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Muscle synergies have been proposed as functional modules to simplify the complexity
of body motor control; however, their neural implementation is still unclear. Converging
evidence suggests that output projections of the spinal premotor interneurons (PreM-
INs) underlie the formation of muscle synergies, but they exhibit a substantial variation
across neurons and exclude standard models assuming a small number of unitary
“modules” in the spinal cord. Here we compared neural network models for muscle
synergies to seek a biologically plausible model that reconciles previous clinical and
electrophysiological findings. We examined three neural network models: one with
random connections (non-synergy model), one with a small number of spinal synergies
(simple synergy model), and one with a large number of spinal neurons representing
muscle synergies with a certain variation (population synergy model). We found that the
simple and population synergy models emulate the robustness of muscle synergies
against cortical stroke observed in human stroke patients. Furthermore, the size of
the spinal variation of the population synergy matched well with the variation in spinal
PreM-INs recorded in monkeys. These results suggest that a spinal population with
moderate variation is a biologically plausible model for the neural implementation of
muscle synergies.

Keywords: muscle synergies, optimization, spinal interneurons, neural manifold, redundancy

INTRODUCTION

Our body is remarkably complex, yet we display a highly stable motor performance. For example, to
reach for a coffee cup on a desk, there are an infinite number of patterns of muscle activity involved
in extending the arm because multiple muscles span the same joint. Nevertheless, we show a highly
stereotyped movement trajectory and agonist-antagonist muscle activity patterns (Morasso, 1981).
Understanding how the central nervous system (CNS) coordinates the redundant musculoskeletal
system is a central question of motor control.

Muscle synergies have been proposed as a solution to control redundant systems by coordinating
a number of muscles with a smaller number of control modules, which are called muscle synergies
(Tresch et al., 1999; Bizzi et al., 2002; d’Avella et al., 2003). This hypothesis is phenomenologically
supported by experimental observations that a linear combination of basic patterns of muscle
activity successfully reconstructs muscle activity during a wide range of behaviors, including reflex
movements (Tresch et al., 1999; Cheung et al., 2005), postural tasks (Torres-Oviedo et al., 2006;
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Ting and McKay, 2007), locomotion (Ivanenko et al., 2004;
Krouchev et al., 2006; Dominici et al., 2011), reaching, and
grasping (d’Avella et al., 2006; Overduin et al., 2008; Takei et al.,
2017). However, there is still a heated debate regarding whether
these experimental observations reflect a physiological basis of
low-dimensional control in the CNS or an epiphenomenon
based on task constraints and/or biomechanics (Tresch and Jarc,
2009; Kutch and Valero-Cuevas, 2012; Lillicrap and Scott, 2013;
Hirashima and Oya, 2016).

Hirashima and Oya (2016) demonstrated that a neural
network model that did not explicitly assume muscle synergies
in the model could produce a synergy-like low-dimensional
structure in muscle activity when the network was optimized to
produce different combinations of elbow and shoulder torques
while minimizing motor effort and motor error (Hirashima and
Oya, 2016). This clearly shows that the mere fact that muscle
synergies can be extracted from muscle activity is not enough to
separate the presence or absence of underlying neural modules in
the control system. Therefore, to examine the existence of muscle
synergies, it is essential to identify the neural implementation of
muscle synergies in the nervous system and develop a biologically
plausible model.

Accumulating evidence from physiological and anatomical
studies suggests that spinal premotor interneurons (PreM-INs)
to motoneuron pools are the neural basis of muscle synergies
in frogs (Kargo and Giszter, 2000, 2008; Hart and Giszter, 2010;
Kargo et al., 2010), rodents (Levine et al., 2014), and primates
(Takei and Seki, 2010, 2013; Takei et al., 2017). For the hindlimb
control in frogs, it has been established that neural circuits for
muscle synergies are implemented in the spinal cord (Kargo and
Giszter, 2000, 2008; Kargo et al., 2010). Furthermore, output
projections of PreM-INs identified by spike-triggered averaging
showed a significant correlation with output patterns of extracted
muscle synergies during wiping reflexes (Hart and Giszter, 2010).
For the upper limb control in primates, our previous study
demonstrated that cervical spinal PreM-INs have a divergent
projection to multiple hand and arm motoneurons (Takei and
Seki, 2010, 2013) and their spatial distribution corresponds to the
spatial weight of muscle synergies extracted from muscle activity
(Takei et al., 2017). These results suggest the contribution of
spinal PreM-INs to the generation of muscle synergies. However,
while the output projection of each PreM-IN corresponded to the
muscle synergies, they also showed a substantial variation in the
projection patterns across PreM-INs. Moreover, their temporal
activation patterns were heterogeneous and were not clustered
as muscle synergies at the individual neuron level. This finding
clearly contradicts the assumption that each muscle synergy can
be modeled as a unitary “module,” where single or population
neurons are synchronously activated by common inputs and act
as fixed units. Such unitary modules are implicitly or explicitly
assumed when applying linear decomposition methods such
as non-negative matrix factorization (NNMF). Therefore, the
development of neural models to explain how muscle synergies
are implemented with divergent spinal PreM-INs has been
awaited to reconcile physiological findings.

