
TYPE Original Research
PUBLISHED 10 January 2024| DOI 10.3389/fnume.2023.1292676
EDITED BY

Chenyang Shen,

University of Texas Southwestern Medical

Center, United States

REVIEWED BY

Siqiu Wang,

University of Texas Southwestern Medical

Center, United States

Ruiqi Li,

University of Texas Southwestern Medical

Center, United States

*CORRESPONDENCE

Pierre-Etienne Heudel

pierreetienne.heudel@lyon.unicancer.fr

RECEIVED 12 September 2023

ACCEPTED 04 December 2023

PUBLISHED 10 January 2024

CITATION

Delrieu L, Blanc D, Bouhamama A, Reyal F,

Pilleul F, Racine V, Hamy AS, Crochet H,

Marchal T and Heudel PE (2024) Automatic

deep learning method for third lumbar

selection and body composition evaluation on

CT scans of cancer patients.

Front. Nucl. Med. 3:1292676.

doi: 10.3389/fnume.2023.1292676

COPYRIGHT

© 2024 Delrieu, Blanc, Bouhamama, Reyal,
Pilleul, Racine, Hamy, Crochet, Marchal and
Heudel. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Nuclear Medicine
Automatic deep learning method
for third lumbar selection and
body composition evaluation on
CT scans of cancer patients
Lidia Delrieu1, Damien Blanc2,3, Amine Bouhamama4,
Fabien Reyal1,5, Frank Pilleul4, Victor Racine2,
Anne Sophie Hamy1,6, Hugo Crochet7, Timothée Marchal8

and Pierre Etienne Heudel9*
1Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department,
INSERM, U932 Immunity and Cancer, Institut Curie, Paris University, Paris, France, 2QuantaCell, Pessac,
France, 3IMAG, Université de Montpellier, Montpellier, France, 4Department of Radiology, Centre Léon
Bérard, Lyon, France, 5Department of Surgical Oncology, Institut Curie, University Paris, Paris, France,
6Department of Medical Oncology, Institut Curie, University Paris, Paris, France, 7Data and Artificial
Intelligence Team, Centre Léon Bérard, Lyon, France, 8Department of Supportive Care, Institut Curie,
Paris, France, 9Department of Medical Oncology, Centre Léon Bérard, Lyon, France
Introduction: The importance of body composition and sarcopenia is well-
recognized in cancer patient outcomes and treatment tolerance, yet routine
evaluations are rare due to their time-intensive nature. While CT scans provide
accurate measurements, they depend on manual processes. We developed and
validated a deep learning algorithm to automatically select and segment
abdominal muscles [SM], visceral fat [VAT], and subcutaneous fat [SAT] on CT scans.
Methods: A total of 352 CT scans were collected from two cancer centers. The
detection of the third lumbar vertebrae and three different body tissues (SM, VAT,
and SAT) were annotated manually. The 5-fold cross-validation method was
used to develop the algorithm and validate its performance on the training
cohort. Results were validated on an external independent group of CT scans.
Results: The algorithm for automatic L3 slice selection had a mean absolute error
of 4 mm for the internal validation dataset and 5.5 mm for the external validation
dataset. The median DICE similarity coefficient for body composition was 0.94
for SM, 0.93 for VAT, and 0.86 for SAT in the internal validation dataset whereas
it was 0.93 for SM, 0.93 for VAT, and 0.85 for SAT in the external validation
dataset. There were high correlation scores with sarcopenia metrics in both
internal and external validation datasets.
Conclusions: Our deep learning algorithm facilitates routine research use and
could be integrated into electronic patient records, enhancing care through
better monitoring and the incorporation of targeted supportive measures like
exercise and nutrition.
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1 Introduction

Body composition plays a crucial role in the development and progression of

numerous diseases, including cancer (1–3). The prevalence of the decrease in muscle

mass, known as sarcopenia, varies depending on the cancer stages, ranging from 39.6%

for curable cancers to 49.2% in palliative conditions (4). A recent study published in
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2023, which included 20 meta-analyses involving over 52,600

patients, revealed that sarcopenia was predictive of overall and

disease-specific survival in various cancer types, including lung

cancer and digestive cancers (5). Its assessment has been of

growing interest in recent years, as low muscle mass is also

predictive of chemotherapy toxicity (6–15), dose-limiting

toxicities (16) and poor prognosis (17–19).

