
TYPE Editorial

PUBLISHED 25 November 2022

DOI 10.3389/fnsys.2022.1081112

OPEN ACCESS

EDITED AND REVIEWED BY

Heiko J. Luhmann,

Johannes Gutenberg University

Mainz, Germany

*CORRESPONDENCE

Yan M. Yufik

imc.yufik@att.net

RECEIVED 26 October 2022

ACCEPTED 02 November 2022

PUBLISHED 25 November 2022

CITATION

Yufik YM, Friston KJ and Moran RJ

(2022) Editorial: Understanding in the

human and the machine.

Front. Syst. Neurosci. 16:1081112.

doi: 10.3389/fnsys.2022.1081112

COPYRIGHT

© 2022 Yufik, Friston and Moran. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Editorial: Understanding in the
human and the machine

Yan M. Yufik1*, Karl J. Friston2 and Rosalyn J. Moran3

1Virtual Structures Research Inc., Potomac, MD, United States, 2Queen Square Institute of

Neurology, University College London, London, United Kingdom, 3Department of Neuroimaging,

Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London,

United Kingdom

KEYWORDS

self-organization, understanding, grasp, general intelligence, complexity, prediction,

explanation, mental model

Editorial on the Research Topic

Understanding in the human and the machine

This Research Topic was initiated in a workshop—in August 2021 in Washington

D.C. – under the auspices of the U.S. Air Force Office of Scientific Research and Air

Force Research Laboratories. This Issue is dedicated to analyzing understanding and is a

sequel to 2017 Research Topic, which focused on the fundaments of self-organization in

the nervous system https://www.frontiersin.org/research-topics/4050/self-organization-

in-the-nervous-system#articles. A crosscutting theme in both journals—and the

workshop—is the principle of Variational Free-Energy Minimization (VFEM), also

known as Active Inference (Friston et al., 2006; Friston, 2010; Parr et al., 2022). This

principle has been applied to further our understanding of the role, adaptive value and

neuronal mechanisms of the capacity to understand (“understanding of understanding”).

Conceptualizing understanding as a product of uniquely human self-organization—

obtaining levels of free energy minimization inaccessible to other species—appears

to offer a promising perspective on the neuronal underpinnings of understanding

and designing devices possessing a modicum of human understanding (machine

understanding). This editorial reviews the state-of-affairs in the multidisciplinary

domain of understanding R&D (“the science of understanding”), summarizes some key

ideas in theoretical approaches centered on the application of VFEM (Yufik and Friston,

2016; Yufik et al., 2017), and introduces contributions in the present collection.

Human intellect apprehends the world and itself through the lens of understanding.

Since the time of Aristotle (2004) the capacity to understand—and the innate desire

to exercise that capacity—have been recognized as the defining features of human

intelligence, distinguishing humans from other species (Lear, 1988; Greco, 2014).

Analysis of how understanding operates and influences the ways humans interact with

the world—and with each other—has remained a key focus in psychology (Piaget,

1974, 1978) and philosophical discourse throughout history [e.g., (Kant, 1990 (1781);

Hegel, [1977 (1807)]; Locke, [1996 (1689)]; Russell, [1997 (1921)]; Descartes, [1998

(1637)]; Berkeley, [1998 (1734)]; Hume, [2018 (1739)]). Although never dormant,

interest in the phenomenon of understanding was renewed and re-invigorated in

the modern era, due to the emergence of radically novel conceptual constructs in

mathematics, physics, biology, psychology and other disciplines turning to “eternal”
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questions like what makes the world understandable, the origins

and limits of understanding, etc. from the realm of speculative

philosophy to the mainstream of scientific inquiry (Mehra,

1999; Freeman, 2000; Barsalou, 2008; Rovelli, 2014; de Regt,

2017). Accomplishments in the last decades—at the intersection

of computer science, neuroscience and other disciplines—have

realized some intelligence (learning, reasoning) in engineering

artifacts. The resulting proliferation of smart systems, including

weapons capable of acting autonomously or collaboratively with

warfighters, has created an urgent demand for advances in

machine intelligence to furnish a competitive edge in commerce

and defense. This Research Topic seeks to facilitate progress

in the science of understanding, with a special focus on

machine understanding.

