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The ability to assess energy expenditure (EE) and estimate physical activity (PA) in free-living
individuals is extremely important in the global context of non-communicable diseases
including malnutrition, overnutrition (obesity), and diabetes. It is also important to appre-
ciate that PA and EE are different constructs with PA defined as any bodily movement
that results in EE and accordingly, energy is expended as a result of PA. However, total
energy expenditure, best assessed using the criterion doubly labeled water (DLW) tech-
nique, includes components in addition to physical activity energy expenditure, namely
resting energy expenditure and the thermic effect of food. Given the large number of
assessment techniques currently used to estimate PA in humans, it is imperative to under-
stand the relative merits of each. The goal of this review is to provide information on the
utility and limitations of a range of objective measures of PA and their relationship with EE.
The measures discussed include those based on EE or oxygen uptake including DLW, activ-
ity energy expenditure, physical activity level, and metabolic equivalent; those based on
heart rate monitoring and motion sensors; and because of their widespread use, selected
subjective measures.

Keywords: physical activity assessment, human energy expenditure, objective measurement techniques, stable
isotopes, accelerometry

INTRODUCTION
Physical activity measurement approaches are commonly used
to quantify the amount and type of movement undertaken by
individuals in different settings. In many cases, objective physi-
cal activity (PA) measurement approaches are also used to predict
energy expenditure (EE). The ability to estimate PA and assess EE
in free-living individuals is extremely important in the global con-
text of increasing rates of obesity and type 2 diabetes mellitus and
other non-communicable diseases (NCDs).

It is important to appreciate that PA and EE are different con-
structs. PA is defined as any bodily movement that results in EE
(1) and accordingly, energy is expended as a result of PA. Sim-
ply stated, PA is a behavior that results in an elevation of EE
above resting levels. The terms are often considered synonymous
but are inherently different and can be assessed using different
approaches (2). The criterion or “gold standard” approach to
assess total energy expenditure (TEE) in a free-living context is
the doubly labeled water (DLW) technique. TEE is comprised of
multiple components including physical activity energy expendi-
ture (PAEE), resting energy expenditure (REE), and the thermic
effect of food (TEF). Despite PA being a complex and multi-
faceted construct measured using many approaches, unlike for
the measurement of TEE, there is no recognized “gold standard”
technique (3, 4).

A large number of objective measurement approaches are avail-
able to quantify PA and EE of different populations. However, the

accurate measurement of EE and PA in many groups, including
children, is very challenging (5, 6) due to their intermittent and
often sporadic movement (7). Because PA is a complex and multi-
dimensional behavior, precise quantification can be difficult (8). A
major challenge in PA and nutritional epidemiology is the choice
of the most accurate and objective measure suitable for large pop-
ulations (8, 9). The choice of assessment approach for both PA
and EE is influenced by numerous factors including affordability
and participant burden (10). Additional factors include the age of
participants, sample size, assessment time frame, the type of PA
information required, data management options, and measure-
ment error associated with the approach (11–14). Fundamentally,
all measurement techniques have inherent strengths and limita-
tions, and there is often value in using combined approaches. Some
of the important considerations include the following:

• How was the technique derived – was it based on EE, heart rate
(HR), or accelerometry data?

• What is the cost of the technique and how practical or convenient
is it for participants and investigators?

• What is the intended use, for example to assess the impact of PA
on energy balance, metabolic health or a component of fitness,
and in a small or large-scale study?

The goal of this review is to provide information on the utility
and limitations of a range of objective measures of PA and their
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Hills et al. Activity and energy expenditure assessment

FIGURE 1 | Components of total daily energy expenditure and measurement approaches.

relationship with EE. Definitions of major terminology are fol-
lowed by an overview of selected objective approaches to assess
PA and EE. Measures discussed include those based on EE or oxy-
gen uptake including DLW, activity energy expenditure (AEE),
physical activity level (PAL), and metabolic equivalent (MET);
those based on HR monitoring and motion sensors (pedometers
and accelerometers); and because of their widespread use, subjec-
tive measures including selected physical activity questionnaires
(PAQs).

