral amygdala
(LaDL) (adapted from Mai et al., 2015).

cognitive processes including face perception, implicit learning,
and threat responses (Ressler, 2010; Benarroch, 2015). Much
progress has been made in understanding some subregions and
their corresponding behavioral circuitry (i.e., the basomedial
nucleus and fear learning; Adhikari et al., 2015). However, the
functional roles of some subregions remain unclear, and in
particular, those which receive monosynaptic projections from
the olfactory bulb are under-studied.

The anatomical organization of olfactory input to the
amygdala is phylogenetically variable, suiting the specific needs
of different species (Ubeda-Bañon et al., 2011; Abellán et al.,
2013). In rodents, much of the olfactory input to the amygdala
comes from the accessory olfactory system, which humans
and other old-world primates lack (McDonald, 1998; Ubeda-
Bañon et al., 2011). The rodent accessory olfactory bulb includes
direct projections to the MeA and CoA (McDonald, 1998).
The rodent main olfactory bulb also sends direct projections
to amygdalar subregions, including the CoA (Sosulski et al.,
2011), PAC (McDonald, 1998), and to a lesser extent, the MeA
(Keshavarzi et al., 2015; Guthman and Vera, 2016). Both the main
and accessory olfactory systems participate in chemosensory-
guided social and pheromonal behaviors in rodents (Pardo-
Bellver et al., 2017). In humans, the olfactory bulb projects
directly to the MeA, CoA, and PAC (Crosby and Humphrey,
1941; Allison, 1954; Pereira et al., 2005). This organization of
human olfactory bulb input to the amygdala is distinct from
other primates including macaques, where the main olfactory
bulb innervates only the PAC and CoA (Turner et al., 1978;
Carmichael et al., 1994). While substantial inter-species overlap
in olfactory connectivity to amygdalar subregions suggests some
preservation of anatomical and functional organization, inter-
species differences highlight the need for direct experimental
evidence in humans (Abellán et al., 2013; Lane et al., 2020).

The Medial Amygdala
The human MeA is situated anterior-medial to the central
nucleus in the anterior-dorsal part of the amygdala (Sorvari
et al., 1996; Schumann and Amaral, 2005), not to be confused
with the basomedial amygdala, or the medial aspect of the
amygdala (Figure 1). Most of our knowledge of the MeA comes
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from rodent work, which has shown that it is involved in a
wide range of social behaviors (Lehman et al., 1980; Haller,
2018), and is a major constituent of the accessory olfactory
system, receiving the bulk of monosynaptic projections from the
accessory olfactory bulb (Mohedano-Moriano et al., 2007; Pro-
Sistiaga et al., 2007). Within the accessory olfactory system, the
MeA plays an important role in processing pheromonal signals
and differentiating olfactory social cues including those that carry
meaning about sex, age, and danger status (Bergan et al., 2014; Li
et al., 2017; Yao et al., 2017; Lee et al., 2021). Social behaviors
in rodents are strongly impacted by the main olfactory system
(Keshavarzi et al., 2015; Pardo-Bellver et al., 2017), so it is likely
that the MeA is involved in the processing of social cues that are
encountered through the main olfactory system as well.

In rodents, the MeA is a multisensory area that receives
cortically-processed sensory input from visual and auditory
modalities (Mosher et al., 2010). The MeA is also involved
in generating socially-guided behavioral outputs, including
expression of aggression (Kemble et al., 1984; Blanchard and
Takahashi, 1988; Newman, 1999; Veening et al., 2005; Lin et al.,
2011; Hong et al., 2014; Padilla et al., 2016; Miller et al., 2019;
Nordman and Li, 2020), mating behaviors (Rajendren and Moss,
1993; Kondo and Arai, 1995; Lin et al., 2011; DiBenedictis et al.,
2012; Ishii et al., 2017), parenting behaviors (Fleming et al., 1980;
Numan et al., 1993; Sheehan et al., 2001; Tachikawa et al., 2013;
Isogai et al., 2018; Chen et al., 2019; Trouillet et al., 2019), social
recognition memory (Ferguson et al., 2001; Gur et al., 2014;
Shemesh et al., 2016), self-grooming (Hong et al., 2014), and
interspecies defensive behaviors (Choi et al., 2005; Ishii et al.,
2017; Li et al., 2017; Miller et al., 2019).

The MeA also plays a critical role in rodent approach-
avoidance conflict behavior, both olfactory and non-olfactory
mediated. For example, excitotoxic lesioning of the MeA
reduces defensive behavior in rats during exposure to a live
cat and increases exploratory locomotion (Martinez et al.,
2011). Exposure to innate threat stimuli, such as predator
odorants and intruder conspecifics, induces Fos expression in the
MeA (Kollack-Walker et al., 1999), and distinct subpopulations
of MeA neurons have opposing effects on investigation
or avoidance of threatening stimuli (Miller et al., 2019).
Interestingly, defensive responses are state-dependent, adapting
to the fed state of an animal, and evidence suggests that these
adaptations specifically involve neurons in the MeA (Padilla
et al., 2016). In approach–avoidance conflict, the exploratory
drive is essential to maximize an animal’s ability to thrive,
whereas avoidance is essential for survival (Elliot, 2006). Findings
from the aforementioned studies combine to suggest a critical
role for the MeA in mediating this conflict.

Considering that the MeA is a central part of the rodent
accessory olfactory system—which humans lack—the role of the
MeA in humans is particularly intriguing. Non-human primate
work suggests that the MeA’s involvement in social processing
is conserved, showing that MeA neurons are responsive to
socially important information such as facial expressions, facial
identities, pair bonding, and jealousy (Leonard et al., 1985;
Brothers et al., 1990; Gothard et al., 2007; Hoffman et al.,
2007). Few human studies have specifically delineated the MeA

and analyzed signals from it, though it may be involved in
perception and processing of emotional faces (Gamer et al.,
2010). Large lesions of the human amygdala that include the
MeA result in emotional processing deficits, whereas lesions
that spare MeA do not (Adolphs et al., 2002; Becker et al.,
2012). A combined functional Magnetic Resonance Imaging
(fMRI) and Positron Emission Tomography (PET) study found
that connectivity between a medial portion of the human
amygdala and prefrontal limbic brain regions correlated with
dopamine increases in that same network when mothers
interacted with their infants (Atzil et al., 2017). However,
the medial portion of the amygdala used in that study was
based on functional parcellations and likely corresponded to
the basomedial amygdala rather than the MeA (Bickart et al.,
2012). Other research on the human MeA has implicated it
as part of the default mode network (Bickart et al., 2014)
and it may be prone to aging and dementia-related cell
loss (Herzog and Kemper, 1980; Aghamohammadi-Sereshki
et al., 2019). The role of the MeA in human olfaction is
virtually unexplored.