Here, we created neural network models for muscle
synergies and compared their performance to explain a known

experimental phenomenon: the robustness of muscle synergies
for cortical stroke (Cheung et al., 2009, 2012). In experiment 1,
we examined the existence of muscle synergies by comparing
two neural network models: one with random connections from
the cortical layer to the muscle layer (non-synergy model)
and the other with a small number of spinal synergies in the
middle (simple synergy model). Then, in experiment 2, we
sought a more biologically plausible model for muscle synergies
by allowing a certain level of variation in spinal neurons
that constitute muscle synergies (population synergy model).
Our results demonstrate that (1) the simple and population
synergy models emulate the robustness against cortical stroke
that was observed in human stroke patients, and that (2)
the population synergy model has a similar performance to
the simple synergy model when the spinal variation was
moderate, as in the variations of spinal PreM-IN recorded
in non-human primates in our previous study (Takei et al.,
2017). These results suggest that the population synergy model
with a moderate spinal variation is a biologically plausible
model for neural implementation of muscle synergy to achieve
robust motor control.

MATERIALS AND METHODS

Neural Network Models
We compared three types of neural network models for neural
implementation of muscle synergy: (1) non-synergy model, (2)
simple synergy model, and (3) population synergy model.

Non-synergy Model
The non-synergy model was the same as the neural network
model in previous studies (Hirashima and Nozaki, 2012;
Hirashima and Oya, 2016). Briefly, a feedforward neural network
was used to convert the desired torque (input layer) into
the actual torque (output layer) through an intermediate
layer composed of 1,000 cortical neurons and eight muscles
(Figure 1A). Each cortical neuron received the desired torque
vector (τ ) from the input layer with synaptic weights (W).
Then, the cortical neurons projected to the muscles with
innervation weights (Z). The innervation weights from each
cortical neuron to muscles were established so that Zi (i = 1–
1,000) were uniformly distributed on the surface of a sphere
in an 8-dimensional space, with a radius of 0.002 (=2/n).
The eight muscles included two shoulder flexors (outer and
inner shoulder flexors: SFo and SFi, respectively), two shoulder
extensors (outer and inner shoulder extensors: SEo and SEi,
respectively), an elbow flexor and extensor (EF and EE,
respectively), and a biarticular flexor and extensor (BiF and
BiE, respectively). The mechanical effects of the muscles
(mechanical direction vectors, MD vectors) were in line with
those of the previous model (M) (Hirashima and Nozaki,
2012; Hirashima and Oya, 2016). Muscle activity (a) was
constrained to be non-negative by replacing negative muscle
activity with zero, which made the model non-linear (a ≥ 0).
The total output of the network (T) was expressed as the
vector sum of the mechanical output of all muscles. The
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synaptic weight from the input layer to the cortical neurons
was initially selected from a standard normal distribution with
a zero mean and unitary standard deviation. Then, it was
modified by the error feedback-with-decay algorithm (Hirashima
and Nozaki, 2012; Hirashima and Oya, 2016) (see section
“Training Procedure”).

Simple Synergy Model
In the simple synergy model, we added a spinal synergy layer
between the cortical and muscle layers (Figure 1B). Other than
the addition of the spinal synergy layer, the simple synergy model
was identical to the non-synergy model. The cortical output
to the spinal synergies (X) was similarly defined as the non-
synergy model (Z), but the target number was different. To define
the spinal synergies, we extracted muscle synergies from muscle
activations produced by the optimized non-synergy model. After
optimizing the non-synergy model in the learning simulation
of 40,000 trials, we applied a non-negative matrix factorization
(NNMF) to the muscle activation patterns during the last 100
trials of the training session. To determine the number of
muscle synergies, we performed a four-fold cross validation of
NNMF for the different numbers of muscle synergies (1–7),
and plotted the averaged variance accounted for (VAF) as a
function of the number of muscle synergies (Figure 1E). VAF
was calculated as VAF = 1 – SSE/SST, where SSE is the sum of
the squares of residual errors, and SST is the sum of the square
differences between each data point and the overall mean. Similar
to Hirashima and Oya (2016), we successfully extracted four
muscle synergies from their non-synergy network model based
on the criterion that the VAF exceeds 0.90 (Hirashima and Oya,
2016). To maintain consistency in the muscle synergy extraction,
we set the number of synergies to four for the following NNMF
analyses. The synergy weights (Sy1–4) of the non-synergy model
were used to define the output of the four spinal synergies (V) in
the simple synergy model. In this regard, the synergies explicitly
defined in the simple synergy model were identical to the muscle
synergies that were originally extracted from the non-synergy
model, which are referred to as original synergies. This procedure
is particularly critical when testing the robustness of muscle
synergies because the previous study demonstrated that different
synergies could be extracted when NNMF is executed from
different initial values (Hirashima and Oya, 2016). By applying
the muscle synergies extracted from the non-synergy model to the
other model, we controlled the initial synergy structure of both
models to be the same.