Despite its significant impact on cancer patient care, body

composition evaluation is not performed routinely or used in

clinical decision-making (20). Imaging techniques such as dual

energy x-ray absorptiometry and computed tomography (CT)

scans are highly accurate methods for assessing body

composition. In the oncology setting, CT scan cross-section at

the third lumbar (L3) level is widely used for this purpose as

part of routine cancer diagnostic procedures with no additional

cost or toxicities (16, 21–24, 25). However, manual measurement

of body composition through CT scans is time-consuming and

requires expertise, which limits its practical use in daily clinical

practice. Artificial intelligence using deep learning provides an

opportunity to automate muscle mass assessment with high

precision (26–31), but validated tools for research and integration

into the electronic medical record are scarce. Accordingly, studies

proposing algorithms for detecting body composition from L3

have been conducted on homogeneous populations with few

challenging cases, such as patients undergoing cementoplasty or

those with intra-corporeal devices, which are common in the

cancer population, especially among metastatic patients. One

study, conducted by Ha, focused on developing a deep learning

model for L3 slice selection and a fully convolutional network

(FCN)-based algorithm for segmentation of abdominal muscle

and fat (30). The study demonstrated high accuracy in automatic

L3 slice selection, with mean distance differences of 3.7 ± 8.4 mm

and 4.1 ± 8.3 mm in internal and external validation datasets,

respectively. However, challenges arose in cases involving

anatomic variations, highlighting the need for improved methods

in these scenarios. Kreher presented a deep learning-based

approach for skeletal muscle mass segmentation at the L3 level in

routine abdominal CT scans (32). Utilizing a U-Net architecture,

the study achieved impressive Dice scores ranging from 0.86 to

0.95 for different muscle types. This approach demonstrated the

potential to expedite the segmentation process and serve as a

foundation for future biomarker development. A recent meta-

analysis published in 2023 assessed the feasibility and accuracy of

automatic segmentation tools for body composition through 92

studies (33). The review highlighted the success of deep learning

algorithms in achieving excellent segmentation performance,

especially in the context of rapid and automated volumetric body

composition analysis. However, the study emphasized the need

for consensus in defining accuracy and precision standards for

ground-truth labelling, ensuring the reliability of these automated

techniques. While these studies have undoubtedly advanced the

field of automated abdominal muscle assessment and body

composition analysis, they have also highlighted the need for

continuous refinement, particularly in the face of challenges

related to anatomic variations, segmentation accuracy, and

standardization of protocols. More studies are needed to
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contribute significantly to the field by collecting international

data on segmentation algorithms. This collaborative effort will

undoubtedly propel the field of abdominal muscle assessment

through CT imaging to unprecedented heights.

The main aim of this study was to develop and validate a deep

learning-based algorithm to automatically select the L3 slice on

abdominal CT scans from cancer patients and segment

abdominal muscles (SM), visceral fat (VAT), and subcutaneous

fat (SAT).
2 Materials

2.1 Ethics

The study was approved in July 2020 by the local data

protection officer, on behalf of French regulatory authorities

(Commission Nationale de l’Informatique et des Libertés, CNIL)

in accordance with MR004 methodology (R201-004-207). All

patients were informed of the possibility of their health data

being used for research purposes and expressed no opposition to

this possibility.

A MedExprim® tool (34) tool was used to obtain the images of

the patients which were exported in batch from PACS and de-

identified.
2.2 Study design

Three datasets were used to: (i) to develop an algorithm to select

L3 (dataset 1); (ii) to develop an algorithm to segment body

composition (dataset 2); and (iii) to validate both algorithms on

an external validation cohort (dataset 3) (Figure 1). The

development of the two algorithms was carried out on patients

with solid cancers treated with immunotherapy at the Leon Bérard

Center in Lyon. An external validation in patients with solid

tumors from the Institut Curie, Paris, was also carried out.

As the two cancer facilities are both regional comprehensive

cancer centers, a sake of data diversity (e.g., scanners, slice

thickness, resolution) was obtained which reinforces the

robustness and generalization of the algorithms. All images were

included, even those with artifacts, arms in the field of view,

spinal cementoplasty, or other intracorporeal devices (ureteral

stents for example).
2.3 Patient characteristics

Dataset 1 for L3 selection consisted of a total of 330 cancer

patients (Table 1). Among this population, 30 were excluded

because the scans did not contain the L3 slice and two because

of problems reading the DICOM file. The final dataset was

composed of 298 cancer patients [137 women and 161 men,

mean age 59.9 years (range: 18‒96)]. All patients had CT scans.