Despite this lack of research, the fact that the human olfactory
bulb projects monosynaptically to the MeA (Allison, 1954)
implicates this subregion in a significant olfactory role which
remains to be disambiguated. Odors trigger innate responses
in humans (Yeshurun and Sobel, 2010), and humans engage
in olfactory-guided social behaviors (Classen, 1992; Ober et al.,
1997; Wysocki and Preti, 2004; Wyart et al., 2007; Samuelsen and
Meredith, 2009; de Groot et al., 2012; Frumin et al., 2015), despite
the lack of an accessory olfactory system (Mast and Samuelsen,
2009; Savic et al., 2009). The neural bases of these behaviors have
yet to be identified. The MeA is well-situated to process these
behaviors in humans.

The Cortical Amygdala
The human CoA is situated medial and posterior-medial to
the MeA (Figure 1). In rodents, single neurons in the CoA
receive input from both the main olfactory bulb and the
accessory olfactory bulb (Licht and Meredith, 1987). The CoA
is thought to play a role in generating innate, odor-driven
behaviors, though it is likely also involved in the generation of
learned olfactory responses. Additional research is needed to
clarify its olfactory function. In contrast to other parts of the
primary olfactory cortex, projections from the main olfactory
bulb to the CoA maintain some topographical organization
(Miyamichi et al., 2011; Sosulski et al., 2011). This indicates
that the organization of glomeruli in the olfactory bulb is
preserved in the CoA but not in other primary olfactory
areas like the piriform cortex, where neurons receive input
from glomeruli distributed homogenously across the olfactory
bulb. The preservation of glomerular topography in the CoA
is consistent with a role for this region in innate olfactory
behaviors, as they are likely to be facilitated by a network
with minimal layers of abstraction compared to non-stimulus-
specific, learned olfactory responses. Neurons in the CoA drive
innate approach/avoid behaviors in response to odors that
activate the main olfactory bulb. In line with this, CoA neurons
can be optogenetically controlled to trigger specific odor-guided
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behaviors (Root et al., 2014). Despite differences in topographical
preservation between CoA and other primary olfactory areas
such as the piriform cortex, odor-evoked neural ensembles in
both areas are equally capable of discriminating between odors,
and both exhibit similar odor tuning, reliability, and correlation
structure (Iurilli and Datta, 2017).

The CoA and MeA share circuitry and have been shown to
function together. In rodents, the CoA provides the MeA with
much of its input from the main olfactory bulb (Keshavarzi
et al., 2015), and the two regions have been shown to work
together to form olfactory memories of offspring in sheep (Keller
et al., 2004). The rodent CoA is highly interconnected with
other amygdala areas and projects to the septum, striatum,
hippocampus, and olfactory tubercle (Kevetter and Winans,
1981; Gutiérrez-Castellanos et al., 2014).

We were unable to find any human studies that specifically
focused on, or reported activations in, the CoA.

The Periamygdaloid Complex
The PAC is located anterior to the MeA and CoA (Figure 1).
Relatively few studies have focused on the PAC, so much so
that the region still has variable naming conventions. It is
variously referred to as the periamygdaloid cortex (McDonald,
1998), periamygdalar area, anterior amygdala area (Rhone et al.,
2020), and amygdalo-piriform transition area (Jolkkonen et al.,
2001); some consider it part of the piriform cortex (Paxinos and
Watson, 2006).

The functional role of the PAC is unclear but anatomical
evidence suggests that it is an early sensory processing and
integration area, as it receives direct input from both the
olfactory bulb and the retina (Elliott et al., 1995). In rodents,
The PAC receives input from the main olfactory bulb but not
the accessory olfactory bulb, suggesting that its chemosensory
function is most likely related to the main olfactory system, with
less involvement in accessory olfactory processing compared
to MeA and CoA (McDonald, 1998). In rodents, the PAC
has notable projections to the nearby piriform cortex (Majak
et al., 2004). The PAC also has bidirectional connections with
the lateral amygdala (Savander et al., 1996), hippocampus
(Kemppainen et al., 2002), subiculum (Krettek and Price, 1977),
and striatum (Fudge et al., 2002), and is sensitive to serotonergic
input (Sadikot and Parent, 1990). Lesions to PAC, CoA, and
bed nucleus of the stria terminalis all reduced or eliminated
attacks and signs of dominance in fights (Miczek et al., 1974),
consistent with a role for PAC in social processes such as
threat perception.

Research on the human PAC is extremely limited. We found
a single study with a focus on the PAC in humans, identifying a
role in addiction and depression (Anderson et al., 2013).

Findings Nonspecific to Amygdala Nuclei
In many human studies, the amygdala is considered a single
functional unit, and the relative contributions of MeA, CoA,
PAC, and other subregions, are unspecified. This research
provides evidence that the amygdala is involved in olfactory
processes, but further work is needed to identify the subregions
involved. Functional neuroimaging studies in humans have

found increased amygdala activity in the presence of odor
compared to no odor (Royet et al., 2000) and local field
potentials recorded from the human amygdala show increased
oscillatory activity following odor onset (Hughes and Andy,
1979; Hudry et al., 2001, 2003; Jung et al., 2006). Together,
these findings support a role for the amygdala in odor
perception, but the specific subnuclei that are responsive to odors
are unmapped.

Human neuroimaging studies have found that activity in the
amygdala correlates with participants’ reports of odor valence
and intensity (Anderson et al., 2003; Winston et al., 2005;
Jin et al., 2015), with no reported differences in responses
between the basomedial and basolateral subdivisions (Anderson
et al., 2003). This is in line with the role of the amygdala in
other sensory systems (Benarroch, 2015), but whether intensity
and valence of olfactory stimuli are processed by the same
subregions as visual and auditory information is unknown.
Evidence from patients with Urbach-Wiethe Disease, a disorder
characterized by bilateral calcification of medial-anterior areas
of the amygdala, suggests that damage to the medial anterior
subregions of the human amygdala causes impairments to
olfactory memory, facial emotion identification, and valence
memory (Siebert et al., 2003). A PET study in humans found
that olfactory dysfunction associated with Parkinson’s disease
corresponds to an increase in acetylcholinesterase activity in
the amygdala as well as in other limbic and olfactory areas
(Bohnen et al., 2010). Thus, pathology in olfactory amygdala
circuitry may represent a disruption in a circuit that links
olfactory information with the rest of the limbic system, in
addition to the piriform cortex, which may have been assumed
to provide the entirety of this link in the past. These pieces of
evidence link olfactory dysfunction to the amygdala, supporting
a key, under-considered role for the amygdala in healthy
olfactory processing.

