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Beyond rhythm – a framework for
understanding the frequency
spectrum of neural activity
Quentin Perrenoud* and Jessica A. Cardin

Department of Neuroscience, Yale School of Medicine, Kavli Institute for Neuroscience, Wu Tsai
Institute, New Haven, CT, United States

Cognitive and behavioral processes are often accompanied by changes within

well-defined frequency bands of the local field potential (LFP i.e., the voltage

induced by neuronal activity). These changes are detectable in the frequency

domain using the Fourier transform and are often interpreted as neuronal

oscillations. However, aside some well-known exceptions, the processes

underlying such changes are difficult to track in time, making their oscillatory

nature hard to verify. In addition, many non-periodic neural processes can also

have spectra that emphasize specific frequencies. Thus, the notion that spectral

changes reflect oscillations is likely too restrictive. In this study, we use a simple

yet versatile framework to understand the frequency spectra of neural recordings.

Using simulations, we derive the Fourier spectra of periodic, quasi-periodic and

non-periodic neural processes having diverse waveforms, illustrating how these

attributes shape their spectral signatures. We then show how neural processes

sum their energy in the local field potential in simulated and real-world recording

scenarios. We find that the spectral power of neural processes is essentially

determined by two aspects: (1) the distribution of neural events in time and (2)

the waveform of the voltage induced by single neural events. Taken together,

this work guides the interpretation of the Fourier spectrum of neural recordings

and indicates that power increases in specific frequency bands do not necessarily

reflect periodic neural activity.

KEYWORDS

Fourier - spectrometry, local field potential (LFP), oscillation, neural circuits, rhythm, shot
noise analysis

Introduction

The Fourier transform, or analogous methods, is routinely used to analyze the frequency
content (i.e., the spectrum) of neural activity (Penttonen and Buzsáki, 2003; Bruns, 2004).
Frequency spectra are highly sensitive to changes in the processes driving a signal (Percival
and Walden, 1993). They can thus be used to detect subtle variations in the dynamics of
the brain’s electric fields during attention, memory formation or retrieval, locomotion, and
motor responses (Gray et al., 1989; O’Keefe and Recce, 1993; Skaggs et al., 1996; Fries et al.,
2001; Girardeau et al., 2009; Niell and Stryker, 2010; Bosman et al., 2012; Vinck et al., 2015;
Chen et al., 2017; Veit et al., 2017; Uran et al., 2022). However, the behavior of frequency
spectra is often counterintuitive. For instance, the finite nature of recordings induces
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distortion of their spectral content (Percival and Walden,
1993). Furthermore, relating frequency spectra to continuously
evolving neural processes is a complex problem. As a result, the
interpretation of the frequency spectrum of neural activity is not
straightforward.

Increased spectral power within some frequency bands is often
believed to reflect oscillations. In fact, the words “oscillation” and
“rhythm” are generally used to describe the subfield of neuroscience
dedicated to study of the brain’s electrical activity (Buzsáki and
Vöröslakos, 2023). Some neural patterns do indeed show strong
periodicity. This includes well-characterized rhythms such as
hippocampal theta (Vanderwolf, 1969; Winson, 1974; O’Keefe and
Recce, 1993; Skaggs et al., 1996), thalamic spindles (Steriade, 2006;
Niethard et al., 2018) and slow waves observed in the cortex during
sleep (Steriade et al., 1993; Contreras et al., 1996; Sanchez-Vives
and McCormick, 2000). Nonetheless, neuronal processes can also
display non-periodic dynamics (Burns et al., 2011; Xing et al.,
2012; Weber and Pillow, 2017; Naud and Sprekeler, 2018; van Ede
et al., 2018; Donoghue et al., 2020; Steinmetz et al., 2021; Williams
et al., 2021; Spyropoulos et al., 2022). In addition, most signals,
periodic or not, have spectra where some frequencies are enhanced.
Gaussian functions are non-periodic, yet exhibit a spectrum with a
strong representation of low frequencies (Starosielec and Hägele,
2014). Thus, the notion that oscillations underlie changes in the
spectrum of neural activity appears generally restrictive.

Here, we provide a didactic discussion for the often-
intimidating interpretation of the frequency spectrum of neural
recordings. Using a well-developed and broadly applicable
theoretical framework (Cox and Lewis, 1966; Verveen and
DeFelice, 1974; Rice, 1977; Bédard et al., 2006; Díaz et al., 2023),
we show how neural patterns are usefully conceptualized as
processes where discrete events can occur with varying degrees of
periodicity. Using simulations, we illustrate how multiple processes
can sum up in the local field potential (LFP) and how the basic
properties of the Fourier transform shape the frequency spectrum
of neural recordings. We show that the spectral signature of neural
patterns depends essentially on 2 aspects: (1) the distribution of
events in time and (2) the waveform of the voltage induced by
individual events. Finally, we show examples of how this conceptual
framework can be applied to decipher processes inducing changes
in the spectral profile of real-world data acquired in the primary
visual cortex of behaving mice.