A total of 286 patients had metastatic cancer and 25 had

multiple cancers.
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FIGURE 1

Composition of the datasets.
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Dataset 2 for body composition included 250 patients and

one patient had a DICOM file reading error. Thus the final

database consisted of 249 cancer patients [89 women and 160
TABLE 1 Clinical characteristics of the study population.

Centre Léon Bérard Institut Curie

Dataset 1 Dataset 2 Dataset 3

L3
selection
(n = 298)

Body composition
segmentation

(n = 249)

External
validation
(n = 54)

Age (years), mean
(±SD)

59.9 ± 11.8 58.0 ± 12.2 61.8 ± 10.9

Sex, n (%)
Female 137 (45.9) 89 (35.7) 23 (42.6)

Male 161 (54.1) 160 (64.2) 31 (57.4)

BMI (kg/m2), n (%)a

Underweight 29 (11.7) 26 (10.1) 2 (3.7)

Normal 131 (52.8) 148 (57.4) 32 (59.3)

Overweight 66 (26.6) 62 (24.0) 18 (33.3)

Obese 22 (8.9) 22 (8.5) 2 (3.7)

Metastasis, n (%) 286 (95.9) 224 (89.9) NA

More than one
cancer, n (%)

25 (8.3) 15 (6) NA

Solid tumor, n (%) 298 (100) 248 (100) 54 (100)

aMissing data for L3 selection (n= 35).
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men; mean age 58.0 years (range: 18‒85)] (Table 1). All

patients had solid cancers, 224 had metastatic cancer and 15

had multiple cancers.

Dataset 3 for the external validation of the algorithm was

initially composed of 60 cancer patients (Table 1). However, the

DICOM files could not be opened for seven patients, leading to a

final database of 53 patients (all women, mean age 61.8 years)

treated for either metastatic breast cancer or lung cancer.
2.4 Manual labeling and data format

All the images were labeled by a senior radiologist (AB) to

validate the L3 location and the body composition segmentation.

2.4.1 L3 selection
The DICOM format axial slices of a CT scan were evaluated to

identify L3, which was then located and recorded in an Excel table

(.xlsx), indicating its position in the full 3D scan.

2.4.2 Body composition segmentation
To segment the L3 scan sections manually, 3D slicer software

was used. The segmentation process involved two steps: (i) an

initial segmentation was performed using intensity thresholds; (ii)

a manual pixel-by-pixel correction was then performed for each
frontiersin.org
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class. To segment the muscle tissue, an intensity threshold ranging

from −29 to 150 Hounsfield units (HU) was applied. Similarly, for

adipose tissue, which includes both SAT and VAT, an intensity

threshold ranging from −500 to −30 HU was used (35).

2.4.3 Data preprocessing
To simplify the task and reduce resource requirements, several

preprocessing steps were undertaken. A maximum Z-projection

was applied to all 3D scans, resulting in a 2D coronal slice where

L3 was typically visible. Intensity thresholding was then

performed, followed by morphological mathematical operations

to obtain a whole-body segmentation mask.

Mathematical operations include dilation and closing,

fundamental image analysis techniques widely used to smooth

and shape regions in binary or grayscale images. The voxels

outside of this mask were reduced to zero before projection.

Next, a pre-cropping procedure was performed on each scan to

eliminate artifacts in irrelevant regions and to reduce the image

dimensions as much as possible. The procedure consisted of two

steps: (i) rough localization of the lung centroid based on an

intensity threshold; followed by (ii) localization of the pelvic

centroid using a skeletonization method on a bone mask.

However, this method was not applied in all situations, and pre-

cropping was only done when the resulting distance between the

two centroids exceeded 20 cm. To standardize the dimensions,

the entire dataset was scaled to 1 mm thickness per pixel and all

images were padded to achieve a size of 1064 × 512. The L3

detection problem was treated as a segmentation task and thus a

binary mask with a 1-pixel-thick region was used to locate L3

after the preprocessing step. To partially address the class

imbalance, the L3 region was extended to a thickness of 1 cm.