What is understanding and how does it effect performance?

Continuing debates on the subject (Gelepithis, 1986;

Baumberger et al., 2016; Hannon, 2021) reveal a tangle of

issues and controversies that can be traced back to Plato

and Aristotle. And have not been settled since. In particular,

difficulties persist in clarifying relations between understanding,

knowledge and belief (Grimm, 2006; Baumberger, 2014;

Pritchard, 2014), defining the value (benefits) of understanding

in adaptive performance (Kvanvig, 2003, 2009; Grimm, 2012,

2014), circumscribing the relative roles of explanation and

prediction enabled (and perhaps entailed) by understanding

(Khalifa, 2013). The cognitivist school in psychology reduces

understanding to possessing algorithms (subject S understands

task T if S possesses algorithms for carrying out T) (Newell

and Simon, 1972; Simon, 1979). Conversely, other authoritative

sources maintain that understanding involves non-algorithmic

and non-computable components (Penrose, 1997, 2016) and

argue that algorithms can be designed so that computers

give the impression of understanding a task, while remaining

clueless about its meaning (Searle, 1990; Kauffman, 2010). An

example from a psychology classic (Piaget, 1978) illustrates the

distinction between the way non-algorithmic and algorithmic

processes manifest: consider a row of N domino pieces standing

on edge and compare two kinds of performance: predicting

at a glance that, whatever N, when pushing the first piece,

the last piece will fall, vs. predicting the same but only after

having worked mentally through all the N pieces, one-at-a-time.

According to our proposal, diverging views on understanding

are not mutually exclusive but reflect different components

and operational stages in the underlying mechanism, as

discussed below.

Variational Free Energy Minimization (VFEM) rests on

several assumptions, including the following: (a) to survive,

any organism, from the simplest (bacteria) to most advanced

(humans), must possess internal (a.k.a., world or generative)

models that embody regularities in the organism’s environment,

(b) such internal models stir an organisms’ interaction with the

environment toward minimizing variational free energy (VFE)

in sensing–acting cycles (roughly speaking, the VFE expresses

prediction errors, that is, discrepancies between sensations

predicted to follow actions and those actually experienced)

and (c) suppression of prediction errors goes hand-in-hand

with resisting entropic forces and maintaining organisms in

characteristic states (of low entropy) (Friston, 2010). Our

contention is that understanding engages particularly efficient

mechanisms that are unique to human brains. Interested readers

can find more detailed discussions of these notions in Yufik and

Friston (2016) and Yufik (2019, 2021a,b). In brief:

To appreciate the distinction between understanding and

learning, consider how different approaches account for

superior performance in chess. The learning-centric approach

attributes such performance to assimilating large stores of

chess data and winning a new game with reference to the

winning moves of previous games (Chase et al., 1973; Gobet

and Simon, 1996). This account leaves unexplained how humans

can compete with machines that have access to unlimited data

and operate with processing rates billions of times faster than

those seen in humans. Particularly mystifying is a quite common

phenomenon of young talent defeating adult masters [e.g., a 9

year old Reshevsky played over 1,500 games of simultaneous

chess in one US tour and lost <0.5% of the games (Reshevsky,

2012)]. An alternative view predicates superior performance on

superior understanding. How so?

Three definitions in the literature identify significant

components of the understanding capacity (with some critical

exceptions, as will be explained shortly):

1. “Understanding, grasp: apprehending general

relations in a multitude of particulars” (The Webster’s

Collegiate Dictionary).

2. “Understanding requires the grasping of explanatory and

other coherence-making relationships in a large body of

information. One can know many unrelated pieces of

information, but understanding is achieved only when

informational items are pieced together” (Kvanvig, 2003,

p. 192).

