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Neurons that generate persistent activity in the primate dorsolateral prefrontal 
and posterior parietal cortex have been shown to be predictive of behavior in 
working memory tasks, though subtle differences between them have been 
observed in how information is represented. The role of different neuron types 
in each of these areas has not been investigated at depth. We thus compared 
the activity of neurons classified as narrow-spiking, putative interneurons, and 
broad-spiking, putative pyramidal neurons, recorded from the dorsolateral 
prefrontal and posterior parietal cortex of male monkeys, to analyze their role 
in the maintenance of working memory. Our results demonstrate that narrow-
spiking neurons are active during a range of tasks and generate persistent 
activity during the delay period over which stimuli need to be  maintained in 
memory. Furthermore, the activity of narrow-spiking neurons was predictive 
of the subject’s recall no less than that of broad-spiking neurons, which are 
exclusively projection neurons in the cortex. Our results show that putative 
interneurons play an active role during the maintenance of working memory 
and shed light onto the fundamental neural circuits that determine subjects’ 
memories and judgments.
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Introduction

Working memory is the limited-capacity system of maintaining and manipulating 
information in current thought (Jaffe and Constantinidis, 2021). It is applicable in spatial, 
episodic, and verbal tasks (Baddeley, 2012) and can be  improved with training (Qi and 
Constantinidis, 2013; Constantinidis and Klingberg, 2016). Lesion, neuroimaging, and 
neurophysiological studies have shown the dorsolateral prefrontal cortex (dlPFC) and the 
posterior parietal cortex (PPC) to be two key brain regions that give rise to this cognitive 
ability (Constantinidis and Klingberg, 2016). Analysis of neurophysiological recordings during 
visuospatial working memory tasks, such as the oculomotor delayed-response task, revealed 
that neurons generate persistent activity which represents information regarding the location 
of visual stimuli, thus providing a neural correlate of working memory (Riley and 
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Constantinidis, 2016). The bump attractor model provides mechanistic 
insights on how persistent activity can be maintained, by virtue of 
recurrent excitation between neurons, and accounts for behavior in 
working memory task, tying fluctuations of persistent firing rate to 
variability of responses (Compte et al., 2000; Wimmer et al., 2014). 
However, the neural mechanisms from which working memory arises 
are a continuing debate in the field. Competing theories have 
questioned whether persistent activity is present across all tasks, 
suggesting instead, that “activity-silent” models can better account for 
working memory (Stokes, 2015). Other models have posited that the 
rhythmic spiking of neurons is the critical neural variable, instead, so 
that each attractor state is accompanied by bursts of gamma 
oscillations, resulting from fast, local feedback inhibition (Lundqvist 
et al., 2016).

To adjudicate between competing models, it is thus imperative to 
determine whether proposed neural correlates of working memory 
can account for behavior across different cognitive tasks, and similarly, 
whether model predictions hold across tasks. In a recent study Li et al. 
tested whether persistent activity could predict subtle changes in what 
a subject recalls and how this activity differed in dlPFC and PPC (Li 
et  al., 2021). This study used a novel working memory task that 
dissociated motor preparation from spatial working memory. Neurons 
in the dlPFC and PPC neurons were shown to be equally predictive of 
behavior but there were still subtle differences between the two areas. 
In a second study of interest, Qi et al. trained monkeys to remember 
either the first or second of two stimuli presented in sequence (Qi 
et al., 2015). This study, too, revealed that neurons with persistent 
activity, particularly in the dlPFC can account for what information 
the subjects represented in memory.

These studies examined activity pooled from all neurons in 
these areas, however it is known that prefrontal pyramidal neurons 
and interneurons can play distinct roles during cognitive tasks 
(Hussar and Pasternak, 2009; Ardid et al., 2015; Jacob et al., 2016). 
The bump attractor model predicts that persistent activity is 
maintained by virtue of structured connections between pyramidal 
neurons and interneurons and that both populations generate tuned 
persistent activity that should be predictive of behavior (Compte 
et al., 2000). A specialization of interneuron function inconsistent 
with this prediction would cast doubt on the validity of the bump 
attractor model as the primary mechanism of working memory. 
Different neuron types can be  classified from extracellular 
recordings based on the waveform of their action potentials as 
narrow-spiking (NS) with shorter action potentials and broad-
spiking (BS) with longer action potentials, sometimes referred to as 
fast-spiking and regular-spiking respectively, as well (Constantinidis 
and Goldman-Rakic, 2002; Trainito et al., 2019). We were therefore 
motivated to determine whether NS neurons generate persistent 
activity across tasks and brain areas, and whether their such 
persistent activity is predictive of behavior, consistent with the 
bump attractor model.

