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Autoassociative neural networks provide a simple model of how memories

can be stored through Hebbian synaptic plasticity as retrievable patterns of

neural activity. Although progress has been made along the last decades

in understanding the biological implementation of autoassociative networks,

their modest theoretical storage capacity has remained a major constraint.

While most previous approaches utilize randomly connected networks, here

we explore the possibility of optimizing network performance by selective

connectivity between neurons, that could be implemented in the brain

through creation and pruning of synaptic connections. We show through

numerical simulations that a reconfiguration of the connectivity matrix can

improve the storage capacity of autoassociative networks up to one order of

magnitude compared to randomly connected networks, either by reducing

the noise or by making it reinforce the signal. Our results indicate that the

signal-reinforcement scenario is not only the best performing but also the

most adequate for brain-like highly diluted connectivity. In this scenario, the

optimized network tends to select synapses characterized by a high consensus

across stored patterns. We also introduced an online algorithm in which the

network modifies its connectivity while learning new patterns. We observed

that, similarly to what happens in the human brain, creation of connections

dominated in an initial stage, followed by a stage characterized by pruning,

leading to an equilibrium state that was independent of the initial connectivity

of the network. Our results suggest that selective connectivity could be a key

component to make attractor networks in the brain viable in terms of storage

capacity.

KEYWORDS

autoassociative memory, Hopfield network, structural plasticity, connectivity

optimization, storage capacity, computational models, attractor dynamics

1. Introduction

The dynamics and functionality of neural networks, both artificial and biological,

are strongly influenced by the configuration of synaptic weights and the architecture of

connections. The ability of a network to modify synaptic weights plays a central role in

learning and memory. Networks in cortical areas and in the hippocampus are believed

to store patterns of activity through synaptic plasticity, making possible their retrieval at
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a later stage, or equivalently the replay of past network

states (Citri and Malenka, 2008; Carrillo-Reid et al., 2016).

Autoassociative neural networks have emerged as crucial models

to describe this mode of computation by means of attractor

dynamics. Memories can be thought of as attractor states that

arise as a consequence of configuring synaptic weights following

aHebbian learning rule, where the synapse between two neurons

is strengthened or weakened depending on how correlated is

their activity (Hopfield, 1982).

A second, less explored way in which interactions between

neurons in autoassociative memories can be modified is

by adding or deleting connections. Evidence suggests that

topological characteristics of biological neural networks are far

from random, and might result from a trade-off between energy

consumption minimization and performance maximization

(Bullmore and Sporns, 2012). Over the course of evolution, what

is now the human brain grew by several orders of magnitude

in terms of the number of neurons (N), but the number of

connections per neuron (c) has remained rather stable (Assaf

et al., 2020). A limitation for increasing c is the scaling of the

volume and mass associated to it, and the fact that white matter

(long-range connections) represents already approximately half

of the total mass of the human brain might indicate a tight

compromise (Herculano-Houzel et al., 2010). The number of

connections, however, is not constant throughout human life.

The formation of neuronal connections in the central nervous

system is a highly dynamic process, consisting of simultaneous

events of elimination and formation of connections (Hua and

Smith, 2004). Studies suggest that a common rule in many parts

of the brain consists of an initial stage where the creation of

connections dominates, peaking during childhood at around 2

years old, and a later reversion stage where pruning dominates

until an equilibrium is reached during late adolescence or early

adulthood (Huttenlocher, 1979; Lichtman and Colman, 2000;

Navlakha et al., 2015). In addition, evidence such as profound

changes in dendritic branching in some cortical areas after

exposing animals to complex environments and cortical axon

remodeling after lesions of the sensory periphery support the

idea that structural changes in the wiring diagram might be

a vital complement of the learning scheme based on synaptic

plasticity (Chklovskii et al., 2004).

Several theoretical variations of the Hopfield network have

been proposed to describe the functionality of the hippocampus

and other brain areas by means of attractor dynamics, with

varying degree of biological plausibility (Amit, 1989; Treves

and Rolls, 1991; Kropff and Treves, 2007; Roudi and Latham,

2007). All these variants, however, share a key limitation of the

original Hopfield model regarding the number of memories that

a network can store and successfully retrieve. Fully connected

Hopfield models, for example, can only store a number of

patterns equal to a fraction αc ∼ 0.138 of the connections

per neuron. If more memories are stored, a phase transition

occurs and the network loses its ability to retrieve any of the

stored patterns. Real brains would need to stay far from the

transition point to avoid this risk, a constraint under which

networks in the human brain, which has N ∼ 1011 neurons but

on average only c ∼ 104 connections per neuron, would be able

to store <p ∼ 103 memories, a rather modest number. Error-

correcting iterative algorithms as an alternative technique to set

the synaptic weight configuration have been shown to increase

the storage capacity up to αc = 2 (Forrest, 1988; Gardner, 1988).

However, the use of fully connected networks and non-Hebbian

modification of synaptic weights limits the applicability of these

ideas to model real brains. Random sparse connectivity offers

only a relative gain in network performance, allowing the storage

capacity to go up to αc = 2/π in ultra-diluted networks, where

c ≪ ln(N) (Derrida et al., 1987), or a slightly lower limit in

less diluted networks where c≪ N (Arenzon and Lemke, 1994).

Some studies suggest that selective pruningmight bemuchmore

effective than random dilution in terms of storage capacity,

making it diverge for ultra-diluted networks (Montemurro and

Tamarit, 2001) or increasing the memory robustness (Janowsky,

1989).