2.4.4 Training procedure
One popular deep learning model for medical image

segmentation is U-net, which is designed for semantic

segmentation tasks and has been successfully applied to body

composition analysis (26, 27, 32, 36). The U-net architecture

includes a contracting path for feature extraction and a

symmetric expanding path for precise localization, which allows

for accurate segmentation of complex anatomic structures. The

U-net model specifications were carefully designed to optimize

the performance of our system. We utilized a standard U-net

architecture with 3 × 3 convolutional kernels and structured the

model with an encoder and decoder block of layers. Our

architecture comprised 4 down-sampling and up-sampling layers,

ensuring a robust and effective feature extraction process. To

fine-tune our approach, we meticulously adjusted the number of

filters in each convolutional layer using a progressive increase/

decrease strategy. For the L3 detection task, we initiated the first

layer with 64 filters and doubled the number of filters in

subsequent layers, whereas for the body composition

segmentation, a relatively less complex task, we started with 32

filters. Notably, our models were initialized with random weights,

although we acknowledge the potential advantages of utilizing

pre-trained models, especially on larger datasets. To measure the

dissimilarity between predicted and ground truth segmentations,
Frontiers in Nuclear Medicine 04
we employed the dice loss function, a common choice for

segmentation tasks. Additionally, we paid close attention to the

input size, padding the images to 1088 × 512 pixels for L3

detection and setting it to 512 × 512 pixels for body

segmentation. This preprocessing step was crucial in adapting the

images to the specific requirements of each task, ensuring

accurate and reliable results. Our study showcases the careful

consideration of model specifications, pre-training strategies, loss

functions, and input size adjustments, highlighting the

meticulous approach taken to achieve superior performance in

medical image analysis using deep learning techniques.

To increase the size and variability of our training dataset and

prevent overfitting, geometric data augmentation techniques were

used. These techniques involved applying various transformations

to the CT scans, such as rotation, scaling, translation, and elastic

deformations, to generate new images with different orientations,

scales, positions, and more realistic deformations. Artificial

sections of the arms were also added to the L3 slices using

intensity-based thresholding, and they were added at different

positions and orientations to increase the variability of the

training dataset. Supplementary Figure S1 shows examples of

different data augmentation techniques applied on a single slice.

This resulted in a much larger and more diverse training dataset,

allowing deep learning models to learn more robust features in

the data. The effectiveness of this technique was evaluated by

comparing the performance of the U-net model with and

without the additional arm sections, and the results showed that

the inclusion of the augmented images significantly improved the

accuracy and robustness of the U-net model. These findings

suggest that this data augmentation technique could be useful for

improving the performance of convolutional neural network

(CNNs) in body composition analysis.

Two U-net models were trained for both L3 detection and body

composition separately. Training was performed using the Adam

optimizer with a learning rate of 0.0001 and a batch size of

8. Models were trained for 100 epochs on the augmented dataset

with early stopping based on the validation loss. During training,

the model was evaluated on the validation set after each epoch

using the DICE coefficient, and the best performing model was

saved for testing. The final trained model was evaluated on the

test set to measure its generalization performance.

2.4.5 Testing procedure and post-processing
Both L3 detection and body composition problems were

treated as segmentation problems. Therefore, each prediction was

a probability map, where each pixel was assigned a probability of

belonging to a certain class. In the case of L3 detection, the two

classes were the L3 slice and the rest of the body, while for body

composition segmentation, the classes corresponded to different

tissue types (e.g., adipose tissue, muscle tissue, etc.).

For the L3 detection task, the final slice value was obtained

through a post-processing step involving a projection of the

probability map. Specifically, the probability map was projected

onto a one-dimensional signal by taking the average probability

along the vertical axis. This signal was then smoothed using a

Gaussian filter to reduce the noise. The predicted L3 slice
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FIGURE 2

Difference between predicted (z) values by the L3 detection model
and ground truth, stratified by scan thickness. The mean
differences between the ground truth and the model predictions
were 5.2 mm±9.1 for scans with a slice thickness less than 2 mm
and 3.1 mm±6.7 for scans with a thickness of 2 mm or greater.
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location was then determined by identifying local maxima in the

smoothed signal, where the location of the global maximum

corresponded to the precise location of the L3 slice.

To further refine the body composition segmentation results, a

post-processing step was applied to the predicted probability maps

for each class. This step involved thresholding the probability maps

based on the HU values of the corresponding pixels. All pixels with

HU values >150 or <−500 were ignored, as they were considered to

be outside the range of interest. This helped to remove any noise or

outliers in the predictions and improve the accuracy of the

segmentation results.