Olfactory processing is inherently linked to respiration
(Mainland and Sobel, 2006). Growing evidence suggests that
activity in medial and anterior areas of the human amygdala
are related to breathing. Local field potential oscillations in
the amygdala increase with nasal inhalation (Heck et al.,
2016; Zelano et al., 2016; Herrero et al., 2018), electrically
stimulating medial and anterior areas of the human amygdala
halts nasal breathing (Dlouhy et al., 2015; Lacuey et al., 2017;
Nobis et al., 2018), and the timing of seizure spread to the
amygdala correlates with the timing of seizure-induced apnea
(Nobis et al., 2019). Furthermore, breathlessness and respiratory
modulations have been associated with medial and anterior
areas of the amygdala overlapping with the MeA, CoA, and
PAC (Masaoka and Homma, 2001). A potential pathway by
which amygdala activity may impact breathing behavior lies
in the fact that the central nucleus of the amygdala projects
to numerous respiratory areas of the brainstem in macaques
(Price and Amaral, 1981).

In summary, these studies show that the human amygdala
is involved in olfactory processing, but the specific subregions
that carry out these processes have yet to be defined. Moreover,
anterior-medial areas of the amygdala that receive olfactory
input are involved in other processes such as memory
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and respiratory modulation. The fact that the amygdala
is part of the primary olfactory cortex contrasts with the
anatomical organization of other sensory systems, in that
primary olfactory circuitry is entangled within a host of other
cognitive processes in the amygdala. By investigating the resting
connectivity of each olfactory subregion of the amygdala,
we aim to better understand both their olfactory and extra-
olfactory roles.

SECTION 2: CHARACTERIZING
WHOLE-BRAIN NETWORKS OF HUMAN
MeA, CoA, AND PAC

Little is known about the subregions of the human amygdala
that receive olfactory input: the MeA, CoA, and PAC. Here,
we used resting-state fMRI techniques to describe whole-brain
functional networks of these three human olfactory amygdala
subregions, with two main goals. Our first goal was to determine
whether whole-brain resting connectivity networks could be
used to accurately parcellate the anatomical boundaries of
MeA, CoA, and PAC: If true, this would suggest that their
resting networks are distinct, which would imply that their
functions are distinct. Our second goal was to describe the
resting whole-brain connectivity patterns of each olfactory
amygdala subregion.

MATERIALS AND METHODS

This data has been previously reported in Zhou et al. (2019).

Participants
Functional resting-state data were collected from 25 healthy
participants (14 female) with an average age of 25.5 (standard
error: 1.2) years. All participants were right-handed, and
none had a history of psychiatric, neurological, smell,
taste, or respiratory disorders. This study was approved by
Northwestern University’s Institutional Review Board under
Protocol #STU00201746, was conducted in accordance with the
Declaration of Helsinki, and all participants gave their voluntary
written consent. Participants were instructed to look at a white
fixation cross on a black background and to breathe in and out
through their noses for 10 min while neuroimaging data were
collected.

fMRI Data Acquisition
fMRI data were collected at Northwestern University’s Center
for Translational Imaging using a 3T Siemens TIM Trio scanner
equipped with a 64-channel head coil (Siemens Healthcare,
Erlangen, Germany). Scans were acquired using a single-shot
gradient-echo planar-imaging sequence with the following
parameters: repetition time (TR): 555 ms; echo time (TE): 22 ms;
flip angle: 47◦; MB-8 with Split-slice GRAPPA (Olman et al.,
2009; Todd et al., 2016); field of view (FOV): 208 mm; voxel
size: 2.0 × 2.0 × 2.0 mm3; 64 axial slices. The slice orientation
was set to approximately 30◦ from the AC-PC line (Deichmann
et al., 2003) to reduce the distortion and improve the signal-
to-noise ratio in the primary olfactory and orbitofrontal areas

(Zhou et al., 2019). A T1-weighted MPRAGE high-resolution
anatomical image was acquired for each participant with
the following parameters: TR: 2,300 ms; TE: 2.94 ms; FOV:
256 mm; flip angle: 9◦; voxel size: 1.0 × 1.0 × 1.0 mm3;
176 sagittal slices.

fMRI Data Preprocessing
MRI data were preprocessed using FSL (FMRIB Software
Library1; RRID:SCR_002823; Smith et al., 2004; Woolrich et al.,
2009; Jenkinson et al., 2012). Structural images were skull-
stripped and segmented into gray matter, white matter, and
cerebral spinal fluid using FSL’s BET (Smith, 2002) and FAST
(Zhang et al., 2001) tools. White matter and cerebrospinal fluid
images were eroded 1 voxel (FSL’s fslmaths) to avoid false
rejections of gray matter voxels.

The first 10 volumes of the fMRI volumes were removed,
and the resting data were motion-corrected and registered
to the individual anatomical image using the brain-boundary
registration method. The anatomical image of each participant
was registered to the Montreal Neurological Institute (MNI)
standard brain (MNI152_T1_2mm_brain) using the non-
linear registration method with 12 degrees of freedom.
Linear and quadratic trends were removed using Analysis of
Functional NeuroImages (AFNI; RRID:SCR_005927; Cox, 1996).
Nuisance variables, including six head-movement parameters,
and white matter and cerebrospinal signals, were regressed
out using multiple linear regression methods (FSL’s fsl_glm).
Finally, images were intensity normalized, band-pass filtered
(0.008–0.01 Hz, AFNI’s 3dFourier), registered to MNI space, and
spatially smoothed (Gaussian kernel, sigma = 3).