Autoassociative networks gain an order of magnitude in

storage capacity when including a more realistic sparse activity

(involving ∼ 5 − 10% of neurons per pattern) (Tsodyks

and Feigel’man, 1988; Tsodyks, 1989), although this gain is

compensated by similar losses related to the incorporation of

other biologically plausible elements in either the modeled

neurons or the statistics of the stored data (Kropff and Treves,

2007; Roudi and Latham, 2007). Other models that consider

the cortex as a network of networks suggest that a hierarchical

strategy does not yield considerable benefits, since the number

of bits of information that can be stored per synaptic variable is

very similar to that of simpler models (Kropff and Treves, 2005).

What other strategies could have been developed by our

brains to increase the storage capacity beyond the limit of

hundreds of memories predicted by the Hopfield model? In this

work we explore the possibility of introducing modifications

to the architecture of connections with the aim of improving

the signal-to-noise ratio. This process could be analogous to

the formation and pruning of connections that reshapes our

brains throughout maturation. In the first section we show

through numerical simulations that autoassociative networks

are able to increase their storage capacity up to around seven-

fold by minimizing the noise. In the second section, we show

that if the cost function aims to reinforce the signal rather

than minimizing the noise, a gain of up to almost one order of

magnitude can be obtained. In the last section we implement an

algorithm where connections are constantly added and pruned

as the network learns new patterns, showing that it converges to

the same connectivity with optimal storage capacity regardless

of the starting conditions, and that if initial conditions are

of low connectivity it reaches an early maximum followed

by a long period of decay, as is the case generally in the

human cortex.
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2. Materials and methods

2.1. Hopfield model

2.1.1. Autoassociative network

For simplicity, we utilized a network similar to the one

originally proposed by Hopfield, capable of storing information

in the form of activity patterns that can be later retrieved by

a partial cue. The network consists of N recurrently connected

neurons, each receiving c pre-synaptic connections with no self-

connections. The state of neuron i at time t is represented by sti
and can take two possible values: sti = 1 (“active”) or sti = −1

(“inactive”). The activity of the network evolves synchronously

at discrete time steps. At each time step neurons receive a local

activity field given by the weighted sum of the activity of other

neurons

hti =
1

c

N
∑

j=1

WijCijs
t
j , (1)

where Wij represents the synaptic weight between the pre-

synaptic neuron j and the post-synaptic neuron i, Cij is a binary

matrix taking a value of 1 if this physical connection exists and

0 otherwise and c is the number of pre-synaptic connections

targeting a given neuron, so that
∑N

j=1 Cij = c for all i (Cii = 0

because there are no self-connections). Since we are interested

in studying the effects of adding and removing connections, it

is convenient to consider separately a synaptic matrix W with

values that only depend on the stored patterns and a matrix C

that only indicates whether or not the connection exists.

After calculating hti , neurons update their state following a

deterministic update rule,

st+1
i = sgn(hti ), (2)

where the function sgn(x) returns the sign of x.

Synaptic weights are computed following a linear Hebbian

rule,

Wij =

p
∑

µ=1

ξ
µ
i ξ

µ
j , (3)

where ξ
µ
i represents the state of neuron i in pattern µ, from a

total amount of p stored patterns. In the classic Hopfield model

(and in this work), activity patterns come from the random

distribution,

P
(

ξ
µ
i

)

=
1

2
δ
(

ξ
µ
i − 1

)

+
1

2
δ
(

ξ
µ
i + 1

)

. (4)

2.1.2. Storage capacity

The relevant parameter that describes the storage capacity of

a network is α = p/c. A critical value αc exists where, if more

patterns are loaded, the network suffers a phase transition to an

amnesic state. This phase transition can be understood in terms

of the local activity field each neuron receives. If the network

has p patterns ideally stored (i.e., every pattern is exactly a fix

point of the network dynamics) and at time t the network is

initialized so that the state of each neuron corresponds to a given

pattern ξ̄ν (i.e., sti = ξν
i for all neurons), then no changes in

the neuronal states should occur as a consequence of the update

rule in Equation (2), i.e., st+1
i = sti = ξν

i . To understand this,

the local activity field that neuron i receives hti ≡ hν
i can be

split into a signal term ξν
i (resulting from the contributions of

stored information corresponding to pattern ν) and a noise term

Rν
i (which can be thought of as the contribution of other stored

patterns)

st+1
i = sgn(hν

i ),

hν
i = ξν

i +
1

c

N
∑

j=1

p
∑

µ6=ν

ξ
µ
i ξ

µ
j ξν

j Cij = ξν
i + Rν

i . (5)

If the local field has the same sign as ξν
i , or equivalently,

if the aligned local field is positive for each neuron (hν
i ξ

ν
i ≡

1 + Rν
i ξ

ν
i > 0), then the pattern ξ̄ν will be exactly retrieved.

In other words, pattern retrieval depends on whether or not the

noise term flips the sign of the aligned local activity field from

positive to negative. If connectivity is diluted and random, the

aligned local field can be approximated by a random variable

following a normal distribution of unitary mean and standard

deviation σ ∼
√

p/c. Since this standard deviation increases

monotonically with the number of stored patterns, there is a

critical point beyond which the noise fluctuations are large

enough to destabilize all patterns and prevent them from being

recovered (i.e., hν
i ξ

ν
i < 0 for a critical number of neurons).

2.1.3. Basin of attraction

A fundamental characteristic of the attractor states of a

Hopfield network is their basin of attraction. It is a quantification

of the network’s tolerance to errors in the initial state. The basin

of attraction depends on the connectivity of the network and

the number of patterns stored. In randomly connected networks

with low memory load (p ≪ pc), every pattern can be retrieved

if the cue provided to the network represents at least 50% of

the pattern (<50% is a cue for the retrieval of a stable spurious

state represented by flipping all elements in the pattern). As the

memory load approaches the critical value pc, tolerance to error

smoothly weakens.