Materials and methods

The following methods are summarized from the Li et  al. 
(2021) and Qi et al. (2015) studies. Four male rhesus monkeys 
(Macaca mulatta) were used in these experiments. Neural 
recordings were carried out in areas 8 and 46 of the dorsolateral 

prefrontal cortex and areas 7a and lateral intraparietal area (LIP) 
of the posterior parietal cortex. All experimental procedures 
followed guidelines by the U.S. Public Health Service Policy on 
Humane Care and Use of Laboratory Animals and the National 
Research Council’s Guide for the Care and Use of Laboratory 
Animals were reviewed and approved by the Wake Forest 
University Institutional Animal Care and Use Committee.

Experiment setup

Monkeys sat in a primate chair with their head fixed while viewing 
a liquid crystal display monitor. Animals fixated on a white square in 
the center of the monitor screen. Animals were required to fixate on a 
0.2° spot appearing in the center of the monitor screen and maintain 
fixation within a 3° window. During each trial, the animals maintained 
fixation on the spot while visual stimuli were presented at peripheral 
locations. Any break of fixation terminated the trial, and no reward 
was given. Eye position was monitored throughout the trial using a 
non-invasive, infrared eye position scanning system (model RK-716; 
ISCAN, Burlington, MA). Eye position was sampled at 240 Hz, 
digitized, and recorded. Visual stimuli display, monitoring of eye 
position, and the synchronization of stimuli with neurophysiological 
data were performed with in-house software (Meyer and 
Constantinidis, 2005) implemented in MATLAB (Mathworks, 
Natick, MA).

Behavioral tasks

Two monkeys were trained to perform the Match-Stay 
Nonmatch-Go (MSNG) task (Figure 1A). The task required the 
monkeys to remember the location of a cue. After a 3 s delay period, 
a second stimulus appeared, either at the identical location (match) 
or a different location (nonmatch). After 500 ms, the fixation point 
changed color. If the second stimulus was a match, the monkey was 
required to maintain fixation; if the second stimulus was a 
nonmatch, the monkey was required to make a saccade towards this 
visible stimulus. The monkeys received a liquid reward for each 
correct response. Possible cue locations included a reference 
location (white square in the inset of Figure 1A) and eight locations 
deviating from the reference location by an angular distance of 
11.25°, 22.5°, 45° and 90°, clockwise and counterclockwise. In each 
daily session, the cue could appear pseudo-randomly at one of the 
eight possible locations. Since only a limited range of stimulus 
locations was explored in each session, an effort was made to 
position stimuli based on the estimated best neuronal responding 
location of neurons isolated in real-time, however we  recorded 
neuronal activity with multiple electrode arrays, and the location of 
the stimuli could fall at any position relative to a neuron’s receptive 
field. The use of this range of conditions allowed us to randomly 
interleave trials that differed considerably in difficulty. Error trials 
were eventually used to determine the relationship between neural 
activity and behavior. The cue was followed by a matching stimulus 
appearing at the same location as the cue in approximately half the 
trials or by a nonmatch stimulus, which could only appear at the 
reference location. The reference location varied from session 
to session.
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Two different monkeys were trained to perform the Remember 
First – Remember Second (R1R2) task (Figure 1B). In this task, two 
stimuli also appeared in sequence, with intervening delay periods 
between them, now requiring the monkey to remember and make an 
eye movement to either the first or the second stimulus according to 
the color of the fixation point. The monkeys were required to saccade 
to the location of the first stimulus if the fixation point was white in 
color (remember-first condition), and to the location of the second 
stimulus if the fixation point was blue (remember-second condition). 
To minimize confusion about the stimulus to be remembered, trials 
with white and blue fixation points were presented in blocks.

Surgery and neurophysiology

Two, 20-mm diameter craniotomies were performed over the 
lateral prefrontal cortex and the posterior parietal cortex, and a 
recording cylinder was implanted over each site. Neurophysiological 
recordings were obtained as described before (Zhou et  al., 2016). 
Tungsten-coated electrodes with a 200 or 250 μm diameter and 4 MΩ 
impedance at 1 kHz were used (FHC, Bowdoinham, ME). Arrays of 
up to 4-microelectrodes spaced 0.5–1 mm apart were advanced into 
the cortex with a Microdrive system (EPS drive, Alpha-Omega 
Engineering) through the dura into the cortex.