Parcellation of Amygdala Subregions With
k-Means Clustering
In our first two analyses, we parcellated the amygdala into
subregions using unsupervised k-means clustering on whole-
brain resting connectivity. To do this, we calculated the Pearson
correlation coefficient between each voxel within the mask and
every other voxel in the rest of the brain. The whole-brain mask
was created by thresholding FSL’s gray matter image (tissue prior
image avg152T1_gray.img) at a threshold of 100. The resulting
correlation matrix was Fisher z transformed and averaged over
participants, resulting in a group-level correlation matrix, which
was transformed back into Pearson correlation coefficients.
Finally, we used standard k-means methods (Matlab’s Statistics
Toolbox) to conduct the parcellation analysis, in which the
correlation between the connectivity patterns of the voxels was
used as the distance measure.

We used a permutation analysis to calculate the statistical
significance of the parcellation accuracy. In each permutation,
the labels of the anatomical subdivisions were shuffled, and the
percent of olfactory subregions of the amygdala overlapping
with the permuted set was calculated. We repeated this
procedure 10,000 times to get a distribution of the proportion
of voxels of each parcellated subdivision within each anatomical
subregion. Matlab’s normfit function was used to perform

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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normal distribution fitting of the permuted data and a z score
of the actual proportion values was computed by subtracting
the average and then dividing by the standard deviation of the
distribution.

RESULT 1: OLFACTORY AMYGDALA
SUBREGIONS ARE DISSOCIABLE FROM
NON-OLFACTORY AMYGDALA
SUBREGIONS BASED ON WHOLE-BRAIN
CONNECTIVITY PATTERNS

We were first interested in determining whether the amygdala
subregions that receive direct bulb input (referred to here
as olfactory subregions) have distinct whole-brain resting
connectivity patterns relative to the amygdala subregions that do
not receive direct bulb input (referred to here as non-olfactory
subregions). To examine whether the olfactory and non-olfactory
amygdala subregions are dissociable according to their whole-
brain functional connectivity patterns, we parcellated a whole-
amygdala mask into subregions based on connectivity patterns
with the rest of the brain using a well-established, unbiased
k-means clustering resting connectivity parcellation method
(Kahnt et al., 2012; Zhou et al., 2019; ‘‘Materials and Methods’’
section). In order to test whether olfactory and non-olfactory
subregions would emerge as distinct areas, the number of
clusters was set to 2. The analysis was performed for the left
and right hemispheres separately. The results showed that the
combined mask was successfully parcellated into two distinct
clusters in each hemisphere, each of which corresponded
predominantly with either the olfactory or non-olfactory
subregions (Figure 2A).

We used a permutation method to statistically quantify how
accurately these two parcellated clusters corresponded to the
olfactory and non-olfactory subregions (Figure 2B, ‘‘Materials
and Methods’’ section). In each permutation, the anatomical
labels of the parcellation clusters in the amygdala were randomly
shuffled across voxels, and the percentage of the olfactory
amygdala subregions (any voxels within MeA, CoA, or PAC)
within each k-means parcellation was calculated. The difference
in the percentage of the olfactory amygdala subregions within
the two clusters (olfactory vs. non-olfactory) was calculated
in 10,000 permutations, resulting in a null distribution and a
z score of the real percentage difference. We found that the
olfactory amygdala subregions were more likely to fall into
the same cluster for both the right hemisphere (z = 4.27,
P = 2.0e–6) and left hemisphere (z = 4.79, P = 1.7e–6;
Figure 2B).

RESULT 2: OLFACTORY AMYGDALA
SUBREGIONS FORM DISTINCT
WHOLE-BRAIN NETWORKS

So far, we have demonstrated that the amygdala subregions
receiving direct input from the olfactory bulb have distinct
whole-brain resting connectivity patterns compared to other
amygdala subregions. We next tested the hypothesis that each

of the three olfactory amygdala subregions also has distinct,
whole-brain functional connectivity patterns relative to each
other. To this end, we asked whether we could use resting
whole-brain connectivity maps to accurately delineate their
anatomical boundaries. To do so, we performed a k-means
clustering analysis focused on the olfactory amygdala subregions.
We combined regions of interest (ROIs) of the MeA, CoA,
and PAC into one mask, and performed the same whole-
brain connectivity-based parcellation procedure as described
above. For this analysis, in order to test whether the three
olfactory subregions would emerge as distinct areas, the number
of clusters was set to 3, and the analysis was performed
for the left and right hemispheres separately. Results showed
that the k = 3 solution yielded three distinct clusters that
corresponded accurately to the MeA, CoA, and PAC for both
the right (Figure 3A) and left (Figure 3B) hemispheres. To
confirm the correspondence between the anatomical delineation
of the olfactory amygdala subregions in the Atlas of the
Human Brain (Mai et al., 2015) and our parcellation results,
we computed the proportion of voxels from each parcellation
cluster located within each of the atlas-derived subdivisions,
which were drawn prior to the parcellation analysis (Zhou
et al., 2019). The statistical significance of this proportion was
tested using a permutation method. The results indicated that,
in both the left and right amygdala, each parcellated cluster
corresponded to a single anatomically-defined ROI. For each
parcellated subdivision, a single corresponding anatomical ROI
contained significantly more voxels than other anatomical ROIs
(Figures 3A,B right, minimum z = 6.05). This confirmed
that the MeA, CoA, and PAC have distinct whole-brain
functional networks.

We next asked whether the resting state networks of each
subregion are similar across left and right hemispheres. To do
this, we computed the same connectivity-based parcellation as
described above, but using a combined mask which included
both left and right amygdala. We hypothesized that if the
whole-brain functional connectivity patterns of each subregion
were similar across hemispheres, then we would find that
the left and right portions of each subregion would cluster
together. For example, we would expect that the right MeA
would cluster with the left MeA rather than the right CoA,
and so on. We indeed found that the bilateral amygdala mask
parcellated into three subdivisions, each of which included
the left and right portions of each subregion: One cluster
included left and right MeA, one cluster included left and
right CoA, and one cluster included left and right PAC
(Figure 3C). Given that each subregion is anatomically closer
to the other subregions in the same hemisphere than it
is to the same subregion on the opposite hemisphere, this
evidence strongly suggests that resting state networks of
the left and right amygdala subregions are similar. Based
on this result, whole-brain functional connectivity maps for
subsequent analyses were conducted collapsed across left and
right hemispheres. A validation analysis confirmed that setting
k to values greater than 3 results in clusters that do not
match olfactory areas, likely reflecting other amygdala networks
(Supplementary Figure 1).
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FIGURE 2 | Olfactory and non-olfactory areas of the amygdala are delineated using resting state connectivity. (A) Results of k-means (k = 2) clustering of the
amygdala based on resting state connectivity. Each color (red and blue) in panel (A) indicates one cluster. The data are shown on the FSL’s MNI152_T1_1 mm_brain.
(B) Bar plots indicate the distribution of permuted difference of the percentage of the olfactory subregions within each parcellation. The red vertical line indicates real
value. Data are shown for the right and left hemispheres separately. R, right hemisphere.

