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Brazil is one of the most biodiverse countries in the world, with a coastline that
stretches over 7,000 km including various marine ecosystems, such as coral
reefs, mangroves, and seagrass beds, among other habitats. These diverse
environments provide a rich source of compounds, derived from primary or
secondary metabolism, which may have countless biological activities. Research
onmarine natural products (MNP) in Brazil has been ongoing for several decades
and led to the discovery of numerous bioactive compounds with potential
applications in medicine, agriculture, and cosmetics. These MNP are
structurally complex, both from an architectural and stereochemical point of
view. However, even with all the well-established techniques for the absolute
configuration (AC) assignment, this stage of structural characterization of natural
products is still under-explored and remains a challenge. This review presents an
overview of natural product chemistry in Brazil, focusing on the stereochemical
assignment of marine chiral compounds. The main goals are to describe the
techniques employed in the assignments as well as to highlight the importance
of choosing the appropriate methods for chiral natural products AC
determinations.
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1 Introduction

Brazil is known for its rich biodiversity, which includes a vast array of plant, animal, and
microbial species. Many of these organisms are known to produce a variety of compounds
with potent biological activity (Valli et al., 2018). Despite plants being one of the most
explored sources of natural products, Brazil’s marine environment is another rich source of
secondary metabolites, with a diverse array of organisms that produce bioactive compounds
(Berlinck et al., 2004).

For several decades, Brazil has been actively researching marine natural products (MNP)
(Berlinck et al., 2004; Ióca et al., 2018). This research field has focused on exploring the
diverse marine fauna and flora of Brazil’s extensive coastline, including its coral reefs,
mangroves, and seagrass beds, among other habitats. Some of the most promising areas of
this research include the discovery of new bioactive compounds with potential
pharmaceutical and biomedical applications, as well as the identification of novel
structures (Berlinck et al., 2004; Ióca et al., 2018). Up to this point, many bioactive
MNPs from both primary and secondary metabolism have been discovered in the
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marine environment, highlighting the importance of this region for
studying natural products and their potential applications in
medicine and other fields (Lorente et al., 2014).

Significant taxonomic differences between terrestrial andmarine
organisms, whose secondary metabolisms are substantially distinct,
allowed the isolation of structurally different compounds from those
obtained from traditional sources (Stonik, 2009). Another
interesting fact about compounds of marine origin is that they
are structurally complex, both from an architectural and
stereochemical point of view. These data can be observed in a
review of the literature on marine compounds, which reveals that
the vast majority of the 1,490 substances reported are chiral
compounds with complex structures (Carrol et al., 2021). Since
the AC of a compound is often closely related to its biological
activity, the determination of absolute stereochemistry is an
important step in the characterization of bioactive compounds
(Batista et al., 2021).

The determination of the AC of secondary metabolites can be
achieved using techniques such as X-ray crystallography, chemical
synthesis, Nuclear Magnetic Resonance (NMR) spectroscopy, and
chiroptical methods (Batista et al., 2018). X-ray crystallography was
used in the first AC assignment of a chiral compound (Bijvoet et al.,
1951) and is still considered one of themost reliable techniques (Flack
and Bernardinelli, 2008; Harada, 2008; Parsons, 2017). Nevertheless,
the requirement of a well-defined single crystal can be prohibitive of a
direct AC assignment of natural products, which are usually available
in non-crystalline form (Mándi and Kurtan, 2019). Another powerful
technique for the AC determination is NMR spectroscopy. However,
for being intrinsically insensitive to chirality in the normally used
isotropic media, this technique requires the use of chiral derivatizing
agents or chiral solvating agents for the AC determination of a target
compound (Wenzel and Chisholm, 2011; Seco et al., 2012; Zanardi
et al., 2018). Chemical synthesis is also widely used to determine the
AC of natural products. By synthesizing the natural product or related
compounds using chiral starting materials or chiral catalysts, the AC
can be assigned by comparing the physical and spectroscopic
properties of the synthesized compounds with those of the natural
product. This approach is challenging, since it is necessary to identify
viable synthetic routes to obtain the molecules of interest (Sun and
Sahinidis, 2022). Furthermore, stereocontrolled organic synthesis is
highly dependent on the unequivocal AC of starting materials and
products, in addition to being usually laborious, time-consuming, and
expensive (Sadlej et al., 2010). Chiroptical methods rely on the
differential interaction of a non-racemic chiral sample with left
and right circularly polarized radiation and represent an
important tool for AC determination of natural products (Grauso
et al., 2019). These techniques, which include optical rotation (OR),
optical rotational dispersion (ORD), electronic circular dichroism
(ECD), vibrational circular dichroism (VCD) and Raman optical
activity (ROA), are non-destructive and their measurements are
obtained directly in solution (Batista et al., 2018). Despite these
well-established techniques, it is worth noting that determining
the AC of secondary metabolites can be challenging and often
requires the use of associated techniques for confirmation (Batista
et al., 2021). Difficulties associated with AC determination are
probably because there is no universal technique since each of
these methods has advantages and some limitations for complex
molecules such as natural products.