Population Synergy Model
In experiment 2, we further tested another synergy model, in
which there were 100 spinal neurons (n = 100). Initially, each
group of 25 spinal neurons was provided one of the synergy
weights (Sy1–4) for their outputs (V). Then, by adding a different
proportion of Gaussian noise to the synergy weights (V), we
systematically created population synergy models with different
spinal variation levels. The output weights of each spinal neuron
(Vi, i = 1–100) was obtained by mixing the original synergy
weights (Syk, k = 1–4) with Gaussian noise (ω), which was

normalized to the norm to be unitary, with a certain proportion
(ρ):

Vi = (1− ρ)Sy+ ρω

By changing the proportion of noise (ρ) from 0 to 1,
we systematically investigated the synergy models which had
different spinal variations, replicating a variation of the spinal
PreM-INs recorded in monkeys performing a precision grip task
(Takei et al., 2017). The silhouette value was calculated to evaluate
the clustering of the spinal neurons with regard to their similarity
to the original synergies (Sy1–4) (Rousseeuw, 1987).

Isometric Torque Production Task
We trained each network to perform isometric torque production
tasks using a two-joint system (shoulder and elbow) (Herter et al.,
2007). The target torque combination was chosen from eight
possible torque combinations [shoulder flexion (SF), shoulder
and elbow flexion (SF + EF), elbow flexion (EF), shoulder
extension and elbow flexion (SE + EF), shoulder extension (SE),
shoulder and elbow extension (SE + EE), elbow extension (EE),
and shoulder flexion and elbow extension (SF + EE)] with
the norm of 1 Nm.

Training Procedure
The synaptic weight from the input layer to the cortical neurons
(W) was modified using the error feedback-with-decay algorithm
(Hirashima and Nozaki, 2012; Hirashima and Oya, 2016):

1Wij = −α
∂Je
∂Wij

− βWij

where, α is the learning rate (α = 20) and Je is the error
cost, as calculated by the error vector (e = T – τ ) between the
output torque and the desired torque: Je = 1/2eTe. The second
term indicates that the changes in synaptic weight due to synaptic
memory decay in each step are proportional to the current
synaptic weight Wij. The decay rate β was set to 1.0 × 10−4,
which is much smaller than the learning rate (α = 20). By
randomly presenting one of the eight target torque combinations
in 40,000 trials and modifying the synaptic weight (W) after each
trial, the network was trained to produce the appropriate output
torque. The step-by-step update of W for the non-synergy model
can be written as:

W (t + 1) = W (t)+1W (t)

=W (t)+
(
−α

∂Je
∂W (t)

− βW (t)
)

=W (t)− αZTMT (MZW (t)− I) τ (t) τ (t)T

−βW (t) (1)

This update procedure has been mathematically proven to
reach an optimal solution for linear models (Hirashima and
Nozaki, 2012). To incorporate the non-linearity of our model,
where muscle activity is constrained to be non-negative (a ≥ 0),
we modified M by replacing the MD vector with [0,0]T if the
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FIGURE 1 | Non-synergy and simple synergy models for shoulder and elbow torque task. (A,B) Neural network model without (non-synergy model, A) or with a
synergy layer (simple synergy model, B). Cortical stroke was modeled as an addition of Gaussian noise to W. (C) Mechanical direction (MD) for the eight muscle
groups. (D) Preferred direction (PD) after optimization with the non-synergy model shown in panel (A). (E) Cross-validation procedures of non-negative matrix
factorization (NNMF) to select the number of muscle synergies. NNMF was applied to the muscle activations of the last 100 trials in the learning simulation with the
non-synergy model shown in panel (A). Error bars: standard deviation. (F) Muscle synergies extracted from the non-synergy model. Note that these synergy weights
(Sy1–4) were used to define the output of four synergies (V ) in the simple synergy model shown in panel (B).

muscle activity generated at each step [a = ZW(t)τ (t)] was
negative (a < 0). With the modified MD vector, M̃, the update
equation [Eq. (1)] can be rewritten as:

W (t + 1) = W (t)− αZTM̃T (
M̃ZW (t)− I

)
τ (t) τ (t)T

−βW(t) (2)

This procedure eliminates the effect of negative muscle
activity by disabling the mechanical output of the muscles. Our
previous numerical simulation demonstrated that our training
procedure can make the non-linear system reach a solution
qualitatively similar to the optimal solution derived by the linear
model. This was demonstrated by the fact that the synaptic
weight matrix (W) is aligned orthogonally to the mechanical
property matrix (M) of the muscle, which is an essential
property of the optimal solution (i.e., pseudo-inverse of M)
(Hirashima and Nozaki, 2012). For the synergy model (simple
or population synergy model), Z in Eq. (1) and (2) is replaced
with VX.