RESULT 3: DISTINCT NETWORKS OF MeA,
CoA, AND PAC

Thus far, we have demonstrated that olfactory subregions of the
amygdala have distinct resting connectivity profiles. We next
sought to describe and characterize the whole-brain functional
connectivity maps of each olfactory subregion. To do this, we
generated whole-brain, non-overlapping maps of the voxels
exhibiting functional connectivity with each amygdala subregion.
Specifically, we first applied a statistical threshold to the whole-
brain functional connectivity map for each subregion (threshold-
free cluster enhancement (TFCE) corrected P < 0.05) to assign
a value of 1 or 0, resulting in a binarized map for each
subregion. We then further masked these maps according to
whether each voxel exhibited statistically significant functional
connectivity with a single subregion or with multiple subregions.
This produced two categories of functional connectivity
maps: one containing unique connectivity patterns for each
olfactory subregion, and the other containing connectivity
patterns shared by multiple olfactory subregions (see ‘‘Result
4: Combined Analysis’’ section). Here we describe the distinct,
whole-brain resting networks that we found, exclusive to
each subregion (Figures 4–6). This analysis is agnostic to
whether the resting state map for each olfactory subregion
reflects olfactory or non-olfactory circuits. By generating these
maps, we can better design future studies that test their
function directly.

The Medial Amygdala
The brain areas that showed connectivity unique to the MeA were
located in the hypothalamus, the insula, pre- and post-central
gyri, and the superior temporal gyrus (Figure 4). Additional
connectivity clusters were evident in the globus pallidus,
putamen, caudate, and brainstem. Within the hypothalamus, the
cluster of connectivity unique to the MeA was restricted to the
posterior area, which is involved in the generation of the fight-
or-flight response to deal with imminent threats (Shekhar and
Dimicco, 1987; Falkner and Lin, 2014). Connectivity between

the MeA and the insula was extensive, including clusters
located in both posterior and anterior areas. Large connectivity
clusters were found across premotor and motor cortices, with
smaller clusters in the globus pallidus, caudate, and putamen,
all areas involved in motor planning and movement. Within
the brainstem, we observed a distinct cluster of significant MeA
connectivity in the dorsal pons, corresponding to the raphe
nuclei.

The Cortical Amygdala
The unique whole-brain functional network of the CoA largely
included areas in the midbrain and brainstem, with some
additional clusters in the hippocampus, middle temporal gyrus,
and septal areas (Figure 5). Within the midbrain, there
was connectivity with the mediodorsal thalamus, which is
involved in olfactory learning and memory (Courtiol and
Wilson, 2015). There was also extensive connectivity with
the substantia nigra, including ventral, medial, and lateral
subdivisions, which are involved in value and salience coding
(Zhang et al., 2017). Within the brainstem, connectivity
was evident with the periaqueductal gray. There were also
large connectivity clusters in the posterior hippocampus and
the middle temporal gyrus. The middle temporal gyrus is
associated with the recognition of known faces and emotional
recognition (Pourtois et al., 2005). Within septal areas, there
was a cluster of connectivity corresponding to the posterior
parolfactory cortex.

The Periamygdaloid Complex
The unique whole-brain functional network of connectivity
with the PAC included large clusters in the anterior olfactory
nucleus, brainstem, fusiform cortex, and the temporal pole
(Figure 6). Additional connectivity was evident in the entorhinal
cortex and orbitofrontal cortex. Connectivity between PAC
and the anterior olfactory nucleus—a multifunctional cortical
area, despite the name, which provides extensive ongoing
feedback to the olfactory bulb (Rothermel and Wachowiak,
2014)—was extensive, covering the entire anterior-posterior
axis of this primary olfactory area. In the brainstem, there
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FIGURE 3 | Parcellation of the olfactory amygdala subregions based on resting state connectivity. K-means (k = 3) clustering analysis was performed for the right
hemisphere (A), left hemisphere (B), and combined left and right (C) hemispheres. Each color (red, blue, and green) in (A–C) indicates one cluster. Results are
shown on the FSL’s MNI152_T1_1 mm_brain. Parcellation accuracy of each subregion is shown on the right. Top right: proportion of voxels from each parcellation
subdivision located within each anatomical subregion. Bottom right: z score of the proportion maps. *Indicates P < 0.05 (Bonferroni corrected). L, left hemisphere; R,
right hemisphere; MeA, medial amygdala; CoA, cortical amygdala; PAC, periamygdaloid complex.
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FIGURE 4 | Whole-brain resting connectivity of the MeA. Regions of interest include the insula, motor cortex, anterior cingulate cortex, and raphe nuclei. The
connectivity map was thresholded at threshold-free cluster enhancement corrected P < 0.05. Results are overlaid on FSL’s MNI152_T1_1 mm_brain.

was a single large cluster of significant voxels covering the
pontine nuclei, which consists mainly of neurons linking the
cerebral cortex to the cerebellum (Glickstein et al., 1985).
There was bilateral connectivity with the fusiform face area,
which is strongly responsive to faces (Kanwisher et al., 1997;
Grill-Spector et al., 2004). There was also a large cluster of
connectivity with the temporal pole, an area that has been
associated with social and emotional processing (Olson et al.,
2007).

RESULT 4: COMBINED ANALYSIS

Thus far, we have shown that primary olfactory amygdala
subregions can be distinguished from non-olfactory amygdala
subregions (Result 1, Figure 2) and from each other (Result
2, Figure 3), based on their functional connectivity profiles.
We have also mapped each subregion’s distinct connectivity
profile (Result 3, Figures 4–6). We next examined the functional
pathways that these subregions share in common. This analysis
was motivated by the fact that amygdala subregions are highly
interconnected, and that certain groups of subregions work in
concert during certain cognitive tasks (Benarroch, 2015). For
instance, a given functional network may rely on processing in
the MeA and CoA, but not the PAC, and another may rely

on processing in all three olfactory amygdala subregions. By
comparing the overlapping resting state networks, we may gain
insight into circuits that engage multiple olfactory amygdala
subnuclei. To examine the shared networks, first, we mapped
the whole-brain resting-state connectivity patterns shared by
all three subregions (Figure 7), then compared sets of two
subregions (Figure 8).