Neural data analysis

Data analysis was performed in the MATLAB computational 
environment (Mathworks, Natick, MA, version 2019-2022a). 
Recorded spike waveforms were sorted into separate units using a 
semi-automated cluster analysis process of the KlustaKwik algorithm 
(Harris et al., 2000). Action potential waveforms of all neurons were 
fitted with a smooth function, using a Generalized Additive Model, to 
avoid aliasing. This analysis was performed in R (version 4.3.1), using 
the GAM function of the mgcv package. We used cubic regression to 

fit the original waveform points and subsequently up-sampled, using 
the spline function. The time difference between the trough and 
subsequent peak of the waveform was then identified as the spike 
width, similar to previous studies (Womelsdorf et al., 2014; Trainito 
et al., 2019). Neurons were classified as narrow-spiking (NS) putative 
interneurons or broad-spiking (BS) putative pyramidal neurons based 
on this spike width.

Neurons generating persistent activity were identified as those 
with firing rates during the (first) delay period that were higher 
compared to the 1 s baseline fixation period that preceded the cue 
presentation, based on a paired t-test, evaluated at the p < 0.05 level. 
This analysis was performed based on correct trials, only. Population 
discharge rates were evaluated by averaging activity from multiple 
neurons and constructing Peri-Stimulus Time Histograms (PSTH). 
These were constructed using the best stimulus (preferred cue) for 
each neuron. Cohen’s d was used to estimate effect sizes. Correct and 
error conditions were compared for trials also involving the preferred 
cue of each neuron. Neurons with at least two error trials in this 
condition were included in analysis. Variability of neuronal responses 
was quantified by computing the Fano factor (variance divided by the 
mean) of spike counts in the delay period (Qi and Constantinidis, 2012).

To quantify the trial-to-trial association between perceptual 
choice and neuronal activity, we analyzed trials involving the best and 
most distant stimulus location, and trials that resulted in correct 
choices and incorrect choices, using Receiver Operating Characteristic 
(ROC) analysis (Britten et al., 1996; Mendoza-Halliday et al., 2014). 
Firing rates of trials involving the same sequences of stimuli were 
pooled separately for correct and error outcomes. An ROC curve was 
computed from these two distributions of firing rates. The area under 
the ROC curve is referred to in the perceptual inference literature as 
“choice probability” and represents a measure of correlation between 
the behavioral choice and neuronal activity. A value of 1 indicates a 
perfect correlation between the behavioral choices and the neuronal 
discharge rates; a value of 0.5 indicates no correlation between the two. 
Time-resolved choice probabilities were computed from the spikes in 
500 ms time windows, stepped by 50 ms intervals. Results from all 

FIGURE 1

(A) Sequence of events in the MSNG task. The monkey is required to observe the cue and maintain fixation during the delay period. If a second 
stimulus appears at the same location as the cue (match), the monkey needs to stay at the fixation point after its color changes; if it deviates 
(nonmatch), the monkey is required to make an eye movement to the second stimulus once the color of the fixation point changes. (B) Sequence of 
events in the R1R2 task. In the remember-first task, the fixation point is white, and the monkey is required to make an eye movement to the first 
stimulus, regardless of the location of a second stimulus, which is a distractor. In the remember-second task, the first stimulus is now a distractor and 
the monkey is required to make an eye movement to the remembered location of the second stimulus.
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available neurons were averaged together to produce 
population responses.