Materials and methods

All simulations and analysis were performed in Matlab 2018b
(Mathworks). The scripts used to generate the figures are available
online.1 Simulated time series had a sampling rate of 1 kHz and
a duration of 1000 s. Event timing pulse trains had a value of 1
at the time of events and zero everywhere else. Except in the case
of perfectly periodic processes, event intervals were drawn from a
gamma distribution:

P(t) = 1/(ba
∗ 0(a)) ∗ ta−1

∗ exp(−t/b)

1 https://doi.org/10.5061/dryad.crjdfn394

where P(t) is the probability density at time t, 0 (x) is the gamma
function of x (i.e., the gamma function is a generalization of the
factorial to real numbers), and a and b are parameters determining
the shape of the distribution. The process is sub-Poissonian if a< 1,
Poisson if a = 1 and super-Poissionian if a > 1. Parameter b
was always set to 1/(a ∗ f) where f is the overall event frequency
of the process. Values of a and f for all simulations are detailed
in Table 1.

Recurring neural events were simulated by convolving event
pulse trains with waveform traces of 500 ms. Various waveforms
(i.e., impulse response functions) were considered. Synaptic events
were modeled with the alpha function (Markram et al., 1997):

A(t) = H(t) ∗ t ∗ exp(−t/tau)

Where A(t) is the alpha function at time t, H(t) is Heaviside step
function, and tau is a parameter determining the time course of the
synaptic response. Parameter tau was always set to 5.6 ms.

Spikes and spindles were modeled with real valued Morlet
wavelets (i.e., the multiplication of a sinusoid with a gaussian
window):

W(t) = exp(−(t− µ)2/(2 ∗ σ)) ∗ sin((t− t0) ∗ (2 ∗ π)/p)

Where W(t) is the Morlet wavelet at time t, µ and σ are the
mean and standard deviation of the gaussian component, t0 is the
offset of the sine function and p is its period. Parameter µ was
always set to zero (i.e., centered). Values of σ, t0, and p for all
simulations are detailed in Table 1.

To study the effect of waveform width, waveforms were
modeled as Hann window function (i.e., one cycle of a sinusoid)
with varying periods p (Table 1).

Background synaptic noise was modeled by convolving white
noise with a 500 ms waveform corresponding to the impulse
response function of a passive resistive capacitive (RC):

FRC(t) = (1/tau) ∗ exp(−t/tau)

Where FRC(t) is the value of the impulse response function of
the RC filter at time t, and tau is a parameter determining the time
course of the response (note the similarity to the alpha synaptic
response). Parameter tau was set to 35 ms based on values inferred
from recording of the membrane resistance and capacitance of
excitatory neurons in the rat barrel cortex (Karagiannis et al., 2009).

The spectrum of waveforms was computed by tapering
with a Hann window and taking the squared amplitude of
the Fourier transform. The spectrum of recurring event time
series was estimated with Welch’s method, that is by averaging
the squared amplitude of the Fourier transform within non-
overlapping 500 ms segments tapered with a Hann window
(Percival and Walden, 1993).

The experiment described in Figure 4 is part of a data set
used in Perrenoud et al. (2022). Briefly, a mouse was chronically
implanted in the primary visual cortex (∼2.5 mm left and ∼4mm
posterior from Bregma) with A16 probes (Neuronexus) having 16,
50 µm spaced, recording sites. The mouse was habituated to run
head-fixed on a wheel and recorded in this configuration using
a Digital Lynx SX system (Neuralynx). The method used for the
extraction of gamma events is called CBASS and is described and
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TABLE 1 Parameters used for simulation.

Figures Frequency Timing Waveform

Figure 1A 40 Hz Super-poissonian (a = 0.1) –

Figure 1B 40 Hz Poisson (a = 1) –

Figure 1C 40 Hz Sub-poissonian (a = 101.5) –

Figure 1D 40 Hz Regular –

Figure 2A 40 Hz Poisson (a = 1) –

Figure 2B 40 Hz Poisson (a = 1) Alpha function (τ = 5.6 ms)

Figure 2C 40 Hz Poisson (a = 1) Morlet (σ = 1.7 ms; t0 = 3.7 ms; p = 6.7 ms)

Figure 2D 40 Hz Poisson (a = 1) Morlet (σ = 66.7 ms; t0 = 0 ms; p = 66.7 ms)

Figure 3A – White Noise RC filter (τ = 35 ms)

Figure 3B 75 Hz Poisson (a = 1) Morlet (σ = 3.3 ms; t0 = 7.3 ms; p = 13.3 ms)

Supplementary Figure 1A 40 Hz Poisson (a = 1) –

Supplementary Figure 1B 40 Hz Sub-poissonian (a = 10) –

Supplementary Figure 1C 40 Hz Sub-poissonian (a = 100) –

Supplementary Figure 1D 40 Hz Sub-poissonian (a = 1000) –

Supplementary Figure 1E 40 Hz Regular –

Supplementary Figure 2A 50 Hz Poisson (a = 1) –

Supplementary Figure 2B 80 Hz Sub-poissonian (a = 20) –

Supplementary Figure 2C 20 Hz Sub-poissonian (a = 40) –

Supplementary Figure 3A 40 Hz Regular –

Supplementary Figure 3B 40 Hz Regular Alpha function (τ = 5.6 ms)

Supplementary Figure 3C 40 Hz Regular Morlet (σ = 1.7 ms; t0 = 3.7 ms; p = 6.7 ms)

Supplementary Figure 3D 40 Hz Regular Morlet (σ = 66.7 ms; t0 = 0 ms; p = 66.7 ms)

Supplementary Figure 4A 40 Hz Sub-poissonian (a = 101.2)

Supplementary Figure 4B 40 Hz Sub-poissonian (a = 101.2) Hann (p = 5 ms)

Supplementary Figure 4C 40 Hz Sub-poissonian (a = 101.2) Hann (p = 25 ms)