We studied memory robustness by simulating networks

with different connectivity and memory load. For each initial

error, we counted the number of patterns the network could

successfully retrieve (e.g., initializing the network in pattern

ξ̄ν with an error of 0.2 implied that 20% of the neurons

initially deviated from the pattern).We studied the percentage of
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successfully retrieved patterns as a function of error andmemory

load.

2.2. Simulations

Simulations were run in custom made scripts written in

MATLAB (RRID:SCR_001622). In all sections, the connectivity

matrix C of each simulated network was initially constructed

pseudo-randomly. We selected for each of the N neurons

its c pre-synaptic connections using MATLAB’s function

randperm(N − 1, c), randomly obtaining the c indexes among

their N − 1 possible inputs.

In a typical simulation to study storage capacity, we

initialized the network in a given pattern ν, i.e., s0i = ξν
i , and

updated the network following Equation (2) for 100 iterations

or until the overlap between the pattern and the network state

(i.e., 1
N

∑N
j=1 s

t
jξ

ν
j ) remained constant. After this, the pattern

was classified as successfully retrieved if the overlap between the

final state of the network and the pattern ν was >0.7 (implying

that the attractor associated to the pattern was stable but possibly

slightly distorted by interference with other patterns). Note that,

as is usual when working close to the storage capacity limit,

we did not require patterns to be exact fixed points of the

network dynamics in order to be considered as successfully

stored. Unless otherwise specified, the storage capacity of the

network was defined as the maximum number of patterns

for which the network could successfully retrieve all of them,

normalized by c.

2.3. Connectivity optimization

2.3.1. Noise reduction

As described above, the retrieval of memories can be

compromised by random fluctuations in the noise term making

the aligned local field negative.We asked whether a non-random

connectivity matrix could substantially reduce the local noise

contribution each neuron received, resulting in an increase in

the storage capacity. In order to find an optimal connectivity

matrix, we proposed each neuron to select its c pre-synaptic

connections by minimizing an energy function

E0i =

p
∑

ν=1





N
∑

j=1

p
∑

µ6=ν

ξ
µ
i ξ

µ
j ξν

i ξν
j Cij





2

∝

p
∑

ν=1

(

Rν
i

)2
. (6)

Note that in an ideal connectivity configuration that cancels

E0i , neuron i would receive zero noise during the retrieval of

any of the stored patterns. In order to use the number of pre-

synaptic connections as a control parameter, we used a fixed

c, implying that this minimization problem is subject to the

constraint
∑N

j=1 Cij = c. Other constraints inherent to the

nature of the connectivity matrix is that it is binary (Cij ∈ {0; 1})

with Cii = 0. Thus, the minimization of Equation (6) belongs

to the family of quadratic constrained binary optimization

problems. To obtain a computationally efficient approximate

solution to this problem we implemented an adaptation of the

simulated annealing algorithm. We applied independently to

each neuron’s pre-synaptic connectivity an annealing schedule

where temperature T was decreased by a factor of 0.99 at each

step. For each neuron i, we randomly selected two elements in

the i-th row of the connectivity matrix C and permuted them,

which ensured an invariant c. The change was always accepted

if the cost function E0i decreased (1E0i < 0), or otherwise

with a probability equal to e−1E0i /T . Initial temperature was

estimated following the method detailed by Yang (2014) and

final temperature was set to 10−4.

2.3.2. Signal reinforcement

We proposed a second cost function which can be thought

of as a generalization of Equation (6). In this case, the aim is

not to minimize the noise but instead to reinforce the signal,

contributing positively to the aligned local field by making

Rν
i ξ

ν
i > 0,

Eǫ
i =

p
∑

ν=1





N
∑

j=1

p
∑

µ6=ν

ξ
µ
i ξ

µ
j ξν

i ξν
j Cij − ǫ





2

∝

p
∑

ν=1

(

Rν
i ξ

ν
i − ǫ

)2
,

(7)

where ǫ is a non-negative parameter. Note that setting ǫ = 0

makes this problem equivalent to the noise reduction scenario.

Results shown in Section 3.2 correspond to optimizations

with ǫ = p (we refer to the energy function in Equation 7

as E
p
i ). This arbitrary choice is justified by the observation in

a preliminary analysis that the optimization with this value

of ǫ nearly maximized the number of patterns where noise

contributed positively to the local field for a wide range of values

of c, p, and N.

2.3.3. Online algorithm

As mentioned in Section 1, addition and pruning of

connections are features of brain maturation. To gain an

insight into the role they could play in a learning network,

we also proposed an online optimization algorithm where

the incorporation of memories and the modification of the

connectivity through signal reinforcement occurred in parallel.

Our aims were to understand if a similar improvement in storage

capacity could be achieved through this on-line approach and to

study the dynamics of connectivity.

Algorithm 1 consisted of a heuristic optimization where

each neuron would independently attempt to minimize Eǫ
i

(Equation 7) by eliminating and generating input connections.

The main difference with the previous approach is that in order
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not to disrupt the natural dynamics of the network, annealing

was not used (equivalent to setting T = 0 throughout the

optimization). In other words, the algorithm was deterministic

in the sense that changes in connectivity were only accepted

if they diminished the cost function. The resulting greedy

optimization scheme, however, often failed to escape local

minima. We found that the relaxation of the performance

criterion (90% of patterns retrieved instead of 100%) gave

enough flexibility for the algorithm to escape these local minima

and actually achieve an overall performance similar to the one

obtained with simulated annealing. Therefore, we defined the

variable peff as the effective number of patterns the network

could successfully retrieve, from a total amount of p, where

peff > 0.9p.