Results

Properties of NS and BS neurons in the 
dlPFC and PPC

Neuronal activity was recorded from areas 8 and 46 of the 
dorsolateral prefrontal cortex and areas 7a and LIP of the posterior 
parietal cortex (Figure 2) in four monkeys. Two of the monkeys were 
trained to perform the MSNG task (Figure 1A). A total of 577 neurons 
were recorded from the dlPFC and 859 neurons were recorded from 
the PPC in this task. Two additional monkeys were trained to perform 
the R1R2 task (Figure 1B). A total of 423 neurons were recorded from 
the dlPFC and 602 neurons were recorded from the PPC in this task. 
Distribution of spike widths of these neurons exhibited clear bimodal 
distribution (Hartigan’s dip test: dip value = 0.042, p < 0.001). Neurons 
with spike widths ≤300 μs were thus classified as narrow-spiking (NS) 
putative interneurons, and neurons with spike widths >300 μs were 
classified as broad-spiking (BS) putative pyramidal neurons (Figure 3). 
From the data recorded with the MSNG task, 47 dlPFC neurons (8%) 
and 136 PPC neurons were classified as NS (15.8%). For the data 
recorded with the R1R2 task, 66 dlPFC neurons (15.6%) and 92 PPC 
neurons were classified as NS (15.3%). Mean firing rate, computed in 
the baseline, fixation period of the tasks was overall higher in the NS 
population (10.28 spikes/s) than the BS population (8.93 spikes/s). 
Although considerable variability was present in both populations, the 
difference did reach statistical significance (Wilcoxon rank-sum test, 
p = 0.01). The overall percentage of NS neurons in our sample 
(341/2461, 14%) was lower than the percentage of interneurons 
identified by anatomical studies, generally estimated in the 20–30% 
range, however this includes non-fast spiking interneuron cell types 
(Markram et  al., 2004; Torres-Gomez et  al., 2020). Prior 
neurophysiological studies in the monkey prefrontal cortex from 
other laboratories have classified approximately 13–20% of neurons as 

narrow spiking (Diester and Nieder, 2008; Johnston et al., 2009; Ardid 
et al., 2015), generally consistent with the percentage we report here.

We focused particularly on neurons that exhibited significantly 
elevated responses in the first cue period or the delay period in the 
MSNG task, compared with the baseline activity (paired t-test, 
p < 0.05) as these were identified in Li et al. (2021). A total of 144 
neurons with such activity were identified in dlPFC (49 in subject 
KE, and 95 in subject LE) and 145 neurons in the PPC (44 in subject 
KE, and 101  in subject LE). Of those, 12 dlPFC neurons were 
identified as NS (8.3%); similarly, 28 PPC neurons were identified 
as NS (19.3%). The proportion of neurons that was classified as NS 
did not differ significantly between the task-responsive and 
non-task responsive neurons for either the dlPFC (two-tailed 
Fisher’s exact test: p = 1.0) or the PPC (two-tailed Fisher’s exact test: 
p = 0.21).

We also examined task responsive neurons in the R1R2 task, as 
these were identified in the Qi et al. study, as neurons that exhibited 
significantly elevated responses in the first delay period compared 
with the baseline activity (paired t-test, p < 0.05). A total of 182 
neurons with persistent activity were identified in the dlPFC (38 in 
subject GR, and 144 in subject HE) and 180 neurons in the PPC (86 in 
subject GR, and 94 in subject HE). Of those 28 dlPFC neurons were 
identified in NS (15.4%); similarly, 29 PPC neurons were identified as 
NS (16.1%). For this task too, the proportion of neurons that was 
classified as NS did not differ significantly between the task-responsive 
and non-task responsive neurons for either the dlPFC (two-tailed 
Fisher’s exact test: p = 1.0) or PPC (two-tailed Fisher’s exact test: 
p = 0.71).

Plotting the firing rate of all neurons in the MSNG task (Figure 4) 
revealed that NS neurons generated robust responses to stimuli. In the 
MSNG Task, dlPFC mean firing rates did not reach a significant 
difference between the NS and BS neurons in either the cue (t-test: 
t575 = 1.56, p = 0.12, effect size = 0.23) or the delay period (t-test: 
t575 = 0.45, p = 0.66, effect size = 0.07). NS neurons in the PPC had 
significantly higher firing rate than BS neurons for both the cue (t-test: 
t857 = 2.7, p = 0.007, effect size = 0.19) and delay period (t-test: t857 = 2.61, 
p = 0.009, effect size = 0.17). Results were very similar when 
we considered the populations of neurons with significantly elevated 
activity during the task (insets of Figure 4).