TERMINOLOGY
Inconsistent use of terminology has impacted the fields of nutri-
tion, PA, exercise, and EE assessment, therefore, an overview of key
terminology is a useful starting point. PA is a global term tradi-
tionally defined as bodily movement resulting from contraction of
skeletal muscle that results in an increase in EE above resting levels
(1). In turn, PA can be categorized on the basis of context or set-
ting to include leisure-time or recreational PA and subcomponents
of sport, transportation, and occupational activity. Alternatively,
exercise is commonly defined as planned, structured, and repetitive
movement with the intention of promoting or maintaining one
or more components of physical fitness (1). PA and exercise can
be quantified according to intensity (how hard?), duration (how
long?), frequency (how often?), and mode (or type), such as walk-
ing, running, swimming, etc. (15). Howley (16) provides a useful
overview of the various terms associated with PA and exercise plus
guidelines for consistent interpretation of exercise intensity and
volume.

As mentioned above, an outcome of participation in PA or exer-
cise is the expenditure of energy, commonly quantified in terms
of intensity. Intensity can be referenced in different ways (16). For
example, intensity of aerobic exercise is typically referenced using
increase in HR in beats per minute or the energy expended over
and above the body’s resting requirements to quantify PA as AEE
or as exercise energy expenditure (ExEE). Similarly, AEE and ExEE

can be expressed relative to resting values where 1 MET at rest
equates to 3.5 mL/O2/kg/min−1 or 1 kcal/kg/h. It is important to
note that the conversion of MET to kilocalories can be erroneous
when using these standard conversion factors (17–20). However,
the use of a correction factor based on measured or predicted
resting metabolic rate (RMR) can reduce this error in some activi-
ties (18). Further detail regarding the MET concept is provided in
a later section.

Gross EE is quantified on the basis of oxygen consumption and
is referenced in kilocalories per minute or kilojoules per minute.
To be more appropriate to the individual, oxygen consumption
should be expressed relative to body weight. Figure 1 portrays the
subcomponents of TEE (discussed in more detail below), and also
identifies the commonly used objective assessment techniques to
quantify each subcomponent. Each technique will be discussed in
detail in a later section.

COMPONENTS OF TOTAL ENERGY EXPENDITURE
Total daily energy expenditure (TEE or TDEE) is comprised of REE,
TEF also referred to as diet-induced thermogenesis (DIT), plus AEE.

Energy expenditure can be estimated by measuring macronu-
trient or oxygen consumption, or heat production or carbon
dioxide production. Most measurement approaches in use today
involve the measurement of oxygen consumption and/or produc-
tion of carbon dioxide via indirect calorimetry. In contrast, direct
calorimetry, the measurement of heat production in a metabolic
chamber, is not widely utilized.

RESTING ENERGY EXPENDITURE
Resting energy expenditure or RMR represents the largest propor-
tion of TEE. Simply defined, REE represents the energy expended
at rest by a fasted individual in a thermo-neutral environment.
RMR is typically slightly higher than basal metabolic rate (BMR)
that is measured under stricter conditions.

Estimation of energy requirements of individuals is typi-
cally undertaken by measuring RMR or REE or estimated using
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standard equations then multiplied by a known factor to derive an
estimate of PAL.

DETERMINANTS OF REE
Major factors contributing to individual variation in REE include
age, gender, body size, body composition, ethnicity, physical fitness
level, hormonal status, and a range of genetic and environmental
influences (21–25). Following is a brief overview of the first four
determinants.

AGE
Typically, RMR reduces with age as a function of biological changes
(26–28) including loss of lean body mass and associated metabolic
activity (29).

GENDER
The bulk of the gender differences in REE are explained by differ-
ences in body composition with the typical adult female having
more fat in proportion to muscle than males (21). Females have
a metabolic rate 5–10% lower than males of the same height and
weight. Reductions in REE occur later in women, at ~50 years of
age compared to 40 years in men (27), and values are lower in
women even after adjusting for differences in body composition
(30, 31).

BODY SIZE
Bigger individuals have more tissue and hence, higher energy
requirements (greater metabolic activity) than smaller individuals.
In addition to age, gender, body size, and body composition (pro-
portion of fat and muscle), a range of factors can also contribute to
inter-individual differences in metabolic rate including genetics,
growth and repair of body tissues, ethnicity, and the environment.