1: {C ∈ R
N×N /

∑N
j=1 Cij = c0; Cii = 0; 1 ≤ i ≤ N} ⊲ Generate

random connectivity matrix

2: p = prandc

3: Wij =
∑p

µ=1 ξ
µ
i ξ

µ
j ⊲ Store p = prandc random patterns ξ

µ
i

4: Compute peff

5: while peff > 0.9 · p do

6: p = p+ 10

7: Wij =
∑p

µ=1 ξ
µ
i ξ

µ
j

8: Compute peff

9: while peff ≤ 0.9 · p do

10: for i = 1 :N do ⊲ This for can be done in

parallel

11: Compute Eǫ
i [C̄i] ⊲ Neuron i local energy

12: for k = 1 : 10 do

13: C̄
f
i = C̄i ⊲ Dummy connectivity

14: Select randomly C
f
ij such that j 6= i

15: C
f
ij = 1− C

f
ij ⊲ Assess corresponding

change

16: Compute Eǫ
i [C̄

f
i ]

17: if Eǫ
i [C̄

f
i ]− Eǫ

i [C̄i] < 0 then

18: Eǫ
i [C̄i] = Eǫ

i [C̄
f
i ]

19: C̄i = C̄
f
i

20: end if

21: end for

22: end for

23:

24: if stopping condition is met then

25: break while

26: end if

27:

28: end while

29: end while

Algorithm 1. Online algorithm.

Given N neurons and c0 connections per neuron, we

constructed the network’s initial random connectivity matrix

following the steps detailed before in Section 2.2. Then, an

initial number p0 of patterns was loaded, equal to its maximum

memory capacity, following Equation (3). Given these initial

conditions, we alternated the optimization of the network

connectivity and the loading of 10 new patterns. Given neuron i,

a pre-synaptic neuron j was randomly selected using randi(N −

1) function. If a connection existed for this combination of pre-

and post-synaptic neurons (Cij = 1), the effect of eliminating

the connection was assessed, and inversely the effect of adding

the connection was assessed if Cij = 0. In both cases, the

modification of Cij was kept only if it reduced the local energy.

This trial-and-error sequence was repeated 10 times for each

neuron, after which pattern stability was tested. If more than

90% of patterns were successfully retrieved, a new set of 10

patterns was loaded. Otherwise, the optimization of Cij was

repeated until the retrieval condition was met. The algorithm

stopped whenever the network’s connectivity matrix did not

vary for 50 consecutive repetitions. Since the memory load

was no longer fixed, we set the parameter ǫ to a constant

value throughout the optimization. In Section 3, we fixed ǫ =

N/2.

3. Results

3.1. Noise reduction

3.1.1. Storage capacity

We first simulated networks of different size, with a number

of neurons N ∈ {500; 2,000; 5,000} and a number of

pre-synaptic connections per neuron covering the full range

from highly diluted to fully connected. In each simulation,

the connectivity matrix was optimized by implementing the

simulated annealing algorithm, which minimized the cost

function E0i for each neuron (Equation 6). As a result, we

obtained an increment in the storage capacity for all values of

N and c. We plotted the ratio between the maximum number of

patterns stored by optimized vs. random networks in otherwise

identical settings, p
opt
c /prandc (Figure 1A). This ratio peaked for a

connectivity around c/N ∼ 0.20, independently of the network

size, with a storage capacity for optimized networks up to

seven-fold higher than the capacity for random networks. For

more diluted networks the factor of improvement over random

networks decreased. In the highly diluted extreme, c/N →

0, the improvement ratio tended to 3, while in the opposite

limit c/N → 1 it tended to 1, which can be explained by

the absence of degrees of freedom left for the optimization

to proceed.

For simulations of increasing c and fixedN, the optimization

tended to break the monotonic dependence between pc and

c found in random networks (where pc is maximal for fully

connected networks; Figure 1B). We found that the maximum

number of stored patterns (not normalized by c) peaked at a
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FIGURE 1

Networks optimized by noise reduction outperform randomly connected ones in terms of storage capacity. (A) Ratio between the storage

capacity for optimized (p
opt
c ) and random (prand

c ) connectivity as a function of the number of connections per neuron for networks of di�erent N

(color coded; mean ± s.d.). (B) Overall maximum number of patterns (not normalized by c) that can be stored and retrieved in an optimized

(magenta) or random (black) network of N = 2, 000 as a function of c (mean ± s.d.). Note that the maxima for p
opt
c /prand

c (A) and p
opt
c (B) occur

for di�erent connectivity levels, implying that more patterns can be stored using a higher number of less e�cient connections. Pool of data

corresponding to five simulations for each connectivity.

connectivity near c/N ∼ 0.59, different from the connectivity

for which the improvement ratio maximized. This could be

explained by a compromise allowing to maximize the overall

amount of stored information by including a greater number of

less efficient connections.

3.1.2. Structural connectivity analysis

We estimated from the resulting connectivity matrices the

conditional probability distribution that, given the synaptic

weight Wij, neurons i and j were connected in the optimized

scheme. In a network with random connectivity, this probability

is independent of Wij because by definition P(Cij = 1) =
c

N−1 , but this was no longer the case in optimized networks.