For the R1R2 task (Figure 5), the firing rate for NS neurons were 
not significantly different than BS neurons, neither in cue (t-test: 
t421 = 0.61, p = 0.54, effect size = 0.09 for dlPFC; t-test: t600 = 0.69, 
p = 0.49, effect size = 0.08 for PPC) nor in delay period (t-test: 
t421 = 0.19, p = 0.85, effect size = 0.03 for dlPFC; t-test: t600 = 0.48, 
p = 0.63, effect size = 0.05 for PPC). In this case, too, results were 
similar when we  considered the populations of neurons with 
significantly elevated activity during the task (insets in Figure 5). The 
absolute firing rate was higher overall in the R1R2 task than the 
MSNG task, and this was true for both NS and BS neurons. This likely 
reflects differences between monkeys tested in the two studies and 
subtle experimental differences (e.g., more emphasis on selection of 
task-responsive neurons for the purposes of the R1R2 study).

Examining neuronal responses of Figures  4, 5 created the 
appearance that variability of firing rate was greater for NS than BS 
neurons, however, that was a consequence of the smaller NS sample 
size. When we calculated the Fano factor (variance divided by mean) 
of spike counts in the delay period, the result revealed similar Fano 
factor values for NS neurons in the MSNG task (PFC NS = 1.18, PFC 

FIGURE 2

Regions of neurophysiological recordings, comprising areas 8 and 
46 in the dorsolateral prefrontal cortex (dlPFC) and areas 7a and LIP 
in the posterior parietal cortex (PPC). IPS, intraparietal sulcus; STS, 
superior temporal sulcus; AS, arcuate sulcus; PS, principal sulcus.
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BS = 1.11, PPC NS = 1.29, PPC BS = 1.17), and in the R1R2 task (PFC 
NS = 1.31, PFC BS = 1.38, PPC NS = 1.48, PPC BS = 1.47). Only the 
difference between NS and BS neurons in the PPC for the MSNG task 
reached statistical significance (Wilcoxon rank-sum test, p = 0.025). 
All other tests produced values p > 0.1. This analysis did confirm lower 
variability in the prefrontal than the posterior parietal cortex, as 
we have described previously (Qi and Constantinidis, 2015).

Overall, the time courses of activity were very similar between NS 
and BS neurons in the two tasks, and in both dlPFC and PPC. These 
results indicate that comparable percentages of NS and BS neurons 
exhibited task related activity in the context of these working memory 
tasks; firing rates of NS and BS populations generally mirrored each 
other in the context of these tasks, although NS neurons exhibited 
generally higher firing rate, particularly in the PPC.

ROC analysis

To assess the reliability with which firing rates of BS and NS units 
could predict the visual stimulus and the subject’s choice, 
we  performed Receiver Operating Characteristic (ROC) analysis. 
We first considered the area under the ROC curve, comparing the 

distribution of firing rates for the best location of its neuron and its 
more distant one (diametric in the case of the R1R2 task). This analysis 
was performed in a time-resolved fashion and tested whether firing 
rates of both BS and NS units discriminated between the spatial 
locations of the stimuli during the delay period better than chance, 
represented by ROC values equal to 0.5 (Figure 6). For the MSNG 
task, BS units exhibited mean ROC values significantly higher than 
chance (one sample t-test, t525 = 10.1, p = 3.56E-22, effect size = 0.44 for 
dlPFC; t716 = 10.1, p = 1.24E-22, effect size = 0.38, for PPC). This result 
was in agreement with our previous studies (Li et al., 2021), and was 
expected, since the majority of neurons in the sample were BS 
neurons. Importantly, NS units also exhibited significantly elevated 
mean ROC values over the delay period (one sample t-test, t40 = 2.95, 
p = 0.005, effect size = 0.46; t135 = 5.09, p = 1.18E-6, effect size = 0.44, for 
dlPFC and PPC, respectively). In fact, the time course and mean ROC 
values of the two populations were virtually identical (Figures 6A,B) 
and no significant difference was present between the mean ROC 
values of the BS and NS populations during the delay period (t-test, 
t565 = 0.77, p = 0.44, effect size = 0.11 for dlPFC; t851 = 1.2, p = 0.22, effect 
size = 0.11 for PPC).