BODY COMPOSITION
Body composition plays a significant role in REE with the primary
determinant being fat-free mass (FFM) (24). Therefore, most of
the inter-individual variability in REE can be accounted for by dif-
ferences in FFM (22). Along with age and gender, physical fitness
has a major influence on the amount and proportion of FFM.

CALORIMETRY
Human energy metabolism involves the production of energy
from the combustion of fuel in the form of carbohydrate, pro-
tein, fat, or alcohol. In this process, oxygen is consumed and
carbon dioxide is produced. The measurement of EE involves the
measurement of heat production or heat loss directly, referred
to as direct calorimetry. The measurement of a proxy of heat
production or loss by measuring oxygen consumption and/or
carbon dioxide production is called indirect calorimetry (32).
Early calorimeters for the measurement of human EE were direct
calorimeters; however, most measurement of EE today is via
indirect calorimetry.

A relatively small number of metabolic (or respiratory) cham-
bers are in use globally, however, there has been a resurgence in
interest and increase in numbers in recent years (33). Such cham-
bers are used to assess EE energy over extended periods, from
24-h to a number of days, and provide accurate measures of

24-h and sleeping EE plus long-term substrate utilization. How-
ever, because of the confined space, chambers do not provide an
accurate estimate of an individual’s free-living AEE.

Metabolic chambers and small metabolic carts with ventilated
hood systems are similar in their requirement of the measurement
of CO2 and O2 concentrations and flow rate to calculate oxy-
gen consumption, carbon dioxide production, respiratory exchange
ratio (RER), and metabolic rate (34–36). Both systems measure
oxygen consumption and carbon dioxide production continuously
and this enables the accurate determination of energy production
under controlled laboratory conditions.

Measurements with a ventilated hood are typically performed
over a minimum of 30-min to several hours to determine REE or
TEF. Measurements using a metabolic chamber typically last from
a number of hours to several days and allow the determination of
REE, TEF, and AEE for (standardized) PA. Typical ventilated hood
systems use a transparent plastic canopy that encloses the head.
Room air is drawn through the hood and the flow and concentra-
tion of oxygen and carbon dioxide in the intake and expired air
are accurately measured and REE calculated (37). In summary, this
approach is a form of indirect calorimetry as heat is not directly
measured. Rather, the approach measures O2 consumption and
CO2 production, which are then used to calculate EE.

Whole-room metabolic chambers or calorimeters provide
accurate measurement of REE but as mentioned above, are less
accurate in the assessment of the energy cost of PA undertaken in
the chamber, typically due to physical constraints imposed by the
size of the chamber. Most whole-body indirect calorimeters are
~15 m3 in volume and contain basic furniture such as a single bed,
chair, table, television, exercise bicycle, sink, and toilet. EE calcu-
lations from O2 and CO2 exchanges typically use the equations of
Livesey and Elia (38). Very recently, Lam et al. (33) developed a
set of equations to prescribe and adjust energy intake to achieve
energy balance in respiratory chambers over 24-h.

Methods of indirect calorimetry are the most commonly used
to quantify human EE in both laboratory and field settings, typ-
ically by measuring O2 consumption. This approach is based on
the relationship between O2 consumption and energy produced,
i.e., for each liter of O2 consumed by the body, the equivalent of
~5 kcal is utilized. In simple terms, by measuring O2 consump-
tion during defined tasks such as resting, standing, walking, and
running, the energy cost or energy expended can be determined.

DOUBLY LABELED WATER TECHNIQUE
The DLW technique is widely acknowledged as the criterion or
“gold standard” approach to assess TEE (39–41). The technique
is applicable in a wide range of populations including the most
vulnerable such as pregnant and lactating women and infants.
Importantly, the technique is suitable for use in a free-living con-
text, is non-invasive and imposes minimal participant burden.
TEE is typically assessed over a 7- to 14-day period (depending
on the analysis approach and age of participant). Another major
advantage is the accuracy and precision of the technique.