Supplementary Figure 4D 40 Hz Sub-poissonian (a = 101.2) Hann (p = 125 ms)

Supplementary Figure 5A 7 Hz Sub-poissonian (a = 101.5) Hann (Inverted; p = 142.9 ms)

Supplementary Figure 5B 80 Hz (7 Hz modulated) Sub-poissonian (a = 101.5) Hann (Inverted; p = 12.5 ms) (scaled 1/8th)

freely available at (https://github.com/cardin-higley-lab/CBASS).
CBASS ties increased power within a frequency band of the
spectrum [here: gamma (30–80 Hz)] during a particular state (here:
running) to discrete events in time. The LFP is band-pass filtered at
the frequency band of interest. Candidate events are then selected
at the trough of the filtered LFP in an arbitrary channel. The
dynamics of candidate events across channels are parameterized
and a variant of the K-means algorithm is used to find a cluster
of events whose dynamics are more prevalent during the state of
interest.

Results

To understand the frequency spectrum of neural recordings,
it is useful to first consider the origin of the brain’s electric field.
Neurons encode signals through variations of their membrane
potential which are induced by the diffusion of Na+, K+,

Cl− and Ca2+ ions through tightly controlled ion channels
(Buzsáki et al., 2012). This movement causes variations in the
electric field whose behavior is described by Maxwell’s equations.
With a perfect knowledge of the brain’s electric (and magnetic)
field, Maxwell’s equations might in principle, permit to infer
movements of charges at the neuronal level. However, the
sensitivity of our recording methods and the complexity of ion
movement through the several billions of neurons that constitute
the brain make this intractable in practice.

While the brain’s electric activity can give the impression of
a continuously evolving chaos, it is made out of many repeating
elements. These elements are the activation of synapses, the firing
of neurons or, at a larger scale, coordinated firing and synaptic
barrages within one brain region, or from one area to another
(Womelsdorf et al., 2014). Each such event has a defined impact
on the brain’s electric field and may thus induce a voltage deflection
in a recording electrode. A recurring event, such as the firing of one
neuron, can have of a strong influence on a signal depending on its
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magnitude and its proximity (Schmitzer-Torbert et al., 2005). We
will thus start by considering how one recurring event affects the
spectrum.

Impact of a recurring event’s temporal
distribution on the Fourier spectrum

Let us first examine the influence on the spectrum of how
often and regularly an event occurs. To assess this, we will idealize
recurring events and treat them as point processes (Cox and Lewis,
1966; Perkel et al., 1967). Point processes are completely defined
by their inter-event interval distribution. The simplest and most
commonly occurring type of point-process is the Poisson process.
Poisson processes are characterized by a decaying exponential
inter-event interval distribution (Figure 1B) and have 2 interesting
properties: (1) the probability of an event at any given time is
invariant and entirely unaffected by the process’s history; (2) the
variance of the number of events per unit of time is equal to the
event rate.

Point processes can be generally categorized by how regularly
events occur compared to a Poisson process. Processes happening
more regularly have a less variable inter-event interval. The
variance of the number of events per unit of time in thus lower
than the event rate. These processes are called sub-Poissonian
(Figure 1C). As the variance of the event interval drops, the
process begins to resemble a periodic process (Supplementary
Figure 1). In the most extreme case, the variance of the inter-event
interval is null, and the process is perfectly periodic (Figure 1D).
Conversely, the variance of the number of events per unit of time
can be superior to the event rate. In this case, the process is called
super-Poissonian (Figure 1A). The firing of bursting neurons is an
example of super-Poissonian process (Williams et al., 2021).

The gamma distribution (among others) can be parameterized
to generate point processes (called gamma processes) having
Poisson, super-Poissonian or sub-Poissonian inter-event intervals.
To illustrate how the variance of point-processes affect their
frequency spectrum, we parameterized gamma processes to
generate super-Poissonian, Poisson and sub-Poissionian event time
series. A perfectly periodic event times series was also constructed.
All four time-series had a simulated sampling rate of 1000 Hz and
a matched event rate of 40 Hz (Figure 1). The Fourier spectrum
of each time series was then estimated using Welch’s methods
with a 500 ms Hann window (Materials and Methods), a method
classically used to estimate Fourier spectra in real data.

As can be seen in Figure 1B3, the spectrum of a Poisson train
of event is perfectly flat. While the rate of a Poisson process affects
overall power (energy per unit of time), energy remains evenly
distributed across frequencies. The spectrum of a super-Poissonian
gamma process is a decaying exponential and has thus more energy
at low frequencies (Figure 1A3). Conversely, the spectrum of sub-
poissonian gamma process shows reduced power at low frequency,
a pronounced peak around the rate of the process and a flat energy
distribution for higher frequencies (Figure 1C3). As the process
becomes more regular secondary peaks start appearing at the
harmonics of the processes rate (i.e., integer multiples of the core
frequency, in our case 80 Hz, 120 Hz and so on; Supplementary
Figure 1). For a perfectly periodic point process, the power is

entirely concentrated and evenly distributed across the process’s
rate and its harmonic (Figure 1D3). It thus appears that the
event distribution of a process has a substantial and recognizable
influence on the shape of its spectrum.