2 Marine natural products from the
Brazilian coast

To contribute to the special issue “Celebrating Natural Products
Science in Brazil: 45 Years of Sociedade Brasileira de Química,” this
review aims to give an overview regarding the chemistry of MNPs
isolated from organisms collected on the Brazilian coast until 2021.
The evolution of the research involving Brazilian marine biodiversity
will be briefly discussed, paying attention to the organisms and classes
of metabolites studied. In addition, the emphasis of the work will be
directed to the determination of the AC of chiral compounds.

“Brazil” or “Brazilian” associated with “marine natural
products” were used as keywords to perform the search in the
following databases: ACS, PubMed, RSC, Science Direct, SciFinder,
Scielo, Scopus, Web of Science, and Wiley. Despite trying to address
all articles on Brazilian marine biodiversity, some works may not
have been mentioned due to the chosen search criteria.

About 4,000 articles were found. After eliminating duplicates, the
articles were individually analyzed and only those that described
extracts or natural products obtained from organisms collected on
the Brazilian coast were selected (more than 400). Approximately 58%
of these articles reported isolation of secondary metabolites, 22% of
primary metabolites and 20% of crude extracts. A more detailed
analysis was carried out considering the marine organism and the
classes of metabolites studied (Figure 1). Regarding the types of marine
organisms evaluated, themajority were algae and seaweeds, followed by
sponges and corals. It was also found articles reporting studies on fungi
and bacteria, as well as bryozoans and crustaceans among others. In
relation to the classes of metabolites analyzed (Figure 2), the most
commonwere terpenes (41%), followed by alkaloids (20%), carotenoids
and sterols (7%), polyketides (5%), peptides (5%) among others.

3 Absolute configuration

This section presents a list of natural compounds isolated from
the Brazilian coast that had their AC mentioned. The method used
in the assignment will also be specified.

After a careful evaluation of about 250 articles that deal withmarine
secondary metabolites, it was found that more than half of them
describe the isolation of chiral compounds. The rest of the articles
mainly leads with identifying compounds in the extract, isolation of
non-chiral compounds, or just the biological activity of previously
isolatedmetabolites. Worth mentioning that about 70% of these articles
that describe the isolation of chiral compounds do not name any data
about their AC and that many works discriminate the AC of only some
of the reportedmetabolites. In addition, several works only mention the
AC of the isolated compound but do not describe the method used for
this assignment. It is noteworthy that all structures were drawn and the
ACs were specified as in the original publication.