Whole-Brain Connectivity Common to
MeA, CoA, and PAC
To identify the network common to all three subregions, the
connectivity map of each subregion was binarized at a threshold
of TFCE corrected P < 0.05 to include only those clusters that
exhibited connectivity with all three subregions. This resulted
in a whole-brain connectivity map of areas that are functionally
connected to all olfactory amygdala subregions (Figure 7). The
MeA, CoA, and PAC all had significant resting state connectivity
with the hippocampus, parahippocampal gyrus, other subregions
of the amygdala, bed nucleus of the stria terminalis, the
medial temporal pole, and the dorsal pons. There was also
significant resting connectivity with other subregions of the
primary olfactory cortex including piriform cortex, entorhinal
cortex, and the olfactory tubercle, but not the anterior olfactory
nucleus (which had connectivity specific to the PAC). The
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FIGURE 5 | Whole-brain resting connectivity of the CoA. Regions of interest include the hypothalamus, substantia nigra, periaqueductal gray area, and medial
dorsal thalamus. The connectivity map was thresholded at threshold-free cluster enhancement corrected P < 0.05. Results are overlaid on FSL’s
MNI152_T1_1 mm_brain.

cluster of significant resting state connectivity in the posterior
pons possibly corresponds to the parabrachial nucleus, although
defining human brainstem subregions is in its infancy (Lavezzi
et al., 2004).

Whole-Brain Networks Shared by Sets of
Two Olfactory Amygdala Subregions
We next examined the networks shared by each pair of subnuclei.
We found that the MeA and CoA had more similar whole-
brain functional connectivity networks compared to PAC, which
differed substantially. To quantify this, we computed a Venn
Diagram of voxel overlaps (Figure 8). Indeed, MeA and CoA
had more overlapping voxels of connectivity compared to
PAC with either MeA or CoA (Figure 8). We mapped the
voxels showing significant resting connectivity with each set
of two subregions, for each combination of subregions (PAC
and MeA, PAC and CoA, and MeA and CoA). The set of

voxels correlating with the PAC and MeA, but not CoA, was
small, with scattered patterns of significance in the temporal
lobes, orbitofrontal cortex, and the hypothalamus. The set of
voxels correlating with the PAC and CoA, but not MeA,
was also small, with spotted coverage in the operculum and
insula. However, a larger set of voxels correlated with the
MeA and CoA, but not the PAC. These areas included the
medial frontal cortex, the hypothalamus, and the globus pallidus.
We have included supplementary figures representing the
MeA, CoA, and PAC’s whole-brain resting state networks that
include overlap with other olfactory subregions (Supplementary
Figure 2).

DISCUSSION

The goal of this study was to characterize the whole-brain
resting networks of the amygdala subregions that receive direct
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FIGURE 6 | Whole-brain resting connectivity of the PAC. Regions of interest include the fusiform gyrus, anterior olfactory nucleus, pontine nucleus, and orbitofrontal
cortex. The connectivity map was thresholded at threshold-free cluster enhancement corrected P < 0.05. Results are overlaid on FSL’s MNI152_T1_1 mm_brain.

input from the olfactory bulb in humans: MeA, CoA, and PAC.
First, we reviewed the existing literature on the anatomical
and functional properties of each subregion. Then, we used
resting state fMRI to show that these three subregions could be
accurately parcellated based on their whole-brain connectivity
patterns, suggesting distinct resting networks. Finally, we
described the distinct resting network of each subregion,
revealing the unique set of brain areas exhibiting connectivity
with each primary olfactory amygdalar subregion, as well as those
areas with common connectivity. These areas of connectivity
may provide an initial starting place to form hypotheses for
future studies into the potential functional properties of these
brain areas, which have been understudied, particularly in
humans.

In considering these results, an overall picture of olfactory
amygdala subregion networks begins to emerge: These three
subregions receive direct projections from the olfactory bulb
and make up about a third of the primary olfactory cortex,
suggesting that they play a role in processing olfactory input.
They participate in a shared network, though each subregion
also has a distinct and more specific network. We found that

all three amygdala subregions share connectivity with brain
areas involved in social and emotional behavior, and with brain
areas involved in autonomic functions such as respiration, heart
rate, and blood pressure. This suggests that there may be a
social/emotional context for the specific functions performed by
each subregion, and that these parts of the amygdala could be
involved in mediating changes in autonomic functions based
on olfactory, social, and emotional input. Consideration of the
unique connectivity of each network may allow for speculation
of the unique functions of each subregion within these shared
contexts.

The whole-brain network that we identified for the MeA
revealed connectivity with a number of areas involved in the
generation of fight or flight responses (hypothalamus, raphe
nuclei) and movement (globus pallidus, caudate, motor cortex,
and ventral thalamus). The whole-brain network we identified
for the CoA revealed connectivity with a number of areas
involved in midbrain reward circuitry (caudate, substantia nigra,
and periaqueductal gray), learning (mediodorsal thalamus), and
memory (posterior hippocampus). The whole-brain network
that we identified for the PAC revealed connectivity with areas
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FIGURE 7 | Whole-brain resting connectivity is common to MeA, CoA, and PAC. Regions of interest include the piriform cortex, entorhinal cortex, olfactory tubercle,
temporal pole, basal forebrain, and other areas of the amygdala. The connectivity maps were thresholded at threshold-free cluster enhancement corrected P < 0.05.
Results are overlaid on FSL’s MNI152_T1_1 mm_brain.

involved in olfactory cognition (anterior olfactory nucleus and
orbitofrontal cortex) and multisensory integration (temporal
pole and pontine nuclei). Based on these findings, we can
speculate on potential roles for the MeA, CoA, and PAC
in human olfactory processing, forming ideas that can be
tested in future studies. The MeA could potentially be
involved in the generation of rapid motor responses to
olfactory stimuli, particularly in approach/avoid contexts. The
CoA could potentially be involved in olfactory-related reward
processing, including learning and memory of approach/avoid
responses. The PAC could potentially be involved in the
multisensory integration of olfactory information with other
sensory systems.