Stroke Model
To simulate the situation of cortical stroke, we added Gaussian
noise (∼N[0, σ2]) to the cortical synaptic weights (Stroke,
Figures 1A,B, 6A,B), since previous human imaging studies
showed that the long-scale entropy of MEG signal increased in
perilesional tissues in stroke patients (Kielar et al., 2016). We
systematically changed the stroke size (σ) from 0 to 10 standard
deviations (SD) of the original synaptic weights (W). We sampled
200 different stroke cases for each stroke size (σ = 0–10) and
evaluated their task performance.

Evaluation of Task Performance and
Muscle Synergies
To evaluate the stroke effect on task performance and muscle
synergies, we used 96 target torque combinations (32 uniformly
distributed torque directions × 3 amplitudes [0.5, 1, and 2 Nm])
instead of the eight trained torque combinations. We quantified
two types of performance errors, directional error and amplitude
error, as a function of stroke size. The directional error was
defined as the angle between the target torque vector and the
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torque vector output by the model. The amplitude error was
defined as the difference between the amplitude of the target
torque and the model output. Both errors were calculated for
each stroke size, and the absolute values were averaged across the
200 stroke cases.

To evaluate the consistency of muscle activation patterns,
we quantified the shift in the preferred direction (1PD).
PD was defined as the direction in which the muscle is
maximally active and it was calculated by the summation of
the target torque vectors weighted by muscle activity. 1PD
was defined as the absolute shift in PD from no stroke cases
(σ = 0).

To evaluate the robustness of muscle synergies in cortical
stroke, we quantified two different measures: VAF by the original
muscle synergies and similarity of muscle synergies to the
original muscle synergies. For these evaluations, we used muscle
activations during the same 96 target torque combinations.
To evaluate the VAF by the original muscle synergies (Sy1–
4), we applied NNMF for muscle activation without updating
the synergy weights (Sy1–4). We then calculated the VAF
between the observed and reconstructed muscle activity. This
measure indicates how much variance in muscle activity can
be explained by the original muscle synergies (Sy1–4). Note
that the synergy weights (V) for the simple and population
synergy models were derived from the original muscle synergies
extracted from the non-synergy model (see section “Neural
Network Models”). Therefore, we expect that the VAF by the
original muscle synergies will be the same for all synergy
models under the intact (σ = 0). and no spinal variation
(ρ = 0) conditions. We also compared the similarity of muscle
synergies extracted in each stroke case with the original muscle
synergies. We applied NNMF to muscle activity to extract
muscle synergies for each stroke case. For this extraction, we
did not use n-fold cross validation, and the number of muscle
synergies was fixed at four to allow for a consistent comparison.
Then, we calculated the dot product between the extracted
synergies and the original synergies. We used the max dot
product to determine the similarity of each muscle synergy and
averaged the values across the four synergies. This measurement
represents the consistency of the muscle synergies between
different stroke conditions.

Statistical Analyses
To test the significance of the effect of different neural network
models on performance measures (directional error, amplitude
error, 1PD, VAF by the original synergies, and similarity
with the original synergies), we used the bootstrap method.
For the two groups of parameter samples (n = 200), we
first calculated the original difference in the mean of two
populations (1mean). Then, we pooled the two populations,
resampled two populations of the same size with replacement,
and calculated the 1mean. This process was repeated 1,000
times to obtain a baseline distribution of the 1mean. We set
the significance limits of this distribution to 0.23 (= 2.5/number
of stroke conditions) and 99.77 (= 100 – 2.5/number of
stroke conditions) percentile that matched a significance level
of p < 0.05, with Bonferroni’s correction. All simulations

and analytical procedures were performed using MATLAB
(MathWorks, RRID:SCR_001622).

RESULTS

Non-synergy and Simple Synergy Models
Have Comparable Training Ability
In experiment 1, to test the existence of muscle synergies in
the nervous system, we compared the task performance of the
neural network model with and without muscle synergies (simple
synergy vs. non-synergy models). In the non-synergy model,
cortical neurons had random direct connections to the muscles
(Z). Cortical activation patterns (W) were optimized to achieve
the model to output the desired shoulder and elbow torques while
minimizing the sum of squares of cortical activity (Figure 1A).
As Hirashima and Oya (2016) demonstrated previously, the non-
synergy model reproduced a shift in the preferred direction
of muscles (Figure 1D) relative to their mechanical directions
(Figure 1C), and the muscle activation patterns were successfully
reconstructed with a linear combination of four muscle synergies
(VAF ≥ 0.9, Figures 1E,F). We refer to the synergies extracted
from the non-synergy model as the original synergies (Sy1–4,
Figure 1F). In the simple synergy model, we added four spinal
synergies between the cortical and muscle layers (Figure 1B).
We set the output weight of the synergies (V) to be the same as
the synergy weights extracted from the non-synergy model (Sy1–
4, Figure 1F). Other than the addition of the synergy layer, the
simple synergy model was the same as the non-synergy model.