3.1 Terpenoids

The class of secondary metabolites with more reports of
stereochemical description is terpenes. Chamigrane is an abundant
subclass of sesquiterpenes isolated from a variety of sources from
terrestrial and marine environments. These compounds have
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displayed a diverse array of biological activities (White et al., 2010)
and most of them are generally produced by the red alga of the genus
Laurencia (Family Rhodomelaceae) and endophytic fungi (Zhao et al.,
2021). Eleven chamigranes, of which four were reported for the first
time, have been isolated from a Brazilian specimen of the red alga
Laurencia scoparia (Davyt et al., 2001). The chamigranes
(−)-isorigidol (1) and ma’ilione (2) were submitted to X-ray
diffraction analysis, which allowed to determine the AC of 1 and 2
as 3R,6S,9S,10S and 6S,9R,10S, respectively (Davyt et al., 2001). The
(−)-dendroidiol (3), another chamigrane sesquiterpene, was isolated
from the red alga Laurencia dendroidea collected from the
southeastern Brazilian coast. The AC of 3 was also assigned by
X-ray analysis as 3R,4S,6S,9R,10S (Machado et al., 2014). The
phytochemical study of a Brazilian specimen of Ophionereis
reticulate, a brittle starfish widespread along South America´s
northeastern coast, led to the isolation of the chamigrene
sesquiterpenes (−)-isoobtusadiene (4), (−)-acetyl isoobtusadiene
(5), and (+)-elatol (6) (Nuzzo et al., 2017). The AC assignment of

the isoobtusadiene skeleton was determined as 6S,9R,10S based on
modified Mosher’s method analysis of 4. The comparison of the
experimental and calculated ECD spectra of 5 has supported this
assignment. The full characterization of elatol (6) was based on NMR
data and the comparison of the measured OR value with those
previously reported (Nuzzo et al., 2017). Elatol is a typical
chamigrene sesquiterpene normally isolated from algae (Nuzzo
et al., 2017). A handful of articles surveyed during this
bibliographical research reported the occurrence of elatol in
organisms collected from the Brazilian coast but did not mention
any data related to its stereochemistry.

Algae of the genus Laurencia is known to produce halogenated
sesquiterpenes in a wide and variety of skeleton types (Cikos et al.,
2021). In addition to the chamigrane, the bisabolane skeleton is also
reported in this kind of organism. A halogenated bisabolene
sesquiterpene (7) was isolated from Laurencia scoparia, a red alga
collected at the coast of Ubatuba (SP, Brazil). The AC of (+)-7 was
determined by X-ray crystallography as 2S,3S,6R,9S (Davyt et al., 2006).

FIGURE 1
Different types of marine organisms evaluated.

FIGURE 2
Different classes of metabolites evaluated.
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Four nitrogen-containing sesquiterpenes (8-11) isolated from the
Brazilian endemic sponge Dysidea robusta had their AC determined
(Williams et al., 2009). The compounds (+)-isopyrodysinoic acid (8)
and (+)-13-hydroxyisopyrodysinoic acid (9) had their AC assigned as
4S,6S,11R and 4R,6S,11R, respectively, by comparison of the sign of
the ORwith related compounds. The AC of (+)-pyrodisinoic acid (10)
has been suggested as 6S,11R,13S based on the common biogenetic
origin for the skeletons of pyrodisinoic and isopyrodisinoic acids.
Furthermore, the NMR analysis of (+)-pyrodysinoic acid B (11)
established that this compound is an epimer of 10.

Chemical investigation of the endophytic fungus Nemania
bipapillata (AT-05) isolated from the Brazilian alga Asparagopsis
taxiformis led to the isolation of the botryane sesquiterpenes
(+)-(2R,4S,5R,8S)-4-deacetyl-5-hydroxy-botryenalol (12),
(+)-(2R,4R,5R,8S)-4-deacetyl-5-hydroxy-botryenalol (13),
(+)-(2R,4S,5R,8R)-4-deacetyl-botryenalol (14), (+)-(2R,4R,8R)-
nemenonediol A (15), and (+)-(2R,4S,8S)-nemenonediol B (16).
The ACs of 13, 14, and 15 were assigned by ECD, and the ACs of 12
and 16 by VCD, both associated with quantum chemical
calculations (Medina et al., 2019).