3. Scientific understanding involves expressing relations in

the form of equations and acquiring “some feel for the

character of the solution . . . . if we have a way of knowing

what should happen in given circumstances without

actually solving the equations, then we “understand”

the equation, as applied to the circumstances” (Richard

Feynman, cf. de Regt, 2017, p. 102)

A simple example serves to illustrate these definitions.

Consider a scene comprising just two “particulars” (dog,

cat) and imagine grasping the relation between them: “dog

chasing cat.” Note that such grasping requires (a) recognizing

individual behaviors (running cat, running dog), (b) piecing

these informational items together (Kvanvig, 2003, p. 192) and

(c) apprehending a particular form of behavior coordination

(chase). Grasping the relation brought about “a way of knowing
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what should happen in given circumstances” (Richard Feynman,

c/f de Regt, 2017, p. 102) which includes prediction (e.g., if the

dog runs faster than the cat it will intercept the cat; if the cat

speeds up, so will the dog, etc.) and explanation (e.g., the cat

is running because it’s being chased by the dog). Such rough

(qualitative) predictions are inherent in—and derive directly

from—the relation, and can be followed by reasoning about

details, in order to achieve better prediction accuracy (e.g.,

“solving equations” to determine the time of intercept given the

distance and velocities).

Consider now increasing the number of “particulars” and

complicating the scene in three ways: (a) imagine that the

cat disappears behind a fence, (b) let there be an observer

trying to predict what might happen and let there be a tree

behind the fence, visible to the observer and (c) imagine the

observer seeing no trees but entertains the possibility of their

presence. In (a), the dog changes course and runs to the other

side of the fence to intercept the cat. In (b) and (c), the dog’s

behavior does not change, but the observer realizes that the

cat might climb the tree and thus leave the dog disappointed.

Predators are genetically equipped with modeling mechanisms

that reflect long-term statistical averages in the behavior of

their prey (e.g., on the average, prey continue their movement

patterns when disappearing behind objects) and allow gradual

response tuning in the vicinity of such averages, based on

individual experiences (learning). Such mechanisms restrict

adaptive behavior to recollecting precedents—if available—or

to trial-and-error, otherwise (i.e., error suppression strategies

in (b) and (c) are not accessible to most creatures). By

contrast, human mechanisms support the composition of

unified relational structures that integrate the recollected,

and current sensory elements, and simulate interdependencies

among them. Understanding overcomes restrictions engendered

by both genetically fixed automatisms and individual learning—

and makes possible predicting and constructing adequate

responses to novel conditions. Themechanism engages three key

components (Yufik, 1998, 2013, 2021a,b):

1. Integration of initially unrelated elements into coherent

relational models in one-step transitions (akin to phase

transition in physical substrate),

2. Models are synergistic structures: they impose

coordination between the constituent elements that

constrain their variation,

3. Models are self-coordinating and resist fragmentation.

Some clarifications are called for here.

1. Borrowing the notion from physics, models can be viewed

as virtual systems (Yufik, 1998) holding a superposition

of possible organizations afforded by the arrangement of

elements (e.g., and expert model of piece arrangements

on a chessboard holds a superposition of plausible piece

grouping (or functional complexes, in the sense of De

Groot) (De Groot, 1965). Such superpositions collapse to

one configuration yielding the steepest entropy reduction

in the virtual system, giving rise to the experience of grasp,

e.g. [(cat running somewhere), (dog running somewhere)]

→ (dog chasing cat)].

2. Collapse and compression establish coordination across

the model that suppresses superfluous (redundant)

variations. For example, a thought that the cat might start

grooming does not cohere with the form of behavioral

coordination determined by the relation, which bars

such thoughts from entering the observer’s mind when

predicting outcomes.