Generally, similar results were present for the R1R2 task 
(Figures 6C,D). BS units exhibited mean ROC values during the first 

FIGURE 3

(A) Example waveform of a single Narrow Spiking unit. Points represent average normalized voltage value across all waveforms of this unit. Line 
represents fitted generalized additive model through experimental points. Open circle represents the estimated peak of the waveform. (B) Example 
waveform of a single Broad Spiking unit. (C) Distribution of spike widths among all neurons in the sample, across areas and tasks (sample size of 341 NS 
units and 2,120 BS units). (D) Firing rate, computed in the fixation interval of the task is plotted against the waveform duration of each unit.
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delay period that were significantly elevated above chance (one sample 
t-test, t351 = 6.56, p = 1.89E-10, effect size = 0.35 for dlPFC; t503 = 10.4, 
p = 6.5E-23, effect size = 0.46, for PPC). For the NS units, mean ROC 
value reached statistical significance only for the PPC, whereas dlPFC 
was marginally above our threshold of statistical significance (one 
sample t-test, t65 = 1.91, p = 0.06, effect size = 0.24 for dlPFC; t91 = 4.3, 
p = 4.5E-5, effect size = 0.45, for PPC). For both areas, no significant 
difference was detected between mean ROC values of NS and BS 
during the delay period when compared to each other (t416 = 1.02, 
p = 0.31, effect size = 0.14 for dlPFC; t594 = 0.40, p = 0.68, effect 
size = 0.04 for PPC).

We additionally performed an ROC analysis that compared 
the distributions of firing rates in correct and error trials, yielding 
a quantity sometimes referred to as choice probability (Britten 
et al., 1996). This analysis only included neurons with error trials 
at the condition that represented each neuron’s preferred location. 
To have sufficient power for comparisons and considering the 
overall similarity of ROC profiles for the two tasks (Figure 7), 
we pooled data from both tasks together and examined choice 
probability for the first 1.5 s of the delay period, which was 
common in both tasks. The results suggested higher mean Choice 
Probability values for NS than BS neurons in both tasks, and this 

difference reached statistical significance in the PPC (t-test, 
t526 = 1.9, p = 0.06, effect size = 0.23 for dlPFC; t800 = 2.02, p = 0.04, 
effect size = 0.19, for PPC). In other words, if the activity of 
neurons was lower than average in a trial during the delay 
interval, the subject was more likely to make an erroneous than 
correct choice and this relationship was stronger for NS than BS 
neurons, particularly in the PPC. Additionally, there was no 
significant difference in the Choice Probability values between 
NS neurons of dlPFC and PPC (t-test, t180 = 0.56, p = 0.58, effect 
size = 0.09), and between the BS neurons of dlPFC and PPC (t-
test, t1146 = 1.21, p = 0.22, effect size = 0.07). The result suggests 
similar characteristics of both neuronal populations in these two 
areas, in terms of how their firing rate relates to 
behavioral outcome.

Discussion

Persistent activity is considered the neural correlate of working 
memory (Constantinidis et al., 2018) but continues to be debated 
(Stokes, 2015; Lundqvist et  al., 2016). The bump-attractor 
computational model suggests that persistent activity is sustained 

FIGURE 4

(A) Population PSTH showing mean firing rate from narrow-spiking dlPFC neurons recorded in the MSNG task (n  =  47). Inset, mean firing rate of 
neurons with significantly elevated responses (n  =  12). Gray bars indicate time of appearance of the two stimuli in the task (0–0.5  s and 3.5–4  s). Time of 
−1  s represents the beginning of the fixation period. The solid traces indicate average activity of neurons when the stimulus appeared in location that 
elicited the best cue response (best cue), while the dotted lines indicate neuronal activity when the stimulus appeared at the most distant location from 
the preferred location (worst cue). Shaded areas indicate standard error of the mean (SEM). (B) As in A, for broad-spiking dlPFC neurons (n  =  530). Inset, 
mean firing rate of neurons with significantly elevated responses (n  =  132). (C) Averaged PSTH of neuronal spike discharges from narrow-spiking PPC 
neurons recorded in the MSNG task (n  =  136). Inset, mean firing rate of neurons with significantly elevated responses (n  =  28). (D) As in C, for broad-
spiking PPC neurons (n  =  723). Inset, mean firing rate of neurons with significantly elevated responses (n  =  117).
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by virtue of recurrent connections between neurons with similar 
tuning, thus allowing discharges to reverberate in the circuit and 
be maintained stably even after the actual stimulus is no longer 
present (Compte et al., 2000; Wang, 2001; Murray et al., 2017a). 
Structured excitatory and inhibitory connections are both essential 
in the maintenance of working memory in this model 
(Constantinidis et al., 2002; Wang et al., 2004). Persistent activity 
has been shown to predict working memory performance, however 
evidence linking behavior with persistent activity based on delayed 
response tasks has been criticized as it may represent motor 
preparation rather than working memory per se (Lundqvist et al., 
2018; Miller et al., 2018). Studies of working memory in non-visual 
modalities provide strong evidence against this interpretation 
(Romo and Salinas, 2003; Constantinidis, 2016). Alternative 
visuospatial working memory tasks have also been introduced, such 
as the MSNG task, which requires a categorical judgment about two 
stimuli and decouples the stimulus that needs to be maintained in 
memory from the eventual response. Our current results confirm 
this model prediction and demonstrate that narrow spiking, 
putative interneurons are active during several working memory 
tasks and generate persistent activity selective for the stimulus to 