2.4.6 Sarcopenia measurements
Skeletal muscle density (SMD) was quantified as the mean

muscle radiation attenuation (in HU) of the muscle cross-

sectional area across the L3 vertebral body level, and was

assessed between −29 and 150 HU (37). Skeletal muscle index

(SMI) (cm2/m2) was obtained by normalizing cross-sectional

muscle area by patient height. Skeletal muscle gauge (SMG)

(HU × cm2/m2) was calculated by multiplying muscle area by

SMD. Lean body mass (LBM) was calculated according to the

following equation: LBM (kg) = 0.3 × cross sectional muscle area

at L3 (cm2) + 6.06 (25).

2.4.7 Performance evaluation
To evaluate the performance of the U-net model for L3 detection

and body composition segmentation, a cross-validation approach

was used. Cross-validation is a commonly used technique to assess

the generalizability of a model by dividing the dataset into training

and testing sets, and repeating the process multiple times with

different partitions of the data. In this study, a 5-fold cross-

validation was employed on datasets 1 and 2 to evaluate the

robustness and accuracy of the U-net model. After the 5-fold

cross-validation, the models were fully trained on datasets 1 and 2,

and tested on dataset 3, which was not used for training.

The evaluation of the proposed algorithms was conducted at

multiple levels, including the accurate detection of L3, the precise

segmentation of body composition, and the reliable measurement

of sarcopenia. Therefore, the performance of the models was

evaluated using several metrics, including the mean absolute

error (MAE), the DICE coefficient, the mean absolute percentage

error (MAPE), and the R2 coefficient.

MAE is a suitable metric to measure the distance between the

predicted location and the ground-truth location of L3. By using

MAE, the accuracy of the model at predicting the exact location

of L3 can be evaluated, regardless of whether the prediction is

slightly above or below the true value. The closer MAE is to 0,

the more accurate the model is.

The DICE coefficient was used to evaluate the agreement

between measurements from fully automatic measurement and

manual segmentation. This metric measures the overlap between

the predicted and ground-truth segmentation masks (0 = no

overlap; 1 = perfect overlap). Our results demonstrate that the U-

net model achieved high accuracy and robustness across different

datasets, indicating its potential as a reliable tool for body

composition analysis in clinical practice.
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MAPE measures the percentage difference between the

predicted and ground-truth values, which is particularly useful

when dealing with relative measurements such as muscle mass or

muscle area.

The R2 score is a measure of how well the predicted values

match the ground-truth values and ranges from 0 to 1, with

higher values indicating better performance. These metrics

provide additional insights into the accuracy and reliability of the

sarcopenia measurements produced by the deep learning models,

beyond the traditional MAE metric used for L3 detection.

To compare the performance of manual vs. automatic

segmentation three methods were applied, MAE, MAPE, and R2

coefficient. An R2 coefficient of >0.7 would generally be seen as

showing a high level of correlation, whereas a value <0.4 would

show a low correlation.

All analysis was performed using Python (version 3.9) and the

Tensorflow (version 2.5.0) library with a GeForce 2080Ti GPU.
3 Results

3.1 Evaluation of L3 slice selection

The accuracy of the algorithm for automatic L3 slice selection

in the internal and external validation (datasets 1 and 3,

respectively) is presented in Figure 2.

The mean absolute errors in slice selection between manual

and automated L3 slice selection were 4.0 mm (±9.6) and

5.5 mm (±7.8) for the internal and external validation,

respectively (datasets 1 and 3, respectively). The height of the

vertebral body is approximately 40 mm (30).

In the majority of cases, automated segmentation correctly

identified the L3 slice for 91.2% and 74.1% in datasets 1 and 3,

respectively (Figure 3). Patients with intracorporeal devices or
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FIGURE 3

Example of manual (green) and automatic (red) detection.
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spinal changes had scores of 7.0 mm (±10.9) for dataset 1 (n = 31)

and 5.0 mm (±6.2) for dataset 3 (n = 11).
3.2 Evaluation of body composition

A comparison between manual and automatic segmentation is

shown in Figure 4. Median DICE similarity coefficient (DSC) (and

interquartile range) indicated excellent overlap >0.85 for both

internal and external validation datasets (datasets 2 and 3,

respectively) (Table 2). In dataset 2, our model had a DSC of

0.937 for SM and 0.927 for VAT. Similar results were found for
FIGURE 4

Comparison between manual (left) versus automatic segmentation (right).
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dataset 3 with a DSC of 0.933 for SM and 0.930 for VAT. The