In 1988, Kelecom and Texeira described the isolation of two new
dolastane diterpenes (17 and 18) from the brown alga Dictyota
ceroicornishave (Kelecom and Teixeira, 1988). The species in
question was collected in Angra dos Reis, State of Rio de Janeiro,
Brazil. In fact, most of the Dictyotacean diterpenes are dolastanes and
secodolastanes types in the Tropical Atlantic American coastal region
(Valim et al., 2005). The AC of (−)-17 and (−)-18 were established
from spectral data and chemical correlation with known compounds
as 4R,9R,l4S, and 4R,8S,9R,l4S, respectively (Kelecom and Teixeira,
1988). An epimer of 17 (19) was isolated from the brown alga Padina
sanctae-crucis collected in the coastal region of João Pessoa, Paraiba,
Brazil (Nogueira et al., 2017). The work suggests that the AC of 19 is
4R,9S,14S however there is no mention of how this configuration was
assigned. Moreover, in the original publication there is a discrepancy
between the AC reported and one represented in the drawn structure.
Herein, the stereochemical descriptors in the text were adjusted to
ensure consistency with the drawn structure. The dolastanes 20 and
21 were isolated from the Brazilian brown alga Canistrocarpus
cervicornis (Bianco et al., 2009; Santos et al., 2011; Figueiredo
et al., 2019; Cirne-Santos et al., 2020). The AC of 20 and 21 were
mentioned as 4R,9S,14S and 4R,7R,14S, respectively. Again, there is no
report on how this assignment was accomplished. A new dolastane
diterpene 22 and four known seco-dolastane diterpenes were isolated
from the same Brazilian brown alga Canistrocarpus cervicornis
(Bianco et al., 2015). X-ray analysis of 22 determined its AC as
5R,8R,9S,10R,12S,14S. The dolastane diterpenes (4R,7R,14S)-23,
(4R,7R,14S)-24, and (4R,14S)-25, also isolated from Canistrocarpus
cervicorni collected in Brazil, had their AC discriminated but
apparently, no method was used for this purpose (Figueiredo et al.,
2019). The AC of the dolabellane diterpene (−)-10,18-diacetoxy-8-
hydroxy-2,6-dolabelladiene (26), isolated from the marine brown alga
Dictyota pfaffii, collected in Atol das Rocas, Brazil, was assigned by
X-ray analysis as 1R,2E,4R,6E,8S,10S,11S,12R (Pardo-Vargas et al.,
2014).

The unusual triterpenoid raspacionin (27) was isolated from the
red sponge Raspaciona aculeate and had its AC determined by the
Mosher method leading to the assignment of the stereochemistry at
C-4 as S (Cimino et al., 1993). Finally, as steroids are chemically

related to terpenes, the two examples involving this class of
compounds will be included in this section. The steroidal
glycoside (−)-riisein A (28) and (−)-riisein B (29) were isolated
from the Brazilian octocoral Carijoa (Telesto) riisei. The arabinose
sugar in these compounds was determined as D series by chiral GC
analysis and OR comparisons (Maia et al., 2000).

3.2 Alkaloids

The second major class of secondary metabolites with reported
absolute stereochemistry are alkaloids, including bromotyrosine
derivatives. Bromotyrosines metabolites are normally considered
chemical markers of sponges from the Verongiida order (Moriou
et al., 2021). The dibromotyrosine derivative (+)-fistularin-3 (30),
isolated from the Brazilian sponges Aplysina cauliformis and A.
caissara, had its AC assigned as 1R,1′R,6S,6′S,11S by a combination
of Marfey’s analysis for C-11 and ECD for the spiroxazolidine
moieties (Rogers et al., 2005; Lira T. O. et al., 2006).