Despite being the criterion method for the assessment of TEE,
the DLW technique does not provide specific information regard-
ing daily PA (11). In short, the technique provides an accurate
measure of TEE over a chosen number of days or weeks from which

www.frontiersin.org June 2014 | Volume 1 | Article 5 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Nutrition_Methodology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hills et al. Activity and energy expenditure assessment

average daily EE can be calculated, but does not quantify activity
type, intensity, or duration accounting for this EE (10). Simi-
larly, as the analysis of biological samples (commonly urine) for
the technique requires the use of sophisticated laboratory-based
equipment, the combined cost of isotopes, and the analysis of
samples is a potential impediment for large-scale studies. Despite
these limitations, there is great scope for further use of this “gold
standard” technique. Importantly, a further illustration of the util-
ity of the technique is its use to validate other approaches for the
quantification of free-living EE (14, 42). A recent paper confirmed
the reproducibility of the DLW technique in longitudinal studies
and validity of the technique to define energy intake plus monitor
adherence and body composition changes across periods ranging
from 2.5 to 4.4 years (43).

In the DLW technique, daily urine samples are collected over a
7- to 14-day period and subsequently analyzed using isotope ratio
mass spectrometry (IRMS) (40). The stable isotopes, deuterium
(2H) and oxygen-18 (18O) are administered orally via a drink of
water, and elimination of the isotopes from the body is tracked
(44–46). The difference between the elimination rates of 2H and
18O is equivalent to the rate of carbon dioxide production that
can then be converted to average TDEE (47). Readers are encour-
aged to access a number of recent International Atomic Energy
Agency (IAEA) publications for a detailed overview of the DLW
technique for the assessment of TEE and other isotopic techniques
in nutrition (40) and also recent papers in the area (44).

Components of TEE, including REE, are measured via indirect
calorimetry (or using prediction equations) (48–50). This enables
the subsequent calculation of AEE (assuming that TEF constitutes
10% of TEE):

AEE
(
kcal/day

)
= 0.9× TEE

(
kcal/day

)
− REE

(
kcal/day

)
Activity energy expenditure represents all energy expended above
the resting level and energy costs associated with the ingestion and
assimilation of food. AEE is a direct measure of the energy cost
of PA and may be used to measure the energy cost of a specific
task (as kilocalories per minute or kilojoules per minute) OR to
estimate average EE (13):

AEE
(
kcal/day

)
= total EE

(
TEE; kcal/day

)
− Resting EE

(
REE; kcal/day

)
Activity energy expenditure is also influenced by body weight such
that larger (heavier) individuals expend more energy at a given
speed than smaller individuals. Exercise economy, or the efficiency
of performing a movement task, also impacts EE (13).

As mentioned above, daily AEE can be calculated as an aver-
age across the DLW monitoring period, however, the technique
does not provide any information regarding the mode, intensity,
or duration of PA. Accordingly, we need to utilize a range of other
objective measures to predict AEE and PAL.

PHYSICAL ACTIVITY LEVEL
Physical activity level is the ratio of TEE to REE (or BMR) and
provides an index of the average relative excess output related to

PA (intensity× duration) for a 24-h period (13) with TEE com-
monly derived using the DLW technique. The validity of PAL has
been tested and confirmed in a large sample (51) and when derived
from DLW data, the index is relatively accurate but expensive. Less
expensive is the estimation of TEE using HR data, as discussed in
a later section (13). Some have queried the relevance of a ratio
between TEE and REE if PAL is not independent of body weight
(52). In population studies, PAL is calculated by dividing total
energy intake by an estimate of REE with total energy intake serv-
ing as a surrogate of TEE and assuming individuals are in energy
balance. REE is measured or predicted from age, gender, height
and weight (13).

Physical activity level can also be used to estimate total daily
energy requirements of a population by assuming an average PAL
for the group being studied. For example, a PAL equivalent to 1.56
would predict an average energy requirement of ~2000 kcal/day
for women weighing 55 kg (53). The index has also been used
to verify the accuracy of self-reported energy intake (54), that
is, below a certain threshold (PAL× 1.2) the index suggests that
energy intake is underestimated (13).

In well-nourished adults, the average PAL is a major determi-
nant of energy requirements. PAL can be measured or estimated
from average values of 24-h TEE and REE:

PAL = TEE/REE

Typical PAL values in free-living adults range from 1.40 to ~2.40.

METABOLIC EQUIVALENT
One MET equates with the oxygen consumption (O2) required at
rest or sitting quietly and is assumed to be 3.5 mL/O2/min× kg
body weight. The index is used to express O2 uptake or intensity
of activities as multiples of the resting or 1 MET value and is use-
ful for describing and prescribing exercise of different intensities
(13, 55).