To improve visual comparison of results obtained for different

c and p, we plotted this conditional probability P(Cij = 1|Wij)

vs. Wij/W
M (Figure 2), which represents the available weights

normalized by the maximum absolute value reached by the

synaptic weight matrix,

WM = max
i 6=j

1≤i,j≤N

{|Wij|}. (8)

Note that WM is not necessarily equal to p, the maximum

theoretical absolute value for Wij. The probability that a given

Wij takes a value p is equivalent to the probability of success in p

consecutive coin flips, which becomes increasingly unlikely as p

grows.

In comparison with the uniform distribution, we observed

that the optimized network in the sparse connectivity region

tended to favor synapses within a range of low weight values,

avoiding those with extreme high or low absolute weight

(Figure 2). As connectivity increased, the network started to

make use of close-to-zero weights, while still avoiding synapses

with high absolute weight. After reaching the connectivity region

near c/N ∼ 0.59 (where pattern storage peaked), a sudden

boost in the use of connections with close-to-zero weight was

observed. We speculate that the reason behind this behavior is

that optimization at this point minimizes the contribution of

new connections to the local field. Eventually, synapses with high

absolute weight were included, but always with a probability

lower than in random networks.

3.1.3. Signal-to-noise analysis

We next characterized the aligned local field distribution

(hν
i ξ

ν
i ) in optimized networks. Given that the heuristic

minimization of E0i never took the cost function to exactly zero,

neurons received, on average, a non-zero noise contribution,

expected to be lower than in randomly connected networks.

We analyzed this distribution for different memory loads in

a network with fixed c and N (Figure 3A). In contrast to

randomly connected networks, the mean aligned field tended

to decrease with α, which implied that the optimization

found it convenient to anti-correlate the noise and the

signal as a means of minimizing E0i . In spite of this anti-

correlation, retrieval was possible for a larger range of α
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FIGURE 2

Optimization by noise reduction avoids connections with high absolute synaptic weight. Distribution of the conditional probability of having a

connection between two neurons given their associated Hebbian weight for optimized (magenta; mean ± s.d.; N = 5,000) or random (dashed

black; theoretical mean) networks. Each panel corresponds to a di�erent connectivity value (indicated). Note that in some cases fluctuations are

observed close to |Wij/W
M| ∼ 1, which are caused by a low number of available data points for extreme values of synaptic weight. Pool of data

corresponding to five simulations for each connectivity.

values than what was observed with otherwise identical random

networks.

We next studied the standard deviation of the local field

to understand if a decrease in variability was compensating

for the a priori negative effect of a decrease in mean

aligned local field. We observed that, indeed, the increment

in the storage capacity could be explained by a substantially

narrower noise distribution than the one obtained with random

connectivity (Figure 3B). This suggests that fluctuations of the

noise term were small enough to let the network store patterns

beyond the classical limit, even if they occurred around a

negative mean.

The unexpected finding that, in order to minimize

the overall noise, the optimization tended to decrease the

mean aligned field to values lower than 1 (implying a

negative mean aligned noise), led us to ask if better

cost functions would lead to a situation in which the

noise reinforced the signal, thus improving the overall

performance of the network. We explore this possibility in

Section 3.2.

3.1.4. Basin of attraction

We next studied the basin of attraction in optimized

networks to understand if an increase in storage capacity came

at the cost of a reduction in attractor strength (Figure 4). We

observed that for most connectivity levels the basin of attraction

was only moderately reduced. This reduction was comparable to

the one observed in random networks, although the transition

to the amnesic phase was smoother. The highest contrast with

the behavior of random networks was observed in the case of

diluted optimized networks (c/N = 0.01), where large basins

of attraction were observed for values of the memory load α

up to around 0.7, above which they tended to be very small.

Close to the storage capacity limit, although α was high, the

attractors were very weak, as a pattern could only be retrieved if

the initial state was almost identical to it. However, for c/N =

0.25, a connectivity within the region where the maximum

improvement ratio in storage capacity was achieved (Figure 1),

attractors were more robust than in diluted optimized networks,

and only slightly less robust than in random networks at a

comparable distance from the critical storage capacity.

The increase in the size of the basin of attraction from c/N =

0.01 to c/N = 0.25 in optimized networks is counter intuitive,

but analytic modeling of networks with random connectivity

provides a potential explanation (Roudi and Treves, 2004). In

a non-diluted, random connectivity network, the field of a given

neuron has a noise term proportional to its activity, caused by

feedback of the neuron’s activity state through multiple-synaptic

loops. The probability of existence of such connectivity loops,
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FIGURE 3

Noise in optimized networks has a reduced variability at the expense of a negative mean. (A) One representative simulation distribution across

neurons of the average (top) and standard deviation (center) of the aligned local field (mean ± s.d.), together with the fraction of retrieved

patterns (bottom) as a function of the memory load, for optimized (magenta) or random (black) networks. (B) Distribution of the aligned local

field for specific memory loads slightly lower (top) and higher (bottom) than the storage capacity [indicated in (A)] for both kinds of network

(same color code). All plots correspond to networks with N = 2, 000 and c = 20.

FIGURE 4

Reduced basin of attraction in optimized networks with diluted connectivity. (A) Fraction of patterns that a network of N = 2, 000 can

successfully retrieve (gray-scale), relative to the initial error. (B) Phase transition curves from (A) condensed in a single plot (top) together with

similar curves corresponding to a random network (bottom). Connectivity is color coded.
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FIGURE 5

Signal reinforcement outperforms noise reduction and is optimal with highly diluted connectivity. (A) Ratio between the storage capacity for

optimized (p
opt
c ) and random (prand

c ) connectivity as a function of the number of connections per neuron for networks of di�erent N (shades of

red; mean ± s.d.). For comparison, the curve corresponding to noise reduction is included (magenta; N = 2, 000). (B) Overall maximum number

of patterns (not normalized by c) that can be stored and retrieved as a function of c in a network with N = 2, 000 optimized by signal

reinforcement (orange), optimized by noise reduction (magenta) or with random connectivity (black) (mean ± s.d.). Note that, as in Figure 1, the

maxima for p
opt
c /prand

c (A) and p
opt
c (B) occur for di�erent connectivity levels. Pool of data corresponding to five simulations for each connectivity.

starting in the neuron and projecting back to it, decreases toward

zero in diluted networks, and so thus the effect of this noise term.