be remembered even in tasks that decouple the memory for the 
stimulus location from response preparation.

Neuronal firing rate deviations during the delay interval of the 
task have been found to be predictive of subject recall (Li et al., 2021). 
Furthermore, correct and error trials differ in their level of delay 
period activity (Funahashi et al., 1989; Zhou et al., 2013). Although in 
theory, activity elevated above the baseline is not necessary for the 
encoding of stimulus information, neurons that generate persistent 
activity have been shown to be  more informative about the 
remembered stimulus than neurons that respond to stimuli but do not 
generate persistent activity (Mozumder and Constantinidis, 2023; 
Thrower et al., 2023).

Our current results show that the activity of NS neurons that 
generate persistent discharges is also predictive of behavior, no 
less than BS neurons. Classification of cells into putative 
pyramidal neurons and interneurons is not perfectly precise and 
this determination cannot be made perfectly accurately for any 
single neuron, however neurons classified as NS are more likely 
to correspond to interneurons, allowing for meaningful 
comparisons between populations (Constantinidis and Goldman-
Rakic, 2002).

FIGURE 5

(A) Population PSTH showing mean firing rate from narrow-spiking dlPFC neurons recorded in the R1R2 task (n  =  66). Inset, mean firing rate of neurons 
with significantly elevated responses (n  =  28). Gray bars indicate time of appearance of the two stimuli; right-most dotted line indicates offset of 
fixation point that signals the beginning of the saccade period (0–0.5  s, 2–2.5  s, and 4–4.5  s). Time  −  1  s represents the beginning of the fixation period. 
Solid lines indicate neuronal activity for the best location (based on mean cue firing rate), while the dotted lines indicate activity when the cue 
appeared at the location diametric to the best location. Shaded areas indicate standard error of mean (SEM). (B) Same as in A, for broad-spiking dlPFC 
neurons (n  =  357). Inset, mean firing rate of neurons with significantly elevated responses (n  =  154). (C) Averaged PSTH of neuronal spike discharges 
from narrow-spiking PPC neurons recorded in the R1R2 task (n  =  92). Inset, mean firing rate of neurons with significantly elevated responses (n  =  29). 
(D) Same as in C, for broad-spiking PPC neurons (n  =  510). Inset, mean firing rate of neurons with significantly elevated responses (n  =  151).
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Roles of NS and BS neurons in cognitive 
functions

Classification of neurons into Narrow Spiking and Broad Spiking 
based on extracellularly recorded action potential waveform 
corresponds only imprecisely with inhibitory interneurons and 
pyramidal neurons, respectively. For example, some types of 
pyramidal motor neurons are known to exhibit short action potentials 
(Vigneswaran et al., 2011) and waveforms of excitatory and inhibitory 

interneurons in the mouse inferior colliculus have largely overlapping 
durations (Ono et  al., 2017). In the monkey prefrontal cortex, 
comparisons of protein expression with action potential duration have 
shown that the majority of parvalbumin and somatostatin- expressing 
interneurons show narrow spike widths (Ghaderi et al., 2018; Torres-
Gomez et al., 2020). Therefore, conclusions about differences between 
these types are meaningful but only at the population level.

Narrow Spiking and Broad Spiking neurons are coactivated 
in a range of cognitive functions, however their properties and 

FIGURE 6

(A) Averaged area under the ROC curve from NS (red line, n  =  41) and BS (blue line, n  =  526) neurons recorded from the dlPFC plotted as a function of 
time for the MSNG task. Each curve represents difference in firing rate distributions between the best and most distant location. Shaded area represents 
SEM. (B) As in A for NS (red line, n  =  136) and BS (blue line, n  =  717) neurons recorded from the PPC in the MSNG task. (C) Averaged area under the ROC 
curve from NS (red line, n  =  66) and BS (blue line, n  =  352) neurons recorded from the dlPFC in the R1R2 task. (D) As in C, for NS (red line, n  =  92) and BS 
(blue line, n  =  504) neurons recorded from the PPC in the R1R2 task.