3. In unified models, thinking of variations in one element

effects corresponding variations in others (hence, the self-

coordination). For example, envisioning the cat climbing

the tree immediately implies a failure to intercept. Similarly,

when considering the moves of particular pieces, unified

models—held by experts—render them aware of the

accompanying exposure and changing relations across the

board, while fragmented models (c.f., novices) preclude

such awareness (Yufik and Yufik, 2018). To intuit the

difference, think of taking opponent’s piece and loosing the

game in a fewmoves (“fool’s mate”) vs. sacrificing own piece

and winning the game.

Crucially, compression and self-coordination in models

precludes an inefficient wasting of time and energy on

(considering) actions with marginal or no impact, while keeping

in focus those few that decide the outcomes—the actions that

“matter.” The scale of such savings can become astronomical as

the number of elements increases. Studies of expert performance

in complex dynamic tasks (firefighters, military commanders)

have found that expert decision processes, instead of weighing

alternatives, converge quickly on a single plan considered by

them to be “obvious” (Klein, 2017). In a similar vein, possibilities

and risks inherent in piece arrangements can be obvious to a

chess prodigy, while less capable players are forced to move

step-by-step through combinatorial fog. A lack of understanding

turns chess positions into incoherent arrangements of pieces,

each having several degrees of freedom. In contrast, expert

models “squeeze out” degrees of freedom and thus provide “a

way of knowing what should happen in given circumstances”

(Richard Feynman, c/f de Regt, 2017, p. 102).

Summarily, understanding derives from self-organization

in the brain that amplify adaptive efficiency, by supporting

the construction of models representing objects, their behavior

and patterns of behavioral coordination—and enabling an

increase in the expressive complexity of such models, without

compromising their efficient use. Stated differently, human

models enable prediction and construction of apt responses

to complex interplays between multiple environmental entities,

by collapsing combinatorial spaces engendered by those
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interplays Complexity collapse (radical simplification) makes

complex situations and responses to them meaningful and

explainable (Yufik, 1998, 2002, 2013). Activities in neuronal

masses constitutive of such models remain the subject of

current and future research (Moran et al., 2013). This kind

of efficiency emerges in the minimization of VFE via the

implicit maximization of model evidence or marginal likelihood

associated to the internal model. In this formulation, log model

evidence can be expressed as accuracy minus complexity. This

means, minimizing VFE is simply a description of the kind

of sentient behavior considered above; namely providing an

accurate account of exchange with the world that is as simple

as possible. Understanding is the key to the right kind of

complexity minimization—the right kind of collapse across

degrees of freedom that capture the regularities, invariances

and compositional regularities evinced by our [inter]action with

the lived world. Indeed the aging brain may imbue better

understanding through increased generalizability (decreased

complexity, Moran et al., 2014).

We now turn to the contributions in this Research Topic.

While centered on VFEM formulations, the intent for the

Issue was to showcase current thinking about understanding

and related problems. Accordingly, articles in the Issue

address a range of opinions spanning philosophy, neuroscience,

cognitive science, biology and engineering, with an excursion

into biological underpinnings of cognitive pathologies. This

introduction serves as an annotated table of contents, breaking

the collection into several (overlapping) thematic groups.

Philosophy of understanding

Khalifa et al. discuss the relative roles of philosophy

and other disciplines (cognitive science, neuroscience, other)

in advancing the science of understanding, suggesting that

philosophy can offer a framework for both formulating

discipline-specific accounts of understanding and then unifying

such accounts under a general theory. Sloman et al. argue that

inquiry into biological foundations of human intelligence should

not be confined to analyzing individual brains but must consider

communities of individuals.

Understanding and consciousness

Pepperell considers whether progress in machine

understanding is predicated on advances machine

consciousness, leaning toward answering this question in

the affirmative. Arguments encompass both general ideas

and experimental findings in neuroscience, venturing into

the domains of creative thinking (understanding paintings)

and offering suggestions regarding the limitations of machine

learning and requirements for machine understanding.

Luczak and Kubo examine the relations between consciousness

and adaptive efficiency. Their predictive Neuronal Adaptation

hypothesis associates consciousness with prediction and

ascribes prediction and error correction abilities to

individual neurons—acting as basic functional units—that

underwrite consciousness.