It is possible that the optimized network leverages from multi-

synaptic feedback loops to increase the robustness of attractors,

as the sudden decay in the size of the basin of attraction but not

in overall storage capacity from c/N = 0.25 to c/N = 0.01 seems

to suggest.

3.2. Signal reinforcement

3.2.1. Storage capacity

Inspired by the results in the previous section, we next

assessed the possibility of optimization by reinforcement of

the signal rather than noise reduction, by using the same

optimization procedure with a different cost function (Equation

7).We observed that, as in the previous section, the optimization

process increased the storage capacity of autoassociative

networks (Figure 5A). However, in contrast to the ǫ = 0 case,

the improvement ratio p
opt
c /prandc for the optimization with ǫ =

p increased monotonically with network dilution for most of

the c/N range, reaching its best performance p
opt
c /prandc ∼ 10

around the lowest connectivity values.

We also observed that the overall number of patterns p

that a network of fixed N could store and retrieve was higher

if optimized by minimizing E
p
i than by minimizing E0i in the

low connectivity range (Figure 5B), but the opposite was true

for high connectivity. While the connectivity capable of storing

more patterns for the optimization with ǫ = 0 was near c/N ∼

0.59, for the optimization ǫ = p it was c/N ∼ 0.42, with

slightly fewer patterns in total. However, both of these limits

are far from the biologically plausible limit of high dilution,

where signal-reinforcing networks seem to outperform noise-

minimization ones.

We next plotted the αc curves as a function of c/N (Figure 6),

which allowed for a better visualization of the fact that for a

connectivity of c/N = 0.01, both optimizations achieved an

enhanced storage capacity, in the case of signal-reinforcement

networks up to an order of magnitude greater than obtained

using random connectivity. When minimizing E0i , the capacity

was close to αc ∼ 1.49, while in E
p
i minimization, the critical

capacity more than doubled the latter, reaching αc ∼ 3.15.

3.2.2. Structural connectivity analysis

We next asked if the criteria for selecting synapses in the

signal reinforcement scenario were similar to those found in the

previous section. We observed that the conditional distribution

P(Cij = 1|Wij) obtained in the low connectivity range increased

monotonically with the absolute value of the synaptic weights,

implying that, in contrast to what was previously observed, this

time the optimization process favored connections with high

absolute weight (Figure 7). As connectivity increased, networks

tended to use all available synapses with high absolute value,

which forced them to include lower modulus synapses. For

an intermediate range of connectivity (>c/N ∼ 0.42, where

pattern storage peaked), close-to-zero weight synapses started

being used, similarly to what happened in the noise reduction
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FIGURE 6

Storage capacity of optimized and random networks. Critical

storage capacity vs. connectivity ratio for networks (N = 2, 000)

with random connectivity (black) or connectivity optimized by

signal reinforcement (orange) or noise reduction (magenta)

(mean ± s.d.). Pool of data corresponding to five simulations for

each connectivity. T-test comparisons for data in the lowest

connectivity values show significant di�erences between the

storage capacity of random networks and that of noise

reduction (p-value: 10−6) or signal reinforcement (p-value:

10−7).

scenario. For highly connected networks (c/N & 0.75), the

pool of available close-to-zero synapses also depleted and more

intermediate-range synapses were included. This strategy of

selecting synapses with a high degree of consensus across

patterns seems opposite to the one described for noise reduction.

3.2.3. Signal-to-noise analysis

As previously, we plotted the mean and standard deviation

of the aligned local field as a function of the memory load

α (Figure 8). We observed that the mean aligned local field

increased monotonically with α, as expected from the fact that

the cost function was designed to make the noise reinforce the

signal, reaching a substantial deviation from 1, its zero-noise

value. The standard deviation also increased with α, although

it remained lower than the one corresponding to an otherwise

identical random network for values of α where retrieval was

possible. At αc, the standard deviation for the optimized network

was noticeably higher than the one corresponding to the random

network considered at its own αc value, implying that the

increase in storage capacity was due to an ability to make

the mean aligned local field increase faster than its standard

deviation for a limited range of values of α.

3.2.4. Basin of attraction

Similar to the previous optimization, and in contrast to

random connectivity networks, the basin of attraction decreased

progressively rather than abruptly with memory load (Figure 9).

However, when comparing the two optimization strategies, we

observed that memories in the ǫ = p scenario were more robust

in the connectivity range c/N . 0.4. This indicates that the

new optimization strategy was better than the previous one due

to a synergistic combination of increased storage capacity and

larger basins of attraction. As connectivity increased, the basins

of attraction tended to look like the ones observed in random

networks, as in the previous optimization case.

3.3. Online algorithm

To simulate a situation similar to the development of

the human brain, where connectivity changes as the subject

learns, we explored an online learning scenario with dynamic

generation and elimination of synapses. Results shown in this

section correspond to simulations of N = 2000 networks with

different initial random connectivity values c0. The connectivity

optimization was done by implementing Algorithm 1 with the

cost function shown in Equation (7), and setting ǫ = N/2.