DSC was lowest for the measurement of SAT in both datasets 2

and 3 (0.855 and 0.850, respectively).
3.3 Correlation between body composition
and sarcopenia measurements

The correlations between the predicted and manually

performed areas for dataset 2 were 0.79 for SM, 0.98 for VAT,

and 0.98 for SAT (Table 3). For dataset 3, the results were 0.95

for SM, 1.0 for VAT, and 0.99 for SAT. A high correlation score
frontiersin.org
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TABLE 2 Performance of the model on the validation sets.

Dataset 2 Dataset 3

DICE similarity
coefficient

DICE similarity
coefficient

Background 1.0 ± 0.00 1.0 ± 0.00

Body 0.91 ± 0.06 0.91 ± 0.06

Muscle (SM) 0.94 ± 0.06 0.93 ± 0.13

Visceral fat (VAT) 0.93 ± 0.14 0.93 ± 0.16

Subcutaneous fat (SAT) 0.86 ± 0.16 0.85 ± 0.18

Delrieu et al. 10.3389/fnume.2023.1292676
with sarcopenia metrics was observed (SMD: 0.94, SMI: 0.73, LBM:

0.75, SMG: 0.93). High correlation scores with sarcopenia metrics

were also found for both dataset 2 and dataset 3.
4 Discussion

This study has addressed a critical issue in the field of

automated body composition analysis by focusing on the

automatic segmentation of L3 slices and developing a robust

model for the detection of skeletal muscle, visceral adipose tissue

and subcutaneous adipose tissue. We obtained highly accurate

results for CT scans of L3 slices and automatic segmentation, as

demonstrated by our internal and external validation dataset.
TABLE 3 Correlation between body mass index and body composition
assessments in internal and external validation datasets.

Internal validation dataset External validation dataset

Muscle surface (SM) estimation (mm2)
R2 0.79 0.95

MAE 886.6 530.7

MAPE 9.2 4.3

Visceral fat surface (VAT) estimation (mm2)
R2 0.98 1.0

MAE 960.7 588.6

MAPE 10.6 4.1

Subcutaneous fat surface (SAT) estimation (mm2)
R2 0.98 0.99

MAE 987.3 645.4

MAPE 15.7 6.9

Skeletal muscle density (SMD)
R2 0.94 0.91

MAE 1.3 2.5

MAPE 4.1 8.4

Skeletal muscle index (SMI)
R2 0.73 0.95

MAE 3.0 1.8

MAPE 9.1 4.3

Lean body mass (LBM)
R2 0.79 0.95

MAE 266.0 159.2

MAPE 9.2 4.3

Skeletal muscle gauge (SMG)
R2 0.93 0.94

MAE 97.9 81.6

MAPE 9.0 6.5
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Our findings regarding the automatic selection of L3 are

consistent with previous studies in the literature (3, 30, 38).

While some studies might demonstrate slightly higher

performance metrics, the reliability and stability of our results

across diverse datasets underscore the robustness of our

algorithm. In a study of 922 individuals, the mean distance

difference between ground-truth and deep learning model-

derived L3 slices was 3.7 and 4.1 mm for the internal (30) and

external validation cohorts, respectively whereas in our study it

was 4 and 5.5 mm respectively.

Despite the significant importance of sarcopenia as a potential

target in oncology, routine data in this area is lacking (5).

Analyzing body composition is a challenging task due to varied

methods used (39). When comparing similar populations who

have undergone automated body composition analysis at the L3

level, the average DICE scores for SAT, VAT, and SM are all

>0.90 (26, 30, 32, 33, 40–45), which is very similar to our study.

Some studies have attempted to identify lipid infiltration within

muscle as an indicator of muscle quality, but the difficulty is

obtaining accurate measurements and whose clinical relevance

remains uncertain (27, 46).

Body composition assessment through CT scans, especially at

the L3 level, is increasingly utilized in the field of research. The

advantage lies in the ability to conduct analyses at the time of

diagnosis, during follow-ups, both longitudinally and

retrospectively. In most studies, body composition assessment is

performed at the level of L3 (47–50), and sometimes L4 (51, 52).