Comprehensive lists of EE estimations for numerous physical
activities have been developed and published in a Compendium
(17, 56, 57). This enables the estimation of daily EE by converting
time spent in PA to energy equivalents. Activities range from 0.9
MET (sleeping) to 18 METs (running at 10.9 mph) (13). This clas-
sification system is particularly useful for epidemiological studies
as MET scores can be ascribed to individuals according to their
self-reported PA levels (58). However, the actual energy cost will
vary between individuals due to differences in body mass, adipos-
ity, age, gender, and environmental conditions (17). To allow for
differences in body weight, the MET is generally expressed in terms
of O2 uptake per unit body mass: 1 MET=~3.5 mL/O2/min/kg×
min (55).

As 5 kcal is ~1 L of oxygen consumed, 1 MET is equivalent to
~1.0 kcal/kg× h OR 4.184 kJ/kg× h.

The precision of this factorial method to quantify EE is influ-
enced by two main factors. PA estimates are only as good as the
information recorded, therefore, the accuracy of an individual’s
recall of PA completed is a major influencing factor (55, 59–
61). Secondly, EE estimates are influenced by the accuracy of the
assigned MET level and the underlying premise of the factorial
system, that is, the consistency of the assumed resting value of
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3.5 mL/O2/min× kg body weight for individuals of different size
and shape.

It is important to remember that the Compendium was devel-
oped to classify PA and standardize MET intensities in population
health research, not to determine the precise energy cost of PA
(17, 19, 56, 57). The MET system is widely used by researchers,
clinicians, and practitioners; however, increasing evidence sug-
gests that estimates of AEE using the factorial system may be
inaccurate across individuals of different body mass and body
fat category. In a heterogeneous sample of 769 weight-stable and
healthy adults (18–74 years of age, 35–186 kg), the 1 MET value
of 3.5 mL/kg×min overestimated the actual resting VO2 value
by an average of 35% and the 1 MET of 1 kcal/kg× h overesti-
mated REE by 20% (18). Very recently, Wilms et al. (62) confirmed
that the commonly used 1 MET value largely overestimated EE in
overweight to obese individuals and produced BMI-specific MET
correction factors.

In summary, the most common utilization of the MET has been
to categorize PA intensity. Moderate PA is defined as 3–6 METs,
moderate-to-vigorous PA as >3 METs, and vigorous PA as >6
METs (3).

HEART RATE MONITORING
Estimation of EE and PA via HR monitoring is popular, conve-
nient, relatively inexpensive, non-invasive, and versatile. Along
with pedometers and accelerometers, HR monitors are major
examples of objective measurement (63). Monitoring HR minute-
by-minute enables detailed information on frequency, intensity,
and duration of free-living PA (13).

MEASURING ENERGY EXPENDITURE
Heart rate monitoring is used to estimate EE based on the
assumption of a linear relationship between HR and oxygen
consumption (VO2). Despite considerable inter-individual vari-
ability in the slope of the HR–VO2 relationship, the linear rela-
tionship is consistent for an individual across a range of sub-
maximal tasks (64, 65). Inter-individual differences are predomi-
nantly a reflection of differences in movement efficiency, age, and
fitness.

The relationship between HR and EE for an individual is
established using a sub-maximal calibration procedure typically
undertaken immediately following the assessment of REE. HR
and breath-by-breath VO2 and VCO2 are measured (averaged over
10-s intervals) using a metabolic cart in the following sequen-
tial steps: 5-min sitting, 5-min standing, 5-min cycling at low
resistance (55 W), and further 5-min blocks of increasing cycling
resistance while maintaining a cadence of 60 rpm. Cycling resis-
tance is increased by 50 W in each subsequent 5-min block until the
participant has cycled for at least three incremental stages, depend-
ing on level of fitness, and HR has reached ~150 beats/min. Average
EE for each activity and at each workload is estimated from VO2

and VCO2 values using the equations of Livesey and Elia (38). To
equate HR to EE, a regression line of HR to EE is developed for
each individual from the sub-maximal calibration procedure and
using measurements for sitting, standing, and at each of the work-
loads. The critical HR, below which the relationship between HR
and EE is non-linear (flex-HR), is calculated from the mean of the

highest HR when the participant was standing, and the lowest HR
when exercising (66).