3.3.1. Mean connectivity variation

We first studied the evolution of the mean number

of connections per neuron along the learning process. As

previously mentioned, the algorithm allowed each neuron to

freely eliminate or generate connections, with minimization of

their own cost function as the only constraint. We asked if

the final number of connections, which was a priori unknown,

depended on initial conditions (for example on the initial

connectivity value c0) or on the history of the learning

process. We observed that the final average connectivity did

not depend on initial conditions, stabilizing at a value cest ∼

445 for all tested c0 (this stability value depended on ǫ)

(Figure 10). For networks with initial connectivity above cest

the average connectivity decreased monotonically, i.e., pruning

predominated throughout the learning process. For networks

with initial connectivity below cest we observed a dynamic

qualitatively analogous to the maturation of the human brain,

with an initial creation-predominant period and a late pruning-

predominant period.

3.3.2. Storage capacity

The online algorithm substantially increased the storage

capacity of the autoassociative networks compared to what

would be obtained without modification of the connectivity

matrix. The improvement was comparable to the one obtained

with the offline simulated annealing algorithm E
p
i (Figure 11).

As observed with mean connectivity, the final effective storage

capacity reached by the network did not depend on the initial

connectivity, although it was strongly dependent on the ǫ

parameter. Interestingly, when the initial connectivity was set
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FIGURE 7

Optimization by signal reinforcement preferentially selects connections with high absolute synaptic weight. Distribution of the conditional

probability of having a connection between two neurons given their associated Hebbian weight for networks optimized by signal reinforcement

(orange; mean ± s.d.; N = 5, 000) or with random connectivity (black; theoretical mean). Each panel corresponds to a di�erent value of the

connectivity (indicated). Note that fluctuations are observed near |Wij/W
M| ∼ 1 due to low sampling, as in Figure 2. Pool of data corresponding

to five simulations for each connectivity.

to highly diluted, the initial increase in peff occurred along

the storage capacity limit for random networks, implying that

the optimization was similar to what would be obtained by

adding random connections, up to a connectivity level close

to the final one. From that point on, optimization proper

took place, and the optimized peff increased above the random

limit in a process initially dominated by addition and later

on by pruning. In contrast, the effect of selective pruning

was never equivalent to that of a random one. Given the

monotonically increasing relationship between pc and c in

random networks, random pruning necessarily results in a decay

in pc.

Put together, these results suggests that the algorithm

was able to converge to a connectivity configuration that

represented a global minimum in the space of solutions,

with a unique intermediate dynamics that depended on

initial conditions.

4. Discussion

Our main result is that it is possible to improve the

storage capacity of an autoassociative network by optimizing its

connectivity matrix. We found that if structural connectivity is

optimized to minimize the noise present in the local field of

each neuron, up to a seven-fold improvement in the storage

capacity can be obtained in comparison to random networks.

This maximal improvement, however, occurs with a relatively

dense connectivity close to c/N ∼ 0.20, which is not typical

in the mammalian brain. We next found that an even stronger

improvement could be obtained by reinforcing the signal rather

than minimizing the noise, this time reaching almost one full

order of magnitude in the biologically plausible highly diluted

limit. These results suggest that diluted autoassociative networks

would benefit most from a mechanism where the connectivity

configuration allows the noise term to reinforce the signal. The

fact that all networks studied in this work have a similar matrix

of synaptic weights, governed by the Hebbian principle, and yet

levels of performance that span over one order of magnitude,

stresses the importance of considering the remodeling of

network architecture as a process potentially independent and

complementary to synaptic weight modification.

We found that in the diluted connectivity region, the

signal-reinforcement optimization was achieved by selecting

connections with high consensus across patterns, with a

probability that decreased with the modulus of the synaptic

weight. Our results are in the same direction of previous work

showing a substantial storage capacity increase in a highly

diluted network that only retains the c strongest connections per

neuron (Montemurro and Tamarit, 2001). This extreme pruning

scheme was shown analytically to make the storage capacity

diverge in the limit c ≪ min{ N
2p−1 , ln(N)}, which, however, is
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FIGURE 8

Optimization by signal reinforcement results from a mean noise increasing faster than its variability. (A) One representative simulation

distribution across neurons (of only one trial simulation) of the average (top) and standard deviation (center) of the aligned local field (mean ±

s.d.), together with the fraction of retrieved patterns (bottom) as a function of the memory load, for networks with a connectivity that is

optimized by signal reinforcement (color) or random (black). (B) Distribution of the aligned local field for specific memory loads slightly lower

(top) and higher (bottom) than the storage capacity (indicated in A) for both kinds of network (same color code). All plots correspond to

networks with N = 2, 000 and c = 20.

too diluted for real brains. Simulations under the more plausible

constraint of c≪ N resulted in a storage capacity smaller but in

the range of the one we have found. This is consistent with our

observation that, although optimized networks tend to prefer

high absolute weights, they do not include only the highest

ones, and instead recruit as well a number of intermediate

weights. More generally, the idea of a connectivity scheme

that reinforces the Hebbian principle was presented in the

cited work and is also part of our results using the signal-

reinforcement optimization.

Our model used rather simplistic units and architecture.

Similar results could perhaps be replicated in models that

include more realistic elements such as networks with

graded response units and non binary patterns (Treves and

Rolls, 1991). We speculate that graded response units may

provide the network with one extra degree of freedom,

since, for a given neuron, the demands for connectivity

optimization could be weighted by its activity level in each

stored pattern. Regarding architecture, since our network

does not mimic the hierarchical organization of the brain

(Fulvi Mari, 2004), it most suitably models phenomena taking

place in short-range cortical networks, where remodeling of

connections is most relevant and has been most extensively

studied.