There are reports that fistularin-3 presents stereoisomers with
different configurations in the two secondary carbinols C-11 and C-
17 and the AC assignment of these stereogenic centers has been
challenging (Ji et al., 2021). The relative and absolute configurations
of the spiroxazolidine moieties presented in fistularin-3 established by
analysis of 1H NMR and ECD contributed to the AC assignment of
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others dibromotyrosine derivatives. Based on the these analyses, the
same AC of the spiroxazolidine moieties was assigned for all the
following metabolites: (+)-caissarine C (31) and (+)-11-
hydroxyaerothionin (32) (Lira T. O. et al., 2006); 11-oxoaerothionin
(33), aerothionin (34), 11-keto-12-hydroxyaerothionin (35), 11-
ketofistularin-3 (36), aeroplysinin-2 (37), verongidoic acid (38) and
itsmethyl ester (39) (Gandolfi et al., 2010;Medeiros et al., 2012), (+)-40
(Kossuga et al., 2007), and (+)-aplysinafulvin (41) (Nuñez et al., 2008).
All these compounds were isolated from the Brazilian species of
Aplysina. The dibromotyrosine derivatives (+)-30 and (+)-11-
deoxyfistularin-3 (42) were isolated from Aplysina cauliformis and
in spite of the mention in the work that the ECD spectra obtained were
essentially the same as described in the literature, the authors assigned
the ACs of these compounds as 1S,1′S,6R,6′R,11R (Oliveira et al.,
2006). Despite bromotyrosines metabolites being considered chemical
markers of sponges from theVerongiida order, the compounds 30, 32 e
38 were isolated from cultures of the bacterium Pseudovibrio
denitrificans Ab134, isolated from the marine sponge Arenosclera
brasiliensis collected in Búzios, Brazil (Nicacio et al., 2017). The
ACs of the spiroxazolidine moieties were assigned by ECD analysis
as 1R,1′R,6S,6′S for (+)-30 and (+)-32, and 1R,6S for (+)-38.

Two new alkaloids citrinalins A (43) and B (44) were isolated from
the marine Penicillium citrinum, isolated from a seaweed collected in
Brazil. The X-ray analysis of 43 enabled the assignment of its AC as
1S,14R,16S,22S. The AC of 44 was suggested as 1S,14R,16R,22S since
both alkaloids presented similar OR values with the same signal
(Pimenta et al., 2010). The guanidine alkaloids (5aR,7S,8R)-mirabilin
B (45), (5aS,7S,8bS)-8bβ-hydroxyptilocaulin (46), (5aS,7S)-ptilocaulin

(47), (5aR,7S,8S)-8β-hydroxymirabilin B (48), (5aR,7S,8R)-8α-
hydroxymirabilin B (49), isolated from the sponge Monanchora
arbuscula, had their AC indicated however there is no mention of
how these configuration were assigned (Ferreira et al., 2011).

3.3 Polyketides

Peroxide and peroxide-derived polyketide are metabolites
commonly isolated from marine sponges (Norris and Perkins, 2016).
Three peroxide-derived polyketides, the plakilactones 6-desmethyl-6-
ethyl-9,10-dihydrospongosoritin A (50), spongosoritin A (51), and
9,10-dihydrospongosoritin A (52), were isolated from the Brazilian
sponge Plakortis angulospiculatus. The AC of these compounds was
deduced based on their negative OR values and comparison with
literature data (Epifanio et al., 2005; Santos et al., 2015). The ACs of
the plakortides (+)-7,8-dihydroplakortide E (53), (−)-54, (−)-55, (−)-56,
(−)-57, and (−)-plakortide P (58), and of the plakilactone (−)-6-
desmethyl-6-ethyl-spongosoritin A (59), isolated from the same
species, were also assigned based on similarities between OR values
with those of structurally related compounds (Santos et al., 2015). The
ACs of spongosoritin A (51) and 9,10-dihydrospongosoritin A (52)
were confirmed to be (−)-(6R,8R) and (−)-(6R,8S), respectively, using
VCD, ECD, NMR and OR, all associated with quantum chemical
calculations (Batista et al., 2019).