Periodic, Poisson and sub or super-Poissionian gamma
processes are idealized processes that might not be representative
of what happens in the brain. To illustrate how the timing of
events affect the Fourier spectrum in more arbitrary cases, we
built a compound inter-event interval distribution by adding the
distributions a Poisson process and 2 sub-Poissonian gamma
processes having distinct rate and variance (Supplementary
Figure 2). Accordingly, the inter-event interval distribution showed
two prominent modes on top of an exponential decay. We
generated an event times-series following this distribution and for
each summed process for comparison. The Fourier spectrum of
each time-series was computed as described above.

The Fourier spectrum of the compound process
(Supplementary Figure 2D3) closely resembled the sum of
the Fourier spectra of the summed process (Supplementary
Figures 2A3, B3, C3). Two main peaks were observed respectively
at the frequencies of each sub-Poissonian process. These results
illustrate that, for a point process, peaks in the spectrum are broadly
indicative of modes (i.e., preferred intervals) in the inter-event
interval distribution.

Impact of a recurring event’s waveform
on the Fourier spectrum

So far, we have only considered idealized time series where
the impulse response function (i.e., the waveform of the voltage
induced by one event) of single events is a perfect pulse (i.e., having
a value of 1 at the time of the event and zero everywhere else). In
actual recordings of the brain’s field activity, repeating events will
have more complex waveforms. We will now consider how different
waveforms affects the Fourier spectrum in conjunction with the
event interval distribution. For the sake of simplicity, we will only
consider that the waveform of all events in a process does not vary
in shape or amplitude.

A train of recurring events can be seen as the convolution of
its waveform with a signal representing the events timing such
as the point-processes considered in the previous section. Such
processes have a well-developed theory and are often referred to
as generalized shot noise (Schottky, 1918; Rice, 1977; Díaz et al.,
2023). The Fourier transform has the remarkable property that the
spectrum of the convolution of two time series is the product of
their spectrum. In other words, convolution in the time domain
translate into a simple multiplication in the frequency domain
(Percival and Walden, 1993). Within the accuracy of estimation
methods, the Fourier spectrum of a time series of recurring events is
thus equivalent to the product of the spectra of the event’s waveform
and that of its event timing pulse train.

To illustrate how this interaction shapes the Fourier spectrum,
we considered three basic waveforms: 1) the alpha function, a
popular choice to model synaptic responses (Figure 2B1); and
2 real-valued Gabor wavelet (the product of a sinusoidal and
a gaussian window) shaped respectively to resemble 2) a spike
(Figure 2C1) and 3) a spindle (Figure 2D1). All impulse response
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FIGURE 1

Super-Poissonian, Poisson, sub-Poissonian and periodic point-processes have recognizable Fourier spectra. (1) Event interval distribution, (2)
excerpt of an event train and (3) Fourier spectrum of panel (A) super-Poissonian, (B) Poisson (C) sub-Poissonian and (D) perfectly periodic point
processes. Distinct inter-event interval distributions translate into specific energy distribution in the Fourier spectrum. All processes have a mean
frequency of 40 Hz.

functions have specific Fourier spectra (Figures 2B2, C2, D2). The
alpha function has a spectrum where energy is concentrated in
lower frequencies. The spectrum of Gabor wavelets is centered on
the frequency of their sinusoid component and has a bandwidth
inversely proportional to the width of their gaussian window.

Each impulse response function was then convolved with
a Poissonian (Figure 2) or a periodic timing pulse train
(Supplementary Figure 3). The Fourier spectrum of resulting
time-series was estimated as before. As predicted by theory, all
constructed event time-series had spectra nearly equal to the
product of that of their timing pulse train and that of their
waveform. Due to the flat shape of their timing pulse train’s
spectrum, Poisson distributed event time-series have a Fourier
spectrum that is essentially that of their waveform (Figures 2B2,
C2, D2). Thus, as exemplified in the Poissonian spikes train
constructed in Figure 2C, a pronounced peak in the spectrum can
be inherited solely from the shape of a recurring event’s voltage
response without periodicity in its timing.

Contrasting with Poisson trains, the energy of periodic timing
pulse trains is concentrated at the process’s core frequency and
its harmonics. Thus, in this case, the spectrum is more generally
determined by the spectrum of the timing pulse train than by
that of the waveform. However, as exemplified in Supplementary
Figure 3B2, some waveforms will greatly reduce the power of a
periodic timing pulse train when the energy distribution of their
spectrum does not overlap.

The examples above illustrate that the spectrum of a train of
recurring events is shaped both by the event timing (i.e., its timing
pulse train) and the impact of single events on the signal (i.e., its
impulse response function or waveform). How much each shapes

the spectrum varies depending on the case. One general parameter
will however influence the relative contribution of one over the
other, namely the duration of the waveform relative to an events
overall rate of occurrence.

To illustrate this, we considered a moderately periodic sub-
Poissonian pulse train (Supplementary Figure 4). The train
was then convolved with Hann functions (i.e., one cycle of a
sinusoid and a popular window function for spectral estimation) of
increasing width relative to the processes core frequency (40 Hz).
For short Hann pulses (5 times shorter the average inter-event
interval, Supplementary Figure 4B), the spectrum of the resulting
event times series closely resembles that of the timing pulse
train. However, for longer waveforms (5 times longer the average
inter-event interval, Supplementary Figure 4D), the shape of the
spectrum was mostly determined by that of the waveform.

These results indicate that neural processes with short
waveforms, such as action potentials, have a spectrum that tends to
be influenced by their timing (i.e., timing pulse train). Conversely,
neural process with a longer waveform relative to their rate of
occurrence, such as synaptic events, will have a spectral imprint
that tends to be determined by the waveform of single events (i.e.,
impulse response function).