FIGURE 7

(A) Averaged area under the ROC curve from NS (red line, n  =  65) and BS (blue line, n  =  463) neurons recorded from the dlPFC, pooled from both the 
MSNG and R1R2 tasks. The solid line represents ROC value (choice probability) comparing the distribution of correct and error trials from the preferred 
cue condition. The shaded area represents SEM. (B) Averaged choice probability value from NS (red line, n  =  117) and BS (blue line, n  =  685) neurons 
recorded from the PPC, pooled from both the MSNG and R1R2 tasks.
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roles are often divergent. Prefrontal Broad Spiking neurons 
generally exhibit smaller receptive fields, or sharper tuning for 
stimulus properties, than Narrow Spiking neurons 
(Constantinidis and Goldman-Rakic, 2002; Viswanathan and 
Nieder, 2017). BS and NS neurons are also differentially activated 
in attention tasks (Hussar and Pasternak, 2009; Ardid et  al., 
2015), with NS neurons demonstrating greater sensitivity to the 
stimulus dimension being attended to for the purposes of the task 
(Hussar and Pasternak, 2009). NS discharges are also 
synchronized to different frequency bands of the local field 
potential in the context of such tasks (Ardid et  al., 2015). 
Dopamine, whose neuromodulating action has been implicated 
in the maintenance of working memory (Ott and Nieder, 2019), 
preferentially excites BS neurons and has been shown to suppress 
NS neuronal responses (Jacob et  al., 2013, 2016). NS and BS 
neurons are also differentially affected by training to perform a 
new cognitive task, with NS firing rate elicited by stimulus 
presentations increasing to a greater extent (Qi et al., 2011; Qi 
and Constantinidis, 2013).

These results suggest that considerable specialization and 
division of labor in the context of different tasks exists between 
pyramidal neurons and interneurons (Wang et  al., 2004). Our 
current results qualify these findings. We found that despite any 
specialization that may be present, NS neurons exhibit persistent 
activity that is informative about the stimulus location, and 
furthermore their activity is predictive of behavior consistent with 
predictions of the bump attractor model. Our results are in 
agreement with other studies as well, which have showed similar 
properties of NS and BS neurons during working memory (Torres-
Gomez et al., 2020).

Prefrontal and parietal roles in working 
memory

Numerous studies have implicated the prefrontal cortex as being 
critical for the maintenance of working memory (Constantinidis and 
Klingberg, 2016). However, evidence has accumulated of other brain 
areas playing a role in working memory, including the PPC, to the 
extent that is commonly referred to as part of the fronto-parietal 
network (Salazar et al., 2012; Murray et al., 2017b). Similar patterns of 
activation have been observed across dlPFC and PPC areas during 
working memory tasks (Qi et al., 2015). Studies have thus emphasized 
that cognitive performance relies heavily on a robust, distributed 
neural network across both areas (Chafee and Goldman-Rakic, 2000; 
Mejias and Wang, 2022).

In our current study, the activity of PPC neurons, at least in the 
first delay interval of both tasks, predicted the eventual behavioral 
choice of the subjects no worse than dlPFC neurons, as evidenced 
by the choice probability analysis. Prefrontal and parietal neurons 
do exhibit some specialization. PPC neurons are generally less able 
to resist the effect of distracting stimuli (Constantinidis and 
Steinmetz, 1996; Qi et al., 2010), though the specific patterns of 
responses in the two areas depend on the exact task a subject is 
performing (Jacob and Nieder, 2014). Persistent activity in 
prefrontal cortex also appears more robust and less variable from 
trial to trial (Qi and Constantinidis, 2015; Masse et al., 2017). Such 
differences in functional properties can be traced to differences in 
intrinsic properties of neurons and circuits in the two areas, 

including the relative frequency of different interneuron types in 
the prefrontal cortex (Zhou et al., 2012; Katsuki et al., 2014; Hart 
and Huk, 2020; Torres-Gomez et  al., 2020). Despite these well-
established differences, NS neurons in our sample generally 
behaved in a very similar fashion in the dlPFC and PPC. This 
suggests that fairly subtle activity changes are responsible for 
specialization between areas.
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