Validation of Distinct Resting State
Networks
Clusters of voxels in the amygdala are defined purely by
resting state networks, tightly aligned with the anatomical

boundaries of the subregions that receive olfactory bulb input
(Figure 2). This corresponds to other studies showing that
the amygdala can be functionally parcellated into anterior-
medial and basolateral regions (Bach et al., 2011; Bzdok
et al., 2013; Bielski et al., 2021), though these studies did not
distinguish olfactory from non-olfactory subregions. A similar
parcellation analysis using only the voxels within subregions
of the amygdala that receive olfactory bulb input in humans
revealed that the clusters tightly aligned to the anatomical
boundaries of each olfactory amygdala subregion (Figure 3).
This held true when voxels from bilateral olfactory amygdala
subregions were analyzed (Figure 3C), demonstrating that the
resting connectivity of voxels within an olfactory subregion
are more similar to those of the corresponding subregion on
the contralateral hemisphere compared to those for ipsilateral,
neighboring subregions. This evidence strongly conveys that the
human MeA, CoA, and PAC have distinct whole-brain resting
state networks.
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FIGURE 8 | Whole-brain resting connectivity common to two of the three olfactory amygdala subregions. (A) Intersections of resting state networks of olfactory
amygdala subregion pairs. Results are overlaid on FSL’s MNI152_T1_1 mm_brain. (B) Bar plot of the number of voxels that shows significant connectivity with each
(Figures 4–6) and combination (panel A and Figure 7) of the olfactory subregions. (C) Venn Diagram of panel (B). The connectivity maps were thresholded at
threshold-free cluster enhancement corrected P < 0.05.

The Medial Amygdala
Based on the resting connectivity map of the MeA, which covers
cortical and sub-cortical motor areas, the hypothalamus, and
anterior cingulate cortex, our results are consistent with other
work (Nordman and Li, 2020) supporting the idea that the
MeA plays a central role in generating fight-or-flight responses.
In the human brain, the MeA receives monosynaptic input
from the olfactory bulb (Allison, 1954), and could potentially
be involved in the generation of rapid motor responses
to odors.

The resting connectivity map of the MeA included areas
of the motor cortex. This corresponds with human DTI
evidence (Grèzes et al., 2014), which has shown that fiber
tracts originating near the MeA project throughout the motor
cortex, in line with tracer findings in macaques (Morecraft
et al., 2007). This amygdala-motor pathway is considered the
basis of innate emotional behaviors such as smiling (Gothard,
2014) and fight or flight responses (Sagaspe et al., 2011).
The MeA also had significant resting connectivity with the
anterior cingulate cortex, a brain region involved in anxiety
(Straube et al., 2009).

In the midbrain, we observed clusters of voxels with
significant resting state connectivity in the posterior and lateral
hypothalamic areas corresponding to fight or flight, social,
and neuroendocrine bonding processes (Shekhar and Dimicco,
1987; Choi et al., 2005; Sivukhina and Jirikowski, 2021). The
MeA showed resting connectivity with areas of the brainstem
including the raphe nuclei. In macaques, the amygdala projects
to numerous areas of brainstem, most of which project back
reciprocally (Price and Amaral, 1981). The raphe nuclei produce

most of the brain’s serotonin (Hornung, 2003), have been shown
to exhibit functional connectivity with the human amygdala
(Beliveau et al., 2015), and are involved in fight or flight responses
(Kuwaki, 2021). In rodents, the raphe nuclei project heavily to the
olfactory bulb (McLean and Shipley, 1987; Steinfeld et al., 2015),
where they have been shown to modulate its output (Kapoor
et al., 2016). Our finding of functional connectivity between MeA
and raphe nuclei suggests that these nuclei could potentially
provide a route by which MeA can modulate activity in the
olfactory bulb.

The MeA also showed significant resting state connectivity
throughout the insula. Nearly all subregions of the amygdala
are reciprocally connected with the insula (Mufson et al., 1981)
and amygdala-insula connections are thought to govern disgust,
appetite, reward, and satiety (Sarinopoulos et al., 2006; Boutelle
et al., 2015; Langenecker et al., 2020). Further research is needed
to understand whether extensive connectivity between the MeA
and the insula represents an olfactory function.

The Cortical Amygdala
The resting connectivity map of the CoA included areas involved
in reward processing, motivation, and olfactory learning and
memory, suggesting that the CoA could potentially be involved
in olfactory-related reward processing, including learning and
memory of approach/avoid responses.

The resting state connectivity map of the CoA included the
caudate and substantia nigra, both of which have been shown
to exhibit connectivity with the amygdala, as components of a
well-studied limbic anticipatory-reward circuit (Lee et al., 2006;
Langenecker et al., 2020). The CoA also showed significant
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resting state connectivity with the periaqueductal gray (PAG)
area, which is involved in respiratory control and motivated
behaviors (Motta et al., 2017). PAG is also involved in defensive
behaviors (Tovote et al., 2016), and especially respiratory
defensive behaviors like breath-holding (Faull et al., 2015, 2016).
In rodents, PAG receives input from the medial prefrontal cortex,
insular cortex, anterior cingulate cortices, and amygdala (Rizvi
et al., 1991; Gabbott et al., 2005), and neurons in the PAG
project to respiratory nuclei in the medulla (Sessle, 1981; Huang
et al., 2000; Hayward et al., 2004). Intriguingly, there was a
cluster of voxels in the anterior cerebellum that showed resting
connectivity with the CoA, and this cluster overlaps with an area
that was observed to have increased activations during sniffing
(Sobel et al., 1998). Thus, CoA could potentially be involved
in the generation of odor-valence-induced sniffing modulations,
which occur rapidly and which have been proposed to have a
subcortical mechanism (Johnson et al., 2003).

The resting connectivity of CoA also included the
mediodorsal thalamus (MdTh). MdTh receives direct input
from the primary olfactory cortex in rodents and may play a role
in olfactory learning, memory (Inokuchi et al., 1993; Courtiol
and Wilson, 2015), and attention (Plailly et al., 2008). Novel
evidence from humans suggests that functional connectivity
between the MdTh and amygdala modulates taste perceptions
(Veldhuizen et al., 2020).