First, we compared the learning performance of the non-
synergy and simple synergy models. Both models were trained to
produce eight combinations of shoulder and elbow torques while
minimizing the sum of squared cortical activity (i.e., minimizing
error cost and motor cost). Figure 2A shows the trial-dependent
changes in the error magnitude averaged across the eight target
conditions. After a 40,000-trial training, we found that learning
converged in both models, and they reached similar residual
errors (Figure 2C). However, during the training, the learning
speeds differed. At the initial phase of the training (Figure 2A,
left), the learning curve was steeper in the simple synergy model
than in the non-synergy model, and the learning rate, fitted by
an exponential curve, was higher in the simple synergy model
(Figure 2B, p< 0.05, bootstrap test, n = 1,000). This indicates that
learning progressed faster in the simple synergy model than in the
non-synergy model. This result is consistent with the previous
study, which examined the learning performance of similar
network models (Hagio and Kouzaki, 2018). Furthermore, we
also tested trial-dependent changes in the sum of squared cortical
neural activity (Figure 2D). We found that after training, cortical
activity was less for the simple synergy model than for the non-
synergy model (Figure 2E). Figure 3A compares the distribution
of activity size of cortical neurons in both models. This shows that
the distribution is narrower in the simple synergy model than
in the non-synergy model, and that the activity size is generally
reduced rather than changed in a specific group of neurons.
Interestingly, despite the prominent difference in cortical activity,
the sum of squared muscle activity was the same for both models
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FIGURE 2 | Learning performance of non-synergy and simple synergy models. (A) Trial-dependent changes in the error magnitude for non-synergy (blue) and simple
synergy model (red). Line and shade, mean and standard deviation across the simulations (n = 200). Trials of each set of eight targets were averaged for presentation
purpose. (B) Averaged learning speed calculated by fitting of an exponential curve. Gray dots, each simulation. Error bar, standard deviation. (C) The same format
but for residual error at the end of the training. (D) The same format but for the sum of squared cortical neural activity. (E,F) The same format but for the sum of
squared activity of cortical neurons (E) and muscle activity (F) at the end of training. *p < 0.05; ns, non-significant; bootstrap test, n = 1,000.

(Figure 2F). These results indicate that the simple synergy model
showed faster convergence of learning and smaller neural activity,
although both models exhibited similar task performance.

Simple Synergy Model Exhibits a Higher
Robustness Against Cortical Stroke
Than Non-synergy Model
We compared the robustness of non-synergy and simple
synergy models against cortical stroke. To simulate the situation
of cortical stroke, we added random noise to the cortical
connections (W) of different sizes (σ = 0–10 SD). We tested 200
different stroke cases for each stroke size. Figure 4 shows three
examples of torque output by the non-synergy model (Figure 4A)
and simple synergy model (Figure 4B) in no-stroke and in two
different sizes of stroke (σ = 1 and 2 SD). Both models showed
increasing instability as the stroke size increased. However,
systematic differences exist in the distribution of the errors. While
the errors of the non-synergy model were distributed almost
evenly in all directions (i.e., circular shape), the errors of the
simple synergy model were distributed more ovally, and the main
axis was along the target direction. For example, for the shoulder
flexion target (the rightmost target) with σ = 2SD, the error was

distributed horizontally in the simple synergy model (Figure 4B);
however, it was distributed evenly in the non-synergy model
(Figure 4A). To examine the details of the task performance, we
evaluated two types of errors: directional error and amplitude
error. The directional error is the angle between the target torque
vector and the torque vector output by the model, while the
amplitude error is the difference between the amplitude of the
target torque and the output of the model. Figures 4C,D show
an increase in the directional and amplitude errors as a function
of stroke size. The figures show that whereas the amplitude error
of both the non-synergy and simple synergy models increased in
a similar manner, the simple synergy model produced a smaller
size of directional error (p < 0.05, bootstrap test, n = 1,000)
although the effect size was relatively small (Cohen’s d was ranged
from 0.15 to 0.94). This result suggests that the simple synergy
model retains the ability to coordinate muscle activity even when
cortical activity is disturbed, and robustly generates joint torques
in the correct direction.