The dichlorinated polyketide roussoellatide (60), isolated from the
marine-derived fungus Roussoella sp. DLM33, had its AC established by
X-ray diffraction analyses as 2S,3S,7R,8S,9R,12S (Ferreira et al., 2015).
Finally, the structures and ACs of six macrocyclic curvularin-related
polyketides, isolated from a marine-derived Penicillium sp. DRF2, were
established by spectroscopic data and X-ray diffraction analysis as (15S)-
10,11-dehydrocurvularin (61), (15S)-12-keto-10,11-dehydrocurvularin
(62), (15S)-cis-10,11-epoxycurvularin (63), (10R,11R,15S,18S)-
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cyclothiocurvularin A (64), (10S,11S,15S,18R)-cyclothiocurvularin B
(65), and (10S,11S,15S,18R)-cyclothiocurvularin B methyl ester (66)
(Castro et al., 2016).

3.4 Peptides

Nonribosomal peptides are secondary metabolites with a vast array
of biological activities with medical and industrial relevance (Alonzo
and Schmeing, 2020). Chemical studies of a Brazilian ascidian of the
familyDidemnidae led to the isolation of the depsipeptides tamandarins
A (67) and B (68). The ACs of the tamandarins were assigned by
Marfey’s method and Mosher´s analysis (Vervoort et al., 2000). Two
new cyclodepsipeptides, [β-MePro] destruxin E chlorohydrin (69) and
pseudodestruxin C (70), isolated from the marine-derived fungus
Beauveria feline, had their ACs established by Marfey’s method and
derivatization with R-MPA-Cl followed by NMR analysis (Lira S. et al.,
2006). The modified diketopiperazine rodriguesines A (71) and B (72)
and N-acetyl-rodriguesine A (73) and B (74) were isolated from two
Brazilian ascidians of the genusDidemnum and their ACswere assigned

by Marfey’s analysis and comparison of OR data with reported
literature data for related compounds as 3S,19R (Kossuga et al.,
2009). Chemical investigation of the Brazilian endemic marine
sponge Clathria (Clathria) nicoleae led to the isolation of a new
hexapeptide, clathriamide (75), whose AC was determined by

advanced Marfey’s analysis (Freire et al., 2019).

3.5 Others compounds

The halogenated metabolite (+)-5-acetoxycaespitol (76) was
isolated from the Brazilian red alga Laurencia catarinensis and its
AC was assigned using the modified Mosher’s method as depicted
(Lhullier et al., 2010). The structure and AC of 8-methoxy-3,5-
dimethylisochroman-6-ol (77), isolated from Penicillium steckii
obtained from a Brazilian alga of the genus Sargassum, was
established by NMR analysis and by comparison of its OR value
with those reported in the literature as S (Kossuga et al., 2012). Four
compounds (78-81) were isolated from marine-derived fungal strains
obtained from Brazilian marine invertebrates and had their ACs
established by comparison of their OR values with literature data
(Ióca et al., 2016). Chemical investigation of the deep-sea fungus
Penicillium coralligerum YK-247 led to the isolation of the new
compound (−)-cladomarine (82) and the known (−)-cladosporin
(83). The ACs of these compounds were determined to be 3R,10R,
14S by comparison of the OR values and ECD analysis (Takahashi
et al., 2017). The compounds (3R)-scytalon (84), (3R,4R)-4-hydroxy-
scytalone (85), and (3R,4R)-3,4,5-trihydroxy-1-tetralone (86) were
isolated from endophytic fungi isolated from red alga Asparagopsis
taxiformis and had their ACs established by ECD spectroscopy
(Medina et al., 2018). The amphidinolides named amphidinolide
T1 (87), C4 (88), PX1 (89), PX2 (90), PX3 (91), and stragulin A
(92) were isolated from the Brazilian octocoral Stragulum bicolor
(Nuzzo et al., 2016; Nuzzo et al., 2019). The AC of 87 was assigned by
comparison of OR value with those reported in the literature for the
same compound while the ACs of 88 and 92 were suggested based on
similarities with analog compounds and modified Mosher’s analysis
(Nuzzo et al., 2016; Nuzzo et al., 2019). Since compounds 89-91 share
the same carbon skeleton of the stragulin A (92), the same AC of 92
was suggested for these related compounds (Nuzzo et al., 2019).
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4 Absolute configuration assignment of
natural products