How do multiple neural processes sum
up in the Fourier spectrum?

We have examined the Fourier spectrum of single recurring
events occurring in isolation. Neural activity is composed of
many such events. We will thus now consider how multiple
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FIGURE 2

The Fourier spectrum of recurring event trains depends on the inter-event interval distribution and the waveform of single events. (1) (A) a Poisson
process was convolved with 3 waveforms (top) mimicking the shape of panel (B) a synaptic event, (C) a spike and (D) a spindle, resulting in three
distinct recurring event time series having the same event timing (bottom). (2) Convolution in the time domain translates into a simple multiplication
into the frequency domain. Thus, the Fourier spectrum of the recurring event time series in B1, C1, and D1 (bottom) is simply the product of the
spectrum of their waveform (top) and the spectrum of the Poisson pulse train (A2). Here, as Poisson processes have a flat spectrum, the spectrum of
event times series is essentially determined by that of their waveform. The timing train (A) is identical for all processes and is not meant to be realistic.

recurring events contribute to the voltage recorded by an electrode
and how they collectively shape the Fourier spectrum of neural
recordings. Let us illustrate how this may happen in a simple
recording configuration.

As can be derived from Gauss’s law (the first of Maxwell’s
equation), the voltage deflection caused by multiple sources at an
electrode is the sum of the voltage induced by each source. Thus, the
voltage induced by neural events simply sums up in the local field
potential. The Fourier transform of the sum of two signals is quite
simply the sum of their Fourier transforms (Percival and Walden,
1993). As this summation occurs in the complex plane, signals
may at times cancel each other when locked in opposite phases.
However, when signals are independent, the power of their sum will
approach the sum of their power (the power is the squared norm
of the Fourier transform over time). Most often, multiple neural
signals thus tend to add their energy distributions to the spectrum
of neural recordings. The voltage deflection induced by a single
source is inversely proportional to its distance to the recording
electrode. Sources that are small and relatively far away from the
recording site, such as synaptic events, tend to be indistinguishable
and sum into a background signal. We will thus first simulate this
background signal.

In awake cortical recordings, background synaptic events
often occur at a sustained high rate, a regime that is called
desynchronized (Steriade and Deschenes, 1984; Destexhe and
Paré, 1999; Chance et al., 2002; Destexhe and Contreras, 2006;

Haider and McCormick, 2009; Petersen and Crochet, 2013). As
synaptic responses tend to be slower, the spectrum has properties
that are mostly shaped by the waveform of synaptic events
(i.e., impulse response function, previous section). Synaptic
events display a characteristic 1/f2 power law energy distribution
(Figure 2B2). This energy distribution is likely inherited in part
from the biophysical properties of neuronal membranes which tend
to behave as passive resistor-capacitor (RC) filters (Koch, 1984;
Bédard et al., 2006; Freeman and Zhai, 2009), though it has received
numerous interpretations (Bédard et al., 2006; Miller et al., 2009;
Touboul and Destexhe, 2010; Gao et al., 2017; Donoghue et al.,
2020; Schaworonkow and Voytek, 2021; O’Byrne and Jerbi, 2022).
Here, we simply simulated the background LFP signal as white
noise passing through an RC filter (Figure 3A1, Materials and
methods). The spectrum of that times series was computed as
before (Figure 3A2).

Recordings of the local field potential will also often be
impacted by action potentials originating from one or several
neurons (i.e., units) located in the vicinity (within ∼30–50 µm)
of the recording electrode (Schmitzer-Torbert et al., 2005). The
voltage deflection induced by these action potentials can sometimes
have a significant impact on the spectrum. To illustrate this, we
simulated neuronal firing by convolving a Poisson timing pulse
train with a spike shaped Morlet wavelet (Figure 3B1). As the
timing of the train is Poissonian, the distribution of energy of the
spectrum is purely inherited from the waveform of the Morlet spike
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FIGURE 3

Neural processes sum their energy in the Fourier spectrum. (1) Excerpt, and (2) Fourier spectrum of panel (A) white noise filtered with a passive
Resistive-Capacitive (RC) filter mimicking desynchronized background synaptic activity, (B) a Poisson spike train and (C) the sum of the time series in
panels (A,B). The spectrum of background synaptic activity in A has a characteristic 1/f2 shape which is inherited from the RC filter. The spectrum of
the Poisson spike train in B has a bell shape peaking at 75 Hz which is inherited from the spike waveform. The spectrum of the sum of two signals
approaches the sum of their spectra.

(i.e., the impulse response function). The spectrum of the process
showed a bell-shaped energy distribution with a peak at 75 Hz
(Figure 3B2).

The two time-series were then summed to simulate a common
recording scenario where neuronal firing at the vicinity of the
electrode adds to a background synaptic signal (Figure 3C1). The
spectrum of the resulting times series was estimated as before
(Figure 3C2). The spectrum of the sum of the two signal is nearly
equivalent to the sum of their spectra. The Poisson spike train
added to the spectrum of the background LFP an induced an
upward inflection of the energy distribution peaking at 75 Hz. This
simulation illustrates how the contributions of multiple neuronal
processes can be added up in the Fourier Spectrum. These results
also show that a relatively complex spectrum can arise from the
simple addition of non-periodic processes.