Next, we compared the robustness of muscle activation
patterns between non-synergy and simple synergy models.
Figures 5A,B illustrate muscle activation for each target direction
with non-synergy and simple synergy models in no-stroke and
two different sizes of stroke cases (σ = 3 and 6 SD). While muscle
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FIGURE 3 | Comparison of cortical activity between models. (A) Distribution of cortical activity of non-synergy (blue) and simple synergy model (red). Activity of
cortical neurons (n = 1,000) was pooled for 8 target locations (n = 8,000). (B) Comparison of cortical activity between population synergy model with different spinal
variation (ρ) with non-synergy (gray) and simple synergy (black) models. (C) Mean squared cortical activity of population synergy model (blue) with different spinal
variation (ρ) in comparison with non-synergy (gray) and simple synergy (black) models. Line and shade, mean and standard error of mean across pooled neurons
(n = 8,000).

activation of the non-synergy model was severely disturbed by
stroke, the simple synergy model expressed more consistent
muscle activation. The shift in PD (1PD) was quantified as
the absolute difference of the PD from no-stroke cases (σ = 0).
Figure 5C shows that 1PD was significantly smaller for the
simple synergy model than for the non-synergy model (p< 0.05,
bootstrap test, n = 1,000). This result indicates that the simple
synergy model is more robust for cortical stroke to generate
consistent muscle activation.

We further compared the robustness of muscle synergies
between non-synergy and simple synergy models. To quantify the
robustness of muscle synergies, we compared two measures: (1)
how much variance of affected muscle activity can be accounted
for by original synergies (VAF by original synergies) and (2)
how similar the synergies extracted from the affected muscle
activity was to the original synergies (similarity with original
synergies). Figures 5D,E demonstrate that while both measures
steeply decrease in the non-synergy model, they remain high in
the simple synergy model (≥0.90, Figure 5D, red dotted line),
even when the stroke size increased to 10 SD. The difference in
the effect of stroke size on each model was significant for both
measures (p < 0.05, bootstrap test, n = 1,000). These results

indicate that the simple synergy model more robustly generates
consistent muscle synergies under stroke conditions.

Population Synergy Model With a
Moderate Spinal Variation Exhibits a
Comparable Robustness to Simple
Synergy Model
We examined how the synergies could be organized in the
spinal layer. The simplest model is that in which each
synergy is represented by a single neuron or unitary “module”
(simple synergy model, Figures 1B, 6A). However, our previous
physiological study showed that a muscle field of individual spinal
PreM-INs did not completely match muscle synergies but showed
substantial variation in spatial and temporal activation patterns
(Takei et al., 2017). Therefore, a more plausible model can be
developed in such a way that a synergy is represented by a
population of neurons with some variation (population synergy
model, Figure 6B). To test this scenario, in experiment 2, we
compared the robustness of these synergy models against the
introduction of cortical stroke. First, we systematically changed
the size of the variation of synergies by changing the proportion
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FIGURE 4 | Effect of cortical stroke on task performance. (A,B) Examples of torque output by non-synergy model (A) and simple synergy model (B) in no stroke and
two different sizes of stroke (σ = 1 and 2 SD). Each dot indicates one stroke case. Only 100 examples are plotted for visualization purpose. Open circle, target torque
combination. (C,D) Size of directional error (C) and amplitude error (D) as a function of stroke size (σ = 1–10SD). Line and shade, mean and standard deviation
across 200 stroke cases. Open and filled circles indicate significant and non-significant differences between two models (p < 0.05, bootstrap test, n = 1,000).

(ρ) of Gaussian noise to the synergy weights (V). We found
that spatial clustering of the output weights of each spinal
neuron based on the similarity to the original muscle synergies
decreased as the variation level ρ increased (Figure 6C). The
level of clustering was evaluated using silhouette values (0.93,
0.81, and 0.56 for ρ = 0.2, 0.3, and 0.4, respectively) (Rousseeuw,
1987). Importantly, our previous electrophysiological study
demonstrated that the similarity of output projection of spinal
PreM-INs to extracted muscle synergies showed a spatial
clustering and their silhouette values ranged from 0.79 to 0.87
(Figure 2A of Takei et al., 2017). This silhouette value was
comparable to that of the population synergy model, with ρ = 0.3.
After network training procedures, all population synergy models
showed a similar level of task performance, with residual errors
ranging from 0.017 to 0.083, comparable to the performance
of the non-synergy and the simple synergy models (Figure 2C,
95% interval: 0.006 – 0.083 and 0.012 – 0.064, respectively). The
amount of cortical activity generally increased as spinal variability
increased, and it exceeded the non-synergy model when spinal

variability was greater than 0.3 which was the physiologically
observed level (ρ > 0.3, Figures 3B,C).