Brains do not have a fixed connectivity throughout the

lifetime of humans and other mammals. Evidence indicates

that connectivity levels increase during childhood, reaching

a maximum around the age of 2, and then decrease,

reaching a stable value in late adolescence or early adulthood

(Huttenlocher, 1979; Lichtman and Colman, 2000; Hua and

Smith, 2004; Navlakha et al., 2015), a period roughly coinciding

with the one originating most of long lasting memories (Rubin

et al., 1998). This implies that addition and pruning take place

in parallel to the most substantial stages of learning. In a

simplified model of this process, our online algorithm explores

the evolution of connectivity and storage capacity in a network

where neurons can freely add or delete connections as the

network incorporates more patterns. We observed that if the

network is initialized at a high connectivity level, it mainly

prunes connections, with an immediate gain over random

connectivity setups. However, if its initial connectivity is low, a

process with several stages takes place. During the initial stage,

connections are added with a gain in storage capacity equivalent

to the addition of random connections, implying that a similar
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FIGURE 9

Enhanced basins of attraction in networks optimized by signal reinforcement. (A) Fraction of patterns (gray-scale) a network of N = 2, 000 can

successfully retrieve, after initializing it in each of the α · c stored patterns with a given initial error. (B) Condenses shown information for each

connectivity (color coded) by plotting the maximum initial error tolerance for which the network can successfully retrieve all patterns for each α

value (optimized networks, top; random networks, bottom).

path would be followed by networks randomly initialized in a

range of values of low connectivity. Equivalently, this first stage

that could be associated with the initial development of the

brain could add connections randomly instead of selectively,

with a similar effect on performance. Once connectivity is

close to the final one (unknown a priori but dependent

on the parameter ǫ), the addition of connections becomes

more meaningful, improving the storage capacity beyond the

level of random networks. Remarkably, this process takes

connectivity beyond the final value, reminiscent of what is

actually observed during childhood in the human brain. In a

third stage, increase in storage capacity is associated with a net

loss of connections, until an equilibrium is reached and storage

capacity is close to the global minimum of the cost function

obtained with offline minimization. Although this dynamic is

complex, the final state of the network is independent of initial

conditions, suggesting a strong global minimum reached by the

optimization process.

Throughout this work we have used an extremely simple

model of autoassociative memory that, however, captures all

the basic behaviors exhibited by this kind of network even

in biologically plausible or experimental setups (Roudi and

Latham, 2007; Carrillo-Reid et al., 2016). Using mean network

activity of 50%, as in the original Hopfield model, helped

making our simulations computationally efficient by keeping

the storage capacity relatively low. The effects of connectivity

FIGURE 10

Evolution toward a common equilibrium connectivity for the

online algorithm. Distribution of the number of pre-synaptic

connections per neuron across iterations of the online

algorithm, for networks with N = 2, 000, fully connected (blue)

or highly diluted (brown) initial connectivity (mean ± s.d). During

one iteration, 10 random changes in pre-synaptic connectivity

were evaluated (one at a time) for each neuron (i.e., the

complete loop over all neurons, for i = 1:N, in Algorithm 1).

Each curve corresponds to one simulation trial.

optimization on sparser networks, however, with a biologically

plausible value around 5 or 10%, should be explored in the

future. One possibility is that connectivity optimization becomes

less effective because the pool of active neurons from which
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FIGURE 11

Regimes dominated by addition or pruning of connections lead to a performance similar to the one corresponding to o	ine optimized

connectivity. (A) Evolution of the learning process of the online algorithm in the space of e�ective maximum number of patterns vs. mean

connectivity for di�erent initial conditions: highly diluted (dark yellow), intermediate (red), or fully connected (blue) (a single simulation for each

initial condition is shown). Arrows indicate the direction in which the networks evolved from the corresponding initial conditions. For

comparison, the distribution of maximum pe� that o	ine optimized (orange) or random (black) networks can achieve with similar criteria is also

shown (mean ± s.d., computed over five simulations each). Note that the final network optimized by the online algorithm performs slightly

better, possibly because the number of connections is not fixed across neurons. Dashed box corresponds to inset shown in (B). All networks

have N = 2, 000. (B) Inset of (A) showing in detail the last iterations of the online algorithm for the three di�erent initial conditions. Every time a

set of 10 patterns is loaded to the network, the e�ective storage capacity drops abruptly. Within the following iterations, pe� increases until 90%

of patterns are retrieved or the simulation stops.

to choose is more restricted. In contrast, we speculate that

other modifications aiming to add biological plausibility could

make connectivity optimization even more relevant than in

the present work. For example, if memorized patterns were

obtained from a distribution exhibiting a set of non-trivial

correlations (Kropff and Treves, 2007), the initial stage of

optimization could capture early the main statistical features

of inputs, making corrections at a later stage less important or

necessary. In addition, shared features across patterns might

help in the reinforcement of the signal by the noise. It has

been shown that in this scenario the selected deletion of

neurons can yield a significant improvement in storage capacity,

implying that a much more subtle correction in connectivity

could lead to similar or higher performance levels (Kropff,

2007).

We have shown that in a simple setup, connectivity

optimization can improve storage capacity, in some cases up

to around one order of magnitude. Though considerable, this

gain might still be not enough to explain the viability of

attractor networks in the human brain, given all the drawbacks

of biologically plausible networks. Further work on the effect

of optimized connectivity in networks that include some of

these details of biological plausibility could perhaps place our

estimation of storage capacity at least in the reasonable range

between thousands and tens of thousands of memories, a limit

compatible with the number of faces we remember or the

number of words we use in our daily life.
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