Quasi-periodic processes can be
modeled as recurring events

As illustrated in the example above, background synaptic
activity has considerable influence on the shape of the LFP
spectrum, especially at frequencies under ∼50 Hz (Buzsáki et al.,
2012). We have also seen that under a desynchronized regime,
the spectral energy of this background activity tends toward a 1/f2

distribution (Donoghue et al., 2020; Schaworonkow and Voytek,
2021). However, background synaptic activity will at times include
patterns of synchronized synaptic barrages (Buzsáki et al., 2012;

Buzsáki and Vöröslakos, 2023). These barrages tend to target
specific subregions of the somato-dendritic compartment and
thus, to induce return currents as neurons equilibrate their
membrane potential. In oriented structures, such as the cortex
and hippocampus, return currents add up and greatly amplify the
voltage induce by barrages in the LFP (Buzsáki et al., 2012). Thus,
localized synaptic barrage often have a strong influence on the
spectrum.

Some well-characterized patterns of synaptic barrages show
strong periodicity. These include thalamocortical spindles (Steriade
and Deschenes, 1984; Timofeev et al., 1996; Steriade, 2006), the
theta rhythm of the hippocampus (Vanderwolf, 1969; O’Keefe
and Recce, 1993; Skaggs et al., 1996) or cortical activity during
slow wave sleep (Steriade et al., 1993; Contreras et al., 1996). At
times neural patterns having distinct frequencies may also interact
(Canolty and Knight, 2010; Cohen, 2017). It is often natural to treat
quasi-periodic or transiently periodic neural pattern as oscillations.
However, we will illustrate how it is also useful and generally
applicable to conceptualize these patterns as a train of recurring
events such as those described in the previous sections.

The theta rhythm of the hippocampus (∼7 Hz) is remarkably
regular and is generally observed during locomotion (Vanderwolf,
1969; O’Keefe and Recce, 1993; Skaggs et al., 1996). Here we
modeled hippocampal theta by convolving a quasi-periodic sub-
poissonian timing train having a mean frequency of 7 Hz with
an inverted Hann function having a matching period (Table 1
and Supplementary Figure 5A1). The spectrum of this process
shows a peak at 7 Hz and closely resemble a sine wave
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(Supplementary Figure 5A). Hippocampal theta activity is often
accompanied by high frequency activity in the gamma range (30–
80 Hz) (Bragin et al., 1995; Csicsvari et al., 2003). Gamma activity
generally occurs during the downward phase of theta activity
(Lisman and Jensen, 2013). This modulation of high frequencies
by lower frequency activity is known as cross frequency coupling
(Canolty and Knight, 2010). We model theta-nested gamma activity
as a smaller inverted Hann function driven by a quasi-periodic
timing train having a mean frequency of 80 Hz. Events occurring
during the upward phase of theta were dropped (Supplementary
Figure 5B1). The spectrum of theta-modulated gamma showed
prominent peaks in the gamma range (∼80 Hz), as well as theta
(7 Hz) and its first harmonic (15 Hz) (Supplementary Figure 5B2).
This illustrates how high frequency processes modulated by a lower
frequency display increased energy at that low frequency simply
because of the longer latencies that this modulation induces in
their event timing. As for the simulation displayed in Figure 3, the
spectrum of the sum of theta and theta-modulated gamma closely
approaches the sum of their spectra (Supplementary Figure 5C).

Identifying recurring patterns of neural
activity in vivo

The temporal dynamics of synaptic barrages and their influence
on the spectrum tend to vary from region to region and involve
specific pathways. Characterizing these patterns and their influence
on neural processing is a subject of active research (Girardeau et al.,
2009; Cei et al., 2014; Veit et al., 2017, 2023; Uran et al., 2022;
Buzsáki and Vöröslakos, 2023). Conceptualizing neural patterns
as train of recurring events can also be a powerful way to explore
their properties in vivo. To illustrate this, we will use data that
we have acquired in a recent study focusing on activity induced
in the gamma range (30–80 Hz) in the visual cortex of mice
(Perrenoud et al., 2022).

Gamma activity arises in many brain regions under varying
behavioral contingencies (Bosman et al., 2012; Cardin, 2016; Chen
et al., 2017; Uran et al., 2022; Fernandez-Ruiz et al., 2023). In
the mouse visual cortex, a specific increase of gamma activity
is observed during locomotion (Niell and Stryker, 2010; Vinck
et al., 2015). This activity comprises a narrow band component
around 60 Hz (Saleem et al., 2017; Shin et al., 2023) and a broad
band component starting from ∼30 Hz and expending to high
frequencies (Figure 4B). In a recent study (Perrenoud et al., 2022),
we took advantage of multichannel electrode arrays to show that
this spectral increase can be tied to recurring events having a
specific pattern of propagation across cortical layers (Figures 4A, C,
Materials and methods). Gamma events occurred more frequently
during locomotion but also happened at a sustained rate during
quiescence (Figure 4C). Decomposing gamma activity as an event
train allows examination of how it entrains cortical neurons in
relation with behavior with a high temporal resolution (Perrenoud
et al., 2022) and provides some insight into how its spectral
signature arises and contributes to the LFP.