As already mentioned, there seems to be no universal
methodology for determining the AC of natural products, since
each method presented has advantages and limitations. Thus, due to
their structural and stereochemical complexity, the best approach
for unambiguous AC assignments of chiral secondary metabolites
seems to be a combination of methods, taking into account the
intrinsic characteristics of each target molecule.

The use of chiroptical methods associated with quantum
chemical calculations has proven to be an excellent tool for
stereochemical characterization. These techniques have been
increasingly used to solve stereochemical problems due to
developments in quantum chemical calculations to predict
theoretical spectra implemented in commercially available
programs (Polavarapu, 2007). The comparison between
calculated and observed data greatly helps the correct
interpretation of experimental information. Detailed
information and good practices for the accurate calculations
of chiroptical properties can be found in review articles available
in the literature (Batista et al., 2015; Grauso et al., 2019; Mándi
and Kurtán, 2019; Polavarapu and Santoro, 2020; Zhu et al.,
2023).

5 Conclusion

This review covers the state of the art of MNP research in Brazil
over the last decades, focusing on the ACs of the isolated secondary
metabolites. The AC determination, especially in the case of
bioactive compounds, is extremely important. However, from
the data presented herein, it was evident that this last step of
the structural characterization of chiral compounds is still under-
explored by the Brazilian community of natural products. As
already mentioned, several methods can be used for the
determination of the AC of a given compound. However, a
recent review carried out by our research group demonstrated
that several misassignments can occur when an inappropriate
method is used (Batista et al., 2021). In this context, some
highlights regarding the main methods used in the AC
assignment of Brazilian MNPs can be made. However, the
purpose of the present review is not to question the reliability
of the AC assignments reported in the literature but to raise
awareness for a more critical analysis when choosing an
assignment method.

As can be seen in the data presented herein, a series of
compounds were subjected to X-ray analysis. This methodology
is very reliable, nevertheless, obtaining crystals is not a trivial task
in the case of natural products, which limits its use. The methods
that require derivatizations, such as Mosher´s method, were also
used but they have limitations since their use depends on the
presence of specific structural motifs in the compounds under
consideration. All described peptides had their ACs established by
Marfey’s method. This technique has proved to be suitable and the
most frequently described for the determination of the AC of
amino acid residues of marine peptides (Phyo et al., 2018). The
main attention has to be paid to assignments made by comparison

of OR or ECD data with analogous compounds as well as by
chemical correlations. Despite the widespread use, AC
assignments based on these empirical correlations are not
recommended. Although incorrect relative configurations are
the main cause for misassignments of the AC of natural
compounds in the first place, the practice of determining the
AC based on comparisons of experimental OR and/or ECD
data with those described for analogous molecules or spectral
analyses based on empirical rules do not always generate
reliable results (Batista et al., 2021). This is because similar
molecules, even from a stereochemical point of view, can
present OR values with opposite signs (Freedman et al., 2003;
Nakahashi et al., 2011). Furthermore, empirical rules can present
exceptions (Batista et al., 2010; Santos et al., 2018). On the other
hand, chiroptical methods associated with quantum chemical
calculations have proven to be reliable and, especially in the
case of vibrational methods (VCD and ROA), can be applied to
virtually all types of secondary metabolites (Batista et al., 2015;
Mándi and Kurtan, 2019; Polavarapu and Santoro, 2020; Zhu et al.,
2023).

Given the fact that Brazil is home to one of the richest
biodiversity in the world, it is expected that this crucial step
in the structural characterization of MNPs will be more widely
considered. This field of research is highly promising and, if well
explored, will greatly contribute to the knowledge of the diverse
marine natural product chemical space in Brazil.
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