Consequently, once an individual or group regression line has
been calculated, HR can be used to estimate oxygen consumption
and EE in free-living conditions. A wide range of HR monitors,
varying in sophistication and function, are now used in different
contexts (67). Many HR monitors have significant storage capacity
and the ability to record average HR data in 5-s or 1-min blocks
across a week (68). A major advantage of using HR monitoring
at the individual level is the ability to calibrate the monitor to
the individual. Individualized HR–VO2 regression equations pro-
vide greater accuracy as they account for individual differences in
health and fitness.

However, the method has important limitations. Because the
relationship between HR–VO2 differs between upper-body and
lower-body activities (69), the use of a single regression line
derived from an activity such as walking or running will not be
accurate for other activities. Further, while there is a very close rela-
tionship between HR and EE during exercise, this is not the case
during rest and light activity (11, 66, 70). This problem can be
overcome using the flex-HR method that utilizes an individually
predetermined HR to discriminate between resting and exercise
HR (71). HR monitoring has been validated for measurement of
EE in controlled settings (72, 73) and free-living contexts (74, 75)
in young people (5).

MONITORING EXERCISE INTENSITY
A major advantage of HR data is the ability to quantify the intensity
of exercise and estimate EE in continuous or steady state aero-
bic exercise. HR levels to describe exercise intensity should be
expressed as %HRReserve and/or %HRmax enabling exercise inten-
sity to be classified into six categories from very light to maximal
(76). Using such an approach, it is possible to equate the HR cate-
gory with its associated %VO2max or %VO2Reserve or MET and not
require the measurement of VO2. However, it is much more accu-
rate if the VO2–HR relationship is measured for each individual
as outlined above (68).

In summary, HR is a major physiological marker for PA but
is influenced by a wide range of factors unrelated to the activity
being monitored. As such, HR provides an estimate or overview
of PA but estimates can be improved if used in conjunction with
other devices such as accelerometers (11).

MOTION SENSORS
PEDOMETERS
Pedometers are arguably the most popular and widely utilized
form of motion sensor. Pedometers register steps taken during
walking and running activities and have been popularized as a
motivational tool to encourage sedentary or inactive individuals
to become more physically active. PA targets in “steps per day”
including the commonly used adult benchmark of “10,000 steps,”
is well-understood by the lay public. Recent interest in the use
of pedometers includes the relevance of cut-points, in particular
their equivalence with EE in different populations. The rationale
for targets and cut-points, including 10,000 steps/day, has been
challenged as a recommendation for some groups (77). For exam-
ple, 30-min of brisk walking per day equates to 3–4000 steps or
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Table 1 | Number of steps per day and corresponding physical activity

level.

Physical activity level Steps per day

Sedentary or inactive lifestyle <5000

Low active 5000–7499

Somewhat active 7500–9999

Active 10,000–12,500

Highly active >12,500

~1250–1550 steps/km (78). Table 1, modified from Tudor-Locke
and Bassett (4), uses data from a range of studies and can also be
used to categorize PA level based on step counts.

A large and increasing number of pedometers are available.
As devices vary widely in sophistication of function and reliabil-
ity, readers are referred to a number of relevant publications for
further information (79–83).

Objective evaluation of pedometers has identified numerous
shortcomings in accuracy. For example, pedometer step counts
are more inaccurate at slow speeds (<60 m/min) (84) therefore,
may be inappropriate for work with older adults (85, 86). Pedome-
ter readings can also vary according to where the pedometer is
mounted or “worn” (84, 87, 88). For example, in centrally obese
individuals with a large waist circumference, pedometers may
rotate if worn in the standard position on the waistband (89,
90). Foot strike also varies between and within individuals so that
when a pedometer is worn by different individuals, it may register
a different step count for the same number of actual steps taken,
presumably due to a differential between the foot strike of left and
right legs (91).

Most pedometers fail to account for individual differences in
height and leg length. Step count is also influenced by stride
length (commonly related to both height and leg length) and
speed of walking (87). If an individual walks faster than normal,
a pedometer may underestimate total distance walked. Alter-
natively, pedometers may overestimate distance when walking
slower than customary unless there are commensurate relative
changes in stride length and step frequency when speed changes.
The implications are that step count should not be used as a
proxy for distance traveled without calibration of the pedome-
ter to know how many steps an individual takes over a given
distance. Calibration at a range of speeds may also be war-
ranted. The ActiGraph accelerometer, the anterior mounted New
Lifestyles, and the Walk4Life motion sensors have acceptable
step count error values during treadmill walking at a range of
speeds (84).