Gamma events showed a complex inter-event distribution with
a prominent mode around 17.8 ms, showing that gamma events
tend to occur in rapid sequences or bursts (Figure 4E1). Averaging
the field potential around events shows a rhythmic pattern of

activity (Figure 4D1), whose spectral energy distribution resembles
that observed during locomotion (taking away the 1/f2 RC filtering
induced by neural membrane, Figure 4D2). As gamma events
shift phase across recording locations (Figure 4D1), it is difficult
to precisely isolate the waveform of single events. However, we
can now estimate how much of the shape of cortical gamma
activity is determined by event timing. To do this we computed
an idealized perfect pulse times series having a value of one at
the time of events and zero everywhere else. The spectrum of
that time series was computed as described above. We found that
the characteristic broad-band and narrow-band components of the
distribution of energy of gamma activity can be derived solely
by considering the events timing (Figure 4E2). To estimate the
significance of this spectral distribution, we compared it to the
spectrum of Poisson trains having a matching number of events
(Figure 4E2, 1,000 randomizations). The broad band and narrow
band gamma components of the spectrum were both well outside
the 95% confidence interval of randomized trains. Gamma activity
in mouse V1, is thus a real-world example of how a complex
spectrum can be shaped by the temporal distribution of recurring
neural events.

Discussion

Neural activity has highly complex dynamics (Buzsaki, 2006;
Buzsáki et al., 2012). The Fourier transform is a remarkably
powerful tool allowing the detection of subtle changes in neural
processes (Percival and Walden, 1993; Bruns, 2004). However,
relating variation in the Fourier spectrum to actual neural processes
is a complex problem. Thus, the interpretation of the spectrum of
neural activity is rarely straightforward.

In the present study, we use a simple yet generally applicable
conceptual framework to guide the interpretation of the Fourier
spectrum of neural recordings (Cox and Lewis, 1966; Rice, 1977;
Bédard et al., 2006; Díaz et al., 2023). We note that neural
activity is made of recurring events such as synaptic currents,
action potentials and, at larger scales, coordinated synaptic barrages
within a region or from one region to another. This allows to
model neural processes straightforwardly as the convolution of (1)
a timing train and (2) a waveform modeling the voltage deflection
induced by single events (Rice, 1977; Bédard et al., 2006). Using
simulations, we show how the spectrum of recurring neural events
depends critically on these two aspects. We then illustrate how
multiple recurring events tend to sum up in the LFP and how this
shapes the spectrum in a typical recording scenario. Finally, we
illustrate how this framework can be used to describe the dynamics
of gamma activity (30–80 Hz) in real data obtained in the mouse
visual cortex (Perrenoud et al., 2022).

Increased energy in the frequency spectrum within some
frequency bands is often interpreted as the reflection of oscillatory
neural activity. Accordingly, neural activity is frequently studied
with concepts related to oscillations such as phase, amplitude,
and coherence (Vinck et al., 2023). Some neural patterns do
show strong periodicity (Buzsaki, 2006; Buzsáki and Vöröslakos,
2023), including slow wave sleep cortical activity (Steriade et al.,
1993; Contreras et al., 1996; Sanchez-Vives and McCormick,
2000), theta rhythm in the hippocampus (O’Keefe and Recce,
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FIGURE 4

The spectrum of gamma activity in the mouse visual cortex is shaped by the timing of gamma events. (A) Schematic of the recording configuration.
A linear electrode array is used to record the local field potential (LFP) across the layers of the primary visual cortex (V1) of a mouse freely running on
a wheel. (B) Locomotion (purple) induces an increase in LFP power in the gamma range (30–80 Hz) having a narrow band peak around 55–60 Hz
and broad band component. (C) Excerpt of the recording around locomotion onset. Locomotion modulated gamma activity can be tied to discrete
network event [orange; further detail on the method can be found in Perrenoud et al. (2022)]. (D) (1) Average LFP around gamma events and (2) its
Fourier spectrum. The average LFP shows a broad band and a narrow band peak in its energy distribution. (E) (1) Inter-event interval distribution of
gamma events and (2) Fourier spectrum of the event timing train of gamma events. The gray bar in E2 represents the 95% confidence interval of the
spectra of matched Poisson trains (1,000 randomizations). The broad-band and a narrow-band components of locomotion modulated gamma
activity are visible in the Spectrum of the event’s timing.

1993; Skaggs et al., 1996) or thalamic spindles (Steriade, 2006;
Niethard et al., 2018). Treating these patterns as oscillatory is thus a
powerful way to quantify their properties (Bruns, 2004). However,
these notions will not appropriately capture the properties of non-
periodic signals (Donoghue et al., 2020). When then, might it be
appropriate to treat neural patterns as oscillations?

Conceptualizing neural process as recurring events can a
powerful way to address this question. Recurring events can
be modeled simply and straightforwardly as the convolution of
a timing train and a waveform (also called impulse response
function) (Bédard et al., 2006; Díaz et al., 2023). The theory
underlying such models is well developed (Cox and Lewis, 1966;
Perkel et al., 1967; Rice, 1977) and has found a wide variety
of applications starting with the description of shot noise by
Schottky (1918). Accordingly, such processes are often referred
to as generalized shot noise (Rice, 1977). Here, this framework
allowed us to investigate how the spectrum is shaped by processes
having arbitrary degrees of periodicity. Our work indicates that a
tendency toward periodicity will indeed translate into increased
power within a defined frequency band. However, we also provide
simple examples of how band-specific power increase can arise
from process that are entirely non-periodic. This indicates that
some caution is warranted when concluding that peaks in the
spectrum are the signature of oscillations or rhythmicity. One must

indeed make sure that there is some energy in the spectrum within
a specific frequency band. However, it is important that verification
be performed in the time domain. A simple check for consistency in
the amplitude and phase of the filtered signal can be an appropriate
way to address these concerns.