Another study showed that abdominal muscle surface area did

not differ significantly between L3 and the lower part of L2 or

L4, suggesting the possibility of considering margins slightly

larger than 40 mm (53). Some authors have highlighted the need

to find other methods that are more representative than the L3

slice to estimate participants’ body composition, as indicated by

Pu et al. in 2023 (26, 27, 30, 40–45). A meta-analysis published

in 2022 indicated that skeletal muscle index thresholds at the L3

level ranged from 52 to 55 cm/m2 for men and from 39 to 41 for

women (54). However, due to the lack of consensus in the

literature, multiple sarcopenia thresholds exist based on different

vertebral locations, as studied by Derstine et al. (55). However, a

systematic review of 388 articles revealed that the L3 level was

most commonly used for measuring body composition (54). By

adhering to the widely accepted L3 standard, our study

contributes to the establishment of a unified reference

framework, enabling meaningful comparisons and comprehensive.

To overcome the challenges of heterogeneity in the literature, our

study offers a pivotal contribution to the integration of artificial

intelligence in the domain of body composition assessment. The

development of validated automatic segmentation algorithms

facilitates a novel frontier for both clinical application and

investigative inquiry. Such advancements herald a transformative

potential for individualized patient management through enhanced

early detection of body composition variations. Our work not only

enriches the data landscape, fostering a deeper comprehension of

cancer demographics but also lays the groundwork for establishing

robust benchmarks, constructing predictive models for health

outcomes, and potentially refining treatment dosing protocols. In
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particular, incorporating body composition metrics into clinical trial

inclusion criteria may revolutionize the administration of oncological

therapies (56). Tailoring drug regimens to each patient’s unique

physiological makeup could significantly refine therapeutic efficacy

and safety, marking a new era in personalized medicine. Our

research endeavors are therefore crucial stepping stones toward a

more nuanced and effective healthcare paradigm.

Our study has several limitations. The algorithm was

developed using CT scan images exclusively from patients with

solid tumors. Increasing the sample size to include more

patients with intracorporeal devices and cementoplasty in

particular would also improve the model’s performance and

increase the heterogeneity of the data. It would be intriguing to

further train the model with scenarios that are particularly

unique to oncology, such as patients with ascites, extensive

peritoneal carcinomatosis, or significant retroperitoneal lymph

node involvement as seen in hematological malignancies.

Furthermore, our algorithm does not enable the analysis of

body composition for patients with chest imaging, such as head

and neck cancers. Several ongoing projects utilizing our

algorithm aim to: (i) investigate the associations between body

composition and the survival of patients treated with

immunotherapy, following an article published with body mass

index, (ii) study the longitudinal changes in body composition

from multiple time points, and (iii) develop predictive models

for toxicity under immunotherapy.

Our manuscript marks a significant advancement in automated

body composition analysis, a field currently facing a lack of robust,

validated tools for routine clinical application. By meticulously

validating our automated method against established manual

techniques, we establish its precision and reliability, ensuring that it

stands up to the rigorous demands of clinical practice. The

diversity of the image data, sourced from various machines and

institutions, speaks to the robustness of our algorithm. It skillfully

navigates the challenges of image analysis, discerning relevant

anatomical features with the capability to isolate the L3 slice while

excluding non-pertinent elements, such as arms, which can

confound the assessment. This level of precision in automated

body composition analysis is not just a theoretical enhancement; it

is a practical tool poised for integration into clinical workflows. It

promises to enrich research, refine patient monitoring, and

facilitate the incorporation of holistic supportive care measures—

including targeted nutrition and exercise regimens—directly into

patient management plans. The potential for this algorithm to be

integrated into electronic health records represents a transformative

step forward in the personalization and optimization of cancer care.

In conclusion, our study presents a sophisticated algorithm

capable of autonomously detecting the L3 vertebra and delineating

skeletal muscle, visceral, and subcutaneous adipose tissue

compartments. The seamless integration of this tool into both

research frameworks and routine clinical practice promises to

revolutionize our understanding and utilization of body

composition data. By harnessing the capabilities of artificial

intelligence, we facilitate a leap forward not just in knowledge

acquisition but in the actualization of enhanced, individualized

patient management strategies. Our commitment to making this
Frontiers in Nuclear Medicine 08
algorithm openly accessible to the scientific community reflects our

intent to foster collective progress in this domain. This

collaborative approach aims to expedite the translation of research

into meaningful improvements in patient care, reinforcing our

overarching goal of delivering health innovations that truly matter.
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