Human-machine interaction

Parr and Pezzulo observe that applications of machine

intelligence are hampered by the machine’s inability to explain

its decisions, and engage VEFM to argue that comprehensive

explanations require the optimization of generative models at

two levels: a model of the world chooses responses based on

the predicted conditions in the world and a higher-level model

predicts choices in the world model and uses such predictions

to formulate explanations of the lower-level decisions. Schoeller

et al. observe that the robustness of human-machine interaction

depends on the level of trust experienced by users, and

analyze trust determinants and trust-building strategies from the

vantage point of VFEM. Blaha et al. point at the existence of

different stages in the process of reaching understanding, and

suggest natural language probes for tracing progress through

the stages expected to be conserved over humans, machines

and human-machine teams. Llinas and Malhotra review current

research on situation control and suggest approaches, in the

spirit of the VFEM, toward expanding research scope, focusing

on the construction of adaptive situation models that can

predict situational changes and then use prediction outcomes to

minimize errors. Yufik and Malhotra. discuss distinctions and

overlap in the notions of “situation awareness” and “situation

understanding” and argue that attaining mutual human-

machine understanding requires establishing an isomorphism

between the corresponding models. More precisely, since

human models represent objects, their behavior and forms of

situated behavioral coordination, machinemodels that represent

the same would be inherently explainable to users and would

allow straightforward mapping of user feedback onto machine

processes (hence, the mutual understanding).

Evolutionary origins

Vicencio-Jimenez et al. discuss the thermodynamic aspects

of cognitive processes and propose Energy Homeostasis

Principle (EHP) complementing the VFEM principle in

explaining the origins and evolution of intelligence. Intelligence

develops in an open thermodynamic system (brain) in a

growing hierarchy of components (neuronal groupings) that

regulate their energy needs and interact with other components

in the hierarchy while preserving a degree of independence.

Kozma et al. rely on a vast amount of EEG data to formulate
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a model of neuronal processes underlying intelligence. EEG

recordings demonstrate self-organization of neuronal activities,

interspersed with episodic collapses in the ensuing structures.

Such local phase transitions produce phase gradients that

correlate with transient perceptual experiences. The mechanism

of phase transition and become being gradient propagation

is consistent with those envisioned in the Global Workspace

Theory and may be responsible for optimizing trade-offs

between demands posed by rapid adaption to novelty vs.

preservation of stability. Latash discusses substantive similarities

in the theories of motor control and cognitive control: both

postulate predictive processes and anticipatory adjustments to

actions and assume that such prediction and adjustments are

carried out by self-organization processes in the control system,

particularly producing task-specific synergistic groupings of

control elements. These similarities may be indicative of a

common synergistic mechanism participating in the entire range

of control activities, “from figuring out the best next move

in a chess position to activating motor units appropriate for

implementing that move on the chess board” (Latash, this

Research Topic).

Cognitive architecture

Kroger and Kim investigate neuronal responses in

frontopolar cortex (FPC) known to participate in the

performance of complex cognitive functions, including

understanding. The study seeks to determine differences in

FPC involvement when subjects respond to two types of

demands: acquiring and maintaining structured information vs.

manipulating such information in performing cognitive tasks.

Analysis of fMRI data reveals differences in FPC recruitment

and activities sensitive to task organization and complexity.

FPC appears to be particularly involved when responding to

new and/or creating new information. Safron et al. describe

a bio-inspired architecture for robotic control. Analysis of

cognitive control focuses on the navigation problem involving

simultaneous localization and mapping (SLAM) (i.e., build a

map of the terrain concurrently with identifying one’s location

on the map) and hypothesizes that navigation mechanisms

residing in the hippocampal/entorhinal system could be

coopted by evolution in the implementation of higher cognitive

functions. Construction of the world model in the SLAM

architecture is governed by the VFEM principle, entailing

optimization of representational units (c.f., categories) in

the model.