What to do then when neural signals do not show strong
signs of periodicity? Here, with the example of one of our recent
studies (Perrenoud et al., 2022), we illustrate how treating of
neural process as recurring events can also yield key insights
into their properties (Figure 4). Thinking of neural patterns as
recurring events is a straightforward way to link them to tangible
neural processes such as synaptic responses, action potentials, or
synaptic barrages. It also permits direct quantification of how the
distribution of events in time might shape the spectrum. When
the waveform of the voltage induced by single events can be
estimated with precision (as for action potentials) it is potentially
possible to estimate the full contribution of a recurring event to
the spectrum.

Identifying repeating events in the local field potential and
relating them to neural processes is not a simple problem. We and
others have had success in identifying recurring events by taking
advantage of multichannel recordings to resolve regularity in the
propagation of neural activity in space (Perrenoud et al., 2022;
Sibille et al., 2022). The detection methods that we used in our case,
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functions on the premise that events manifest as single cycles in the
filtered LFP (Perrenoud et al., 2022). Thus, it may not be broadly
applicable to detect multicycle events such as spindles (Timofeev
et al., 1996; Olbrich et al., 2011; Niethard et al., 2018). Further
methodological development is needed in this direction. Recent
progress in increasing the spatial resolution of multielectrode
recordings may make this approach more feasible in the future (Jun
et al., 2017; Steinmetz et al., 2021). Another important limitation
of the framework introduced here is that, for the sake of clarity,
we have only considered waveforms that are invariant in shape and
amplitude. In a real-world scenario there might be variability in the
intensity and shape of the waveform of recurring neural patterns
over time. However, the simple conceptual framework introduced
here may serve as a useful starting point to guide developments
addressing these questions in the future.

As a final note, for the sake of brevity, we have not discussed
the relationship between the spectrum of a process and its
autocorrelation function (Lamarre and Raynauld, 1965; Perkel
et al., 1967; Lang et al., 1999; Lévesque et al., 2020). Readers wishing
to expend on the theory of spectral estimation can find extended
discussion in the book ‘Spectral Analysis for Physical Applications’
(Percival and Walden, 1993).
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SUPPLEMENTARY FIGURE 1

Transition from a Poisson to a periodic point process. (1) Event interval
distribution, (2) excerpt of an event train and (3) Fourier spectrum of panel
(A) a Poisson process, (B–D) sub-Poissonian processes having diminishing
variance in their inter-event interval distribution and (E) a perfectly periodic
point process. As the variance of the inter-event interval diminishes,
secondary peak start to appear at the harmonics (i.e., integer multiples) of
the mean frequency. All processes have a mean frequency of 40 Hz.

SUPPLEMENTARY FIGURE 2

Peaks in the spectrum of a point process reflect peaks in the event interval
distribution. (1) Event interval distribution, (2) excerpt of an event train and
(3) Fourier spectrum of panel (A) a Poisson process (mean frequency
50 Hz), (B,C) two sub-Poissonian processes (mean frequency, 80 and
20 Hz, respectively) and (D) a mixture of the processes in panels (A–C).
Peaks in the Fourier spectra of point processes indicate the presence of
some preferred event interval.

SUPPLEMENTARY FIGURE 3

The Fourier spectrum of recurring event trains depends on the inter-event
interval distribution and the waveform of single events. (1) (A) a perfectly
periodic process was convolved with 3 waveforms (top) mimicking the
shape of panel (B) a synaptic event, (C) a spike and (D) a spindle, resulting in
three distinct recurring event time series having the same event timing
(bottom). (2) Convolution in the time domain translates into a simple
multiplication into the frequency domain. Thus, the Fourier spectrum of the
recurring event time series in B1, C1 and D1 (bottom) is simply the product
of the spectrum of their waveform (top) and the spectrum of the periodic
pulse train (A2). The timing train (A) is identical for all processes and is not
meant to be realistic. Note that the spindle waveform (D) and the regular
time train in panel (A) have none overlapping spectra and
cancel each other.

SUPPLEMENTARY FIGURE 4

The width of the event waveform relative to the process rate influences
how much each shapes the Fourier spectrum. (1) (A) a quasi-periodic
sub-Poissonian process was convolved with 3 Hann waveform (top) having
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widths (B) 5 time shorter, (C) equal, and (D) five time longer than the mean
period of the process, resulting in three distinct recurring event time series
having the same event timing (bottom). (2) Convolution in the time domain
translates into a simple multiplication into the frequency domain. Thus, the
Fourier spectrum of the recurring event time series in B1, C1, and D1
(bottom) is simply the product of the spectrum of their impulse response
functions (top) and the spectrum of the pulse train (A2). Shorter event
waveforms make the spectrum look more like that of the event timing
whereas longer waveforms tend to dominate the spectrum.

SUPPLEMENTARY FIGURE 5

Complex spectra arise from cross-frequency coupling. (1) Excerpt, and (2)
Fourier spectrum of panel (A) a 7 Hz quasi-periodic sub-poissonian event
train convolved with a matched Hann window simulating hippocampal
theta, (B) a 80 Hz train constructed similarly but where event occurrence is
modulated by theta phase, and (C) the sum of the time series in panels
(A,B). Cross frequency modulation induces a clear peak in the spectrum of
gamma at theta (7 Hz) and its first harmonic (15 Hz). The spectrum of the
sum of two signals approaches the sum of their spectra.
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