Then, we compared the robustness of task performance and
muscle synergies in cortical stroke between the simple and
population synergy models. Figures 7A–E shows the change in
task performance, 1PD, and muscle synergies as an effect of
cortical stroke. As a reference, we also plot the results of the non-
synergy model (Figures 7A–E, gray rectangles). In general, results
of the population synergy models spanned from the results of
the simple synergy model to those of the non-synergy model.
For example, the directional error of the population synergy
model was similar to the simple synergy model when the spinal
variation was smaller (ρ = 0.0–0.2, Figures 7A–E, red lines),
while it was similar to the non-synergy model when the variation
was larger (ρ = 0.8–1.0, blue lines). This gradual change was
observed for directional error, 1PD, and two muscle synergy
measures (p < 0.05, bootstrap test, n = 1,000), but not for
the amplitude error (Figure 7B). Critically, the robustness of
the population synergy models remained almost at the same
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FIGURE 5 | Effect of cortical stroke on muscle synergies. (A,B) Examples of muscle activation with non-synergy model (A) and simple synergy model (B) in
no-stroke and two different sizes of stroke cases (σ = 3 and 6 SD). Circles indicate muscle activation for each torque direction and lines indicate a PD of muscles.
(C) Averaged shift of PD (1PD) from no stroke (σ = 0) condition. (D) VAF by original muscle synergies extracted from non-synergy model and used for simple synergy
model (Figure 1F). (E) Similarity of muscle synergies extracted in each stroke case to the original muscle synergies. The format is the same as Figures 4C,D.

level as the simple synergy model until the spinal variation
level was increased to 0.3 (Figures 7C–E, red-yellow), and then
these measures steeply decreased when the variation increased
further (green-blue). These results indicate that the population
synergy model with moderate variation exhibited robustness
against cortical stroke comparable to that of the simple muscle
synergy model. These results suggest that the muscle synergies
are not necessarily implemented as unitary “modules,” but they
can be implemented as the population of spinal neurons with a
moderate variation.

DISCUSSION

In this study, we compared different neural network models with
a focus on their robustness to cortical stroke. In experiment 1,
we compared two types of neural network models: one with
random connections (non-synergy model) and the other with a
smaller number of spinal synergies (simple synergy model). After
optimization, we found that both models achieved comparable
task performance and similar muscle synergies, confirming the
prediction of a previous study (Hirashima and Oya, 2016).
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FIGURE 6 | Simple and population models for muscle synergies. (A,B) Neural network models with simple synergies (A, same as Figure 1B) and population
synergies with some variations (B). (C) Spatial similarity of output weights of each synergy (V ) with the original muscle synergies with different spinal variation levels
(ρ = 0.2, 0.3, 0.4).

Interestingly, despite the similar task performance after the
training, the simple synergy model had higher learning rates,
consistent with previous findings (Hagio and Kouzaki, 2018),
and smaller cortical activity (Figures 2A–F). This indicates
that although the output performances were similar, the simple
synergy model achieved more efficient muscle control with less
neural activity cost than the non-synergy model.

Then, we tested the robustness of the model performance
against cortical stroke, which was modeled as the addition of
noise to the cortical layer. The results demonstrated that the
simple synergy model exhibited (1) smaller directional error in
torque production and (2) higher consistency of muscle synergies
with the original muscle synergies. This robustness of muscle
synergies was consistent with observations in human stroke
patients (Cheung et al., 2009, 2012). compared muscle synergies
extracted from the unaffected and affected arms of stroke patients
with moderate-to-severe unilateral ischemic lesions in the frontal
motor areas (Cheung et al., 2009). Their results demonstrated
that most of the patients showed muscle synergies that were
strikingly similar between the unaffected and affected arms
despite differences in motor performance between the arms. The
similarity evaluated by a dot product between muscle synergies
from the arms ranged from 0.80 to 0.95 with an average of
0.90. Our results showed that the similarity of muscle synergies
with the original synergies was maintained at >0.90, even

with a severe stroke in the simple synergy model (Figure 5D,
red dotted line). The consistency of our results with previous
findings suggests that the existence of a synergy layer is an
essential factor in explaining the robustness of muscle synergies
in stroke conditions.

We further explored a biologically plausible model for
the neural implementation of muscle synergies. Our previous
study demonstrated that spinal PreM-INs have divergent output
projections to multiple hand and arm motoneurons (Takei and
Seki, 2010, 2013) and their spatial distribution corresponds to the
spatial weight of muscle synergies (Takei et al., 2017). However,
although the output projection of PreM-INs corresponded to
muscle synergies as a population, there was a substantial variation
in the projection patterns across individual PreM-INs. Moreover,
their temporal activation patterns were heterogeneous and were
not clustered as muscle synergies at the individual neuron level.
From these observations, we hypothesized that each muscle
synergy is not represented by a unitary “module,” in which
single or population neurons are synchronously activated by
common inputs, but by a population of PreM-INs that have
variable output projections and are activated independently
(Takei et al., 2017). Consistent with this hypothesis, the present
results demonstrated that the population synergy models with
a spinal variation exhibited comparable robustness of muscle
synergies with the simple synergy model against cortical stroke
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FIGURE 7 | Stroke effects on task performance and muscle synergies with simple and population synergy models. Change in directional error (A), amplitude error
(B), shift of PD (C), VAF by the original synergies (D), and similarity with the original synergies (E) as a function of the size of cortical stroke (SD). Open and filled
circles indicate a significant and non-significant difference from the simple synergy model (open square, p < 0.05, bootstrap test, n = 1,000).