Machine learning

Articles in this thematic group illustrate application of

machine learning methods in the type of tasks where they

excel the most, i.e., classification and recognition. Cai et al.

review results in the application of machine learning and

feature extraction algorithms for emotion recognition, that

is, classifying EEG signals and correlating such classes with

emotional states of the subjects, following classifications of

discrete emotional states in psychological literature. Wang

and Zeng use learning in Spiking Neural Networks (SNN) to

model acquisition of concepts integrating features of different

sensory modalities (multisensory concept learning), under two

conditions: preceding integration, inputs in each modality

either become associated, or remain independent. Integration

vectors produced by the SSN procedure are subsequently labeled

(correlated to concepts) by psychologists.

Neurobiological mechanisms of
cognitive pathologies

Wang et al. investigate pathological conditions in the

nervous system of schizophrenia patients that cause grossly

maladaptive behavior (severe aggression) and admit correction

only via medical treatment. Having established the correlation

between aggression severity and inflammation accompanied

by bacterial dislocation, the study suggests development of

novel methods for containing aggression, which focus on

suppressing inflammation.

Summary and conclusions

To summarize, the articles in this collection present partially

overlapping as well as strongly diverging opinions on issues

dealing with intelligence and adaptive efficiency in a wide range

of settings, from social groups to human-machine teams and

down to individuals demonstrating performance varying from

superior to pathological. The VFEM principle applies at all

levels to some degree; from adjusting social policies, correcting

individual behavior, and treating pathologies. Understanding

is an adaptive strategy within the VFEM scope, expressing

integrative operation of two core principles, as follows.

Models represent regularities in the record of sensory

inflows and an organism’s responses, and vary in scope:

from representing contiguous elements in short segments

in the record to representing non-contiguous element

groupings separated by indefinitely large segments (Yufik,

1998, 2018; Yufik and Sheridan, 2002). Regularities constitute

compressible components in the record, with the degree of

compression dependent on the types of pressure that drive

adaptation. In particular, environmental pressure demands

minimization of prediction errors (i.e., VFE) consequent

on the organism’s decisions, while thermodynamic pressure

demands maintaining life-compatible ratios of energy intakes
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vs. energy expenditures in the brain producing those decisions.

The adaptation-by-learning strategy (recall and compare)

subsists on low degrees of compression, limiting adaptation

scope to low-complexity contingencies in the organism’s

vicinity (think of predators chasing preys). By contrast, a

uniquely human genetic pressure (i.e., curiosity and the desire

to understand) requires unlimited expansions of expressivity

over spatial, temporal and complexity dimensions—thus

creating an incessant demand for compression and the

minimization of complexity (think of formulating theories

and aha moments when the simplicity of the solution

reveals itself).

Biophysics imposes hard constraints on brain development,

limiting the size of the neuronal pool and the ratio of

energy supply and expenditure compatible with sustaining life.

Complexity and thermodynamic (and metabolic) constraints

are intimately linked. For example, the Jarzynski equality

tells us immediately, that the more we change our mind—in

terms of erasing information—the more energy we consume.

Technically, this enables one to associate the complexity of

our world models with the metabolic cost of maintaining

them in open exchange with the environment. Grasp (abrupt

unification of disparate neuronal processes in coherent and self-

coordinating structures) aptly responds to all three forms of

pressure under complexity and thermodynamic constraints, i.e.,

grasp mechanisms allow unlimited expansion in the scope of

regularities captured in world models, while yielding adequate

prediction accuracy at sustainable energy costs. Grasp extracts

the essence (the gist) of a situation, enabling predictions at

costs that are infinitesimally small in comparison with those

the system would be facing without grasp. To fully appreciate

the scale of savings, think of 15 moves look-ahead reported

by world class masters (Kasparov, 2007). Shannon’s (1950)

formula puts the number of possible games after 15 half-

moves at approximately 2 ×1021. Making an assumption that

a player can evaluate one such possibility per second and

can keep this rate up for 30 mins obtains about 2 × 103

evaluations, indicating reduction in the amount of processing on

the scale 1018 : 1. Figuratively, grasp confines costly evaluations

(reasoning about moves) to the gist of the position held

within a hair thin path in a combinatorial ocean that is

million times wider than the Pacific. Some articles in this

Issue resonate with the above ideas, while some others offer

interesting alternatives.