The resting networks of MeA and CoA overlapped
substantially, possibly reflecting processes that involve both
subregions. This overlap is consistent with animal work showing
that the MeA and CoA share functional circuits involved in
bonding and olfaction (Keller et al., 2004; Meurisse et al.,
2009; Keshavarzi et al., 2015). The shared network included
medial-frontal cortex, hypothalamus, mammillary bodies, and
the globus pallidus. The medial frontal cortex is reciprocally
connected to the MeA in rodents and plays a critical role in
regulating social and emotional behaviors (Ko, 2017), fear
responses (Greenberg et al., 2013; Karalis et al., 2016), and
activity in this area correlates via the olfactory system with
breathing in rodents (Moberly et al., 2018). GABAergic neurons
in the MeA project to both the CoA and globus pallidus in a
circuit thought to mediate fear motor behaviors (Bian, 2013).
Circuitry between the medial frontal cortex, hypothalamus, and
amygdala is involved in stress regulation (Diorio et al., 1993;
Spencer et al., 2005; Jaferi and Bhatnagar, 2007).

Given the fact that the MeA and CoA are both parts of
the human primary olfactory cortex, and are both intertwined
with social and emotional circuitry, we speculate that a circuit
involving the MeA and CoA could mediate odor-induced
emotional motor responses (MeA), and learning/memory of
these responses (CoA). These functions could include social
olfactory behaviors observed in humans such as odor-induced
mood changes (Kadohisa, 2013), innate olfactory bonding
behaviors (Varendi and Porter, 2001), and olfactory threat
avoidance behaviors (Johnson et al., 2003; Olsson et al., 2014).

The Periamygdaloid Complex
The resting connectivity map of PAC included areas involved
in olfactory cognition and multisensory integration. Resting

connectivity with the orbitofrontal cortex was stronger in the
PAC than in the MeA or CoA, and resting connectivity with
the anterior olfactory nucleus was only present in the PAC.
Both the orbitofrontal cortex and anterior olfactory nucleus
have been proposed to be involved in odor object coding
(Watanabe et al., 2018; Zhou et al., 2019; Aqrabawi and Kim,
2020), and the anterior olfactory nucleus projects heavily back
to the olfactory bulb (Rothermel and Wachowiak, 2014). The
orbitofrontal cortex is a multisensory area (Price, 2008; Sharma
and Bandyopadhyay, 2020), and may be involved in the reward
value (Howard et al., 2015) and conscious perception of odors (Li
et al., 2010). The PAC also exhibited strong resting connectivity
with the temporal pole, which is a multisensory area that may
encode information about the abstract conceptual properties of
objects (Peelen and Caramazza, 2012). Previous work has shown
that the amygdala is functionally connected to the temporal pole
(Bach et al., 2011; Fan et al., 2014). Though this area is poorly
understood, the temporal pole may be involved in a variety
of functions including social and emotional processing, facial
recognition, memory, and theory of mind (Kling and Steklis,
1976; Olson et al., 2007). Activity in the temporal pole correlates
with odor familiarity (Royet et al., 1999) and activity in both
the temporal pole and the amygdala correlate with the valence
of olfactory, visual, and auditory stimuli (Royet et al., 2000).
Thus olfactory information involved in these judgments may
reach the temporal pole via the PAC. The PAC also showed
resting connectivity with the fusiform gyrus. The fusiform gyrus
is involved in facial recognition and object discrimination. Given
that PAC receives monosynaptic input from the olfactory bulb,
it is possible that resting connectivity between the PAC, the
temporal pole, and the fusiform gyrus reflects an olfactory circuit.

In the brainstem, the PAC showed resting state connectivity
with a large cluster corresponding to the pontine nuclei.
This is a multisensory area that receives visual, auditory,
and somatosensory information from cortical and subcortical
regions, and links that information to the cerebellum (Glickstein
et al., 1985; Schwarz and Thier, 1999), but the fine anatomy of
these pathways is poorly defined in humans. In animals, neurons
with visual receptive fields can be found in the pontine nuclei
(Baker et al., 1976) and others project to the auditory system
(Ohlrogge et al., 2001). Activation in the pontine nuclei has been
observed in humans during breath-holding (McKay et al., 2008)
and CO2 exposure (Pattinson et al., 2009). Thus the PAC may
link olfactory information to this multisensory circuitry and may
link olfactory information to distinct areas of the brainstem and
cerebellum.

Together, all three olfactory subregions of the amygdala
showed resting connectivity with a distinct cluster of voxels in the
dorsal pons, possibly corresponding to the parabrachial nucleus
(Lavezzi et al., 2004). Neurons in the dorsal pons are involved
in the regulation of breathing rhythms (Chamberlin and Saper,
1994) and the same area of dorsal pons shows increased BOLD
responses during CO2 exposure in humans (Pattinson et al.,
2009). Our findings are in line with macaque work showing that
the amygdala projects to numerous areas of the brainstem, most
of which project back reciprocally (Price and Amaral, 1981). We
speculate that the MeA, CoA, and PAC are all well-positioned
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to mediate rapid, odor-induced changes in respiration and
potentially other autonomic functions in response to olfactory
input, through these brainstem networks.

LIMITATIONS

One limitation of this study is that the resting state maps we
identified do not necessarily reflect networks that carry out
olfactory functions. The amygdala is involved in a multitude
of processes across sensory systems, and while the fact that a
subregion receives input from the olfactory bulb implicates that
subregion in olfactory processing, it does not necessitate that
its resting network represents exclusively olfactory processing.
However, given that the MeA, CoA, and PAC are distinct parts
of the primary olfactory cortex, receiving roughly a third of the
olfactory bulb output (Allison, 1954), it is likely that some of
the resting networks we identified here do relate to olfactory
functions. Future experimental work is needed to distinguish
between the amygdala’s olfactory and non-olfactory networks.
Our hope is that this discussion may lead to new testable
hypotheses about these under-studied parts of the primary
olfactory cortex.

CONCLUSION

The MeA, CoA, and PAC are the only subregions of the amygdala
that receive direct input from the olfactory bulb, but little is
known about their functions in the human brain. We found that
the MeA, CoA, and PAC have distinct resting state networks,
and we hypothesize that these networks may underlie distinct
olfactory and multisensory processes.
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SUPPLEMENTARY FIGURE 1 | K-means parcellation of the olfactory amygdala
subregions based on resting state connectivity. When k is set to values that do
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SUPPLEMENTARY FIGURE 2 | Maps of voxels with significant resting state
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which show areas of distinct connectivity with each subregion, these maps show
the complete whole-brain network for each subregion. R, Right hemisphere; L,
Left hemisphere; P, Posterior; A, Anterior.
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