(Cheung et al., 2009, 2012). The similarity of muscle synergy
to the original synergies remained high (>0.90, Figure 7D, red
dotted line) even when the spinal variation level was increased up
to ρ ≤ 0.3 (Figures 7D,E, red-yellow). Importantly, the variation
of spinal PreM-INs reported in our previous study (Takei et al.,
2017) corresponded to ρ = 0.3, according to the silhouette
value calculated from the cluster analysis for spinal PreM-INs
(Figure 2A; Takei et al., 2017). This variation level was within
the range where the present models preserved the robustness of
muscle synergies against cortical stroke. These findings suggest
that the population of spinal neurons with a moderate variation
is a biologically plausible model for the neural implementation of
muscle synergies. Note that previous studies on muscle synergy
modeling also utilize a variation or noise addition, but their
purpose was to test the robustness and degradation of the model
performance (Kargo et al., 2010; Ausborn et al., 2019), which

corresponds to cortical stroke in the present study. On the other
hand, we added a spinal variation to change the synergy structure
so that each spinal neuron has different output projections
and receives input from cortical neurons independently, which
allows spinal neurons to be activated asynchronously. This is
qualitatively different from the conventional “module” models,
which assume that the population of neurons in the same module
are synchronously activated by common input. Our finding
showed that the population synergy model with a moderate spinal
variation showed high robustness and similarity to the monkey
physiological data.

This finding has several implications for the low-dimensional
control of the limb and muscles. First, muscle synergies do not
necessarily reflect the reduction of the degrees of freedom (DOFs)
by a smaller number of unitary modules. Previously, muscle
synergy has often been modeled as a unitary module, where single
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or population neurons are synchronously activated by common
inputs and act as fixed units, and has been interpreted as a
simplified strategy for motor control. However, the spinal PreM-
IN showed substantial variation between neurons to contradict
such a simple view of modular control (Takei et al., 2017). One
possible explanation for the variation of spinal PreM-INs is that
these spinal PreM-INs represent another muscle synergy that was
not recruited in the task tested (a precision grip task). Indeed, for
the control of primate dexterous hand movements, it is suggested
that the higher-order control is working with the lower-order
control which is usually detected as synergies (Santello et al.,
1998; Yan et al., 2020). It is of interest to further examine
how the spinal variability identified here can contribute to the
higher-order control for dexterous hand movements. Another
explanation is that the muscle synergies are represented by a
population of PreM-INs with a certain variability of input and
output connections. The present simulation results demonstrated
that the population of spinal neurons which have a moderate
variation has an ability to robustly control muscle activity to
achieve motor coordination in task space. Despite the apparent
higher dimensionality of the population synergy model, to
achieve the motor coordination in task space the variability of
spinal neurons will necessarily be averaged in the output or may
effectively be in a null space of the output-potent dimension. To
exploit the variations in the population synergy, more selective or
sparse recruitment of subsets the population synergy layer may
be required and then added amplifications of this output may
be needed in a real spinal system. It is noteworthy that a similar
constraint of neural variability to task space has been identified
as neural manifolds in the population activity of motor cortices
(Kaufman et al., 2014; Elsayed et al., 2016; Gallego et al., 2017). It
is of interest to investigate how the cortical manifold and spinal
synergy space interact and are hierarchically organized to regulate
the dimensionality of motor control.

Our model of spinal population with a moderate variation
in muscle synergy also provides implications for motor learning
and development of motor coordination. Previous studies have
demonstrated that motor tasks compatible with the original
muscle synergy are learned faster than tasks incompatible with
muscle synergies (Berger et al., 2013). Interestingly, the results
also showed that although the learning rate was slow during the
incompatible task, learning progressed to explore new synergies.
During this exploration process, the variation in spinal neurons
may be involved in changing the muscle coordination patterns.
It is also interesting to understand how muscle synergies are
obtained during development. In the sensory system, it is
known that the synaptic connection in primary sensory cortices
increases after birth till it reaches a maximum, then prunes
and decreases as neural selectivity increases (Huttenlocher et al.,
1982). In contrast, in the motor system it has been suggested that

muscle synergy is generally conserved from early development
to adulthood in a variety of motor animals (Dominici et al.,
2011; Giszter, 2015; Yang et al., 2019) and that many aspects of
afferent controls and premotor patterning may be independent
of early stage functional activity (Haverkamp, 1986; Mendelson
and Frank, 1991). However, at the same time, these studies
also demonstrated that there are some modifications of muscle
synergies over the course of development, including increased
inter-subject variability (Yang et al., 2019) and recruitment of
additional synergies (Dominici et al., 2011). It would be of interest
to investigate how the variation of spinal PreM-INs shown in this
study relates to these developmental and learning modifications
of muscle synergies.

In conclusion, our network simulation showed that muscle
synergies could be implemented as a population of PreM-INs
with a moderate variation rather than unitary “modules.” This
view provides new insight into understanding the mechanism
and functional relevance of how the CNS controls the
redundant motor system.
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