In conclusion, we offer some observations and suggestions

for future research in biological and machine intelligence. The

history of the latter can be divided into four periods: pebbles,

abacus, calculators and computers. Gadgets of the former three

types hold only data, while algorithms for manipulating data

remain in the mind of the user. The computer revolution

was propelled by the realization (John von Neumann) that

algorithms can be held alongside data in the same medium. This

revolution allowed the delegation of learning to machines, with

the temptation to reduce all of higher cognition to algorithmic

data manipulation (machine learning). As a result, progress

in machine intelligence has relied primarily on advances

in the efficiency of data manipulation, which is, in a way

orthogonal to that exploited by evolution (human neurons

are not faster, smaller or more energy efficient than other

species, though there are more of them). The tremendous

value produced by machine learning does not change the

fact that, in principle, learning machines operate in a context

invariant fashion—in familiar conditions—and can only deceive

users into ascribing understanding to them while, in fact,

having none.

Evolution has explored the adaptation-by-learning

route in millions of species and during billions of years

since the emergence of life on earth, and ran into a dead

end in higher animals. Understanding is a product of a

recent evolutionary discovery [which, conceivably, coopted

some existing mechanisms (Yufik, 2018, 2021a) that, in

about 100,000 years, advanced human civilization from

foraging and hunting to launching missiles and sending

telescopes to the outer space]. The core mental act of

‘merging pieces together’ is non-verbalizable but could

have given birth to language (Berwick and Chomsky,

2017). The adaptive value of a non-algorithmic “grasp”

derives precisely from its ability to overcome inertia and

dissolve templates acquired in the course of learning. It

is not unreasonable to assume that imparting a modicum

of understanding capacity to machines could bring about

benefits on a par with or greater than those delivered by the

computer revolution.

Technically speaking, the transition from machine learning

to machine understanding shifts the research emphasis from

representing recognition via vector mapping (as in neural nets)

to representing relations via coordinated vector movement

(think of the domino row and associate direction vector

with each piece—considering that rotating one vector in

the first piece brings about similar rotations in others).

Challenges posed by deviating from the von Neumann–Turing

architecture and/or designing computable approximations of

the ways understanding operates might be stupendous but not

insurmountable (Siegelmann, 1999; Yufik, 2002; Traversa and

Di Ventra, 2017; Di Ventra and Traversa, 2018; Hylton, 2022).

VFEM does not stipulate methods for implementing machine

intelligence but constrains the conceptual or computational

space for formulating them and establishes a tractable

performance metric. Arguably, the problem of machine

consciousness is subordinate to that of machine understanding:

if understanding is a lens, consciousness acts as an eyelid:

one can see when the lid is up and not when it is

down (with degrees of clarity depending on the degree

of squinting).
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A recent book on expert decision making was entitled

“Sources of Power” (Klein, 2017), whose title coheres with one

of the key insights in a philosophical classic:

“Quite generally, the familiar, just because it is familiar,

is not cognitively understood. The commonest way in which

we deceive either ourselves or others about understanding is

by assuming something is familiar and accepting it on that

account; with all its pros and cons, such knowing never gets

anywhere, and it knows not why.

. . . The analysis of an idea, as it used to be carried out

was, in fact, nothing else than ridding it of the form in which

it had become familiar. . . . The activity of dissolution is the

power and work of the Understanding, the most astonishing

and mightiest of powers, or rather the absolute power”

[Hegel, [1977 (1807)], p. 18].

Harnessing this power can be decisive in securing

competitive edge in commerce and defense.
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