Pedometers have also been criticized for their ability to be
manipulated to increase the total number of steps recorded. Simply
shaking many devices will increase step count when the move-
ment is clearly not associated with walking steps. Similarly, young
people and other inquisitive participants may regularly look at
the number of steps taken and alter their “typical” pattern of
activity in order to increase the step count. To avoid or discour-
age such manipulation researchers often tape over the device to
reduce any feedback based on step count. To increase the likelihood

that monitoring is a reflection of a typical day, researchers often
discount data collected on the first and last few days of a block of
measurements.

Major advantages of pedometers are that they are relatively
inexpensive, easy to use,and output data can be used to raise aware-
ness regarding level of PA, including motivation for increased PA.
As walking is such a common form of light- to moderate-intensity
PA, a good measure of distance and speed is important. Similarly,
if pedometers are used in an intervention or as a tool to mon-
itor changes in daily PA, the sensitivity of the tool to measure
change should be high. Tudor-Locke and Myers (92) reported that
pedometers were able to track modest increases in walking volume
in obese sedentary adults involved in an intervention, whereas PA
diaries were not sensitive to the change in ambulation. Unfor-
tunately, many sub-standard pedometers are available therefore
selection of device for reliable measurement of steps should be
considered carefully.

ACCELEROMETERS
Accelerometers are motion sensors that detect accelerations of the
body. Acceleration is defined as the rate of change in velocity
over a given time; therefore, the frequency, intensity, and dura-
tion of PA can be assessed as a function of body movement
(93). Accelerometers consist of piezoelectric transmitters that are
stressed by acceleration forces. This leads to the production of an
electrical signal that is subsequently converted by processing units
to produce an indication of movement (15).

Accelerometers have gained considerable popularity in recent
years as an objective approach to measure daily PA and represent a
substantial improvement over self-report methodologies (3, 6, 94,
95). Accelerometry enables an estimation of intensity and duration
of movement and the relationship between accelerometer counts
and energy cost allows PA to be classified by intensity (13, 95–97).
Numerous papers (5, 98–102) have reported that accelerome-
ters are objective, practical, non-invasive, accurate, and reliable
tools to quantify PA volume and intensity with minimal discom-
fort (95, 103–105). Technological advancements in accelerometry
mean that the popularity and accessibility of this methodology
has increased steadily such that it may be the preferred objective
approach to assess PA and EE (95, 106, 107).

There is also increasing interest in the objective measurement
of sedentary behaviors (or physical inactivity) (108). Sedentary
behaviors include purposeful involvement in activities involving
minimal movement and low levels of PA (108–110). However, this
review does not detail the measurement of sedentary behavior and
readers are referred to a number of recent publications in the area
(111, 112).

Accelerometers provide information (outputs) regarding body
movement in counts per unit time (referred to as an epoch).
Importantly, movement counts have no biological meaning per se
and must be converted to more relevant constructs (108), typically
based on intensity. These include moderate-to-vigorous physical
activity (MVPA) or sedentary behavior, or direct observation of
PA, or some health outcome in calibration studies (113, 114). Rate
or intensity of movement is captured using piezoelectric sensors
to detect acceleration in one plane (uni-axial), two planes (bi-
axial), or three orthogonal planes (tri-axial) representing vertical,
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anteroposterior, and mediolateral directions (15, 101). Accelerom-
eters are more sophisticated and therefore superior motion sensors
than pedometers.

Examples of uni-axial accelerometers include the ActiGraph
wGT3X-BT (Actigraph LLC, Pensacola, FL) and Personal Activ-
ity Monitor – PAM AM200 (PAM B.V. Doorwerth, Netherlands)
and bi-axial accelerometer – ActiTrac (IM Systems, Baltimore,
MD). These sensors are typically worn so that the sensitive axis is
oriented to measure vertical acceleration and deceleration (101).
Accelerometers such as Actical (Philips Respironics, Bend, OR) can
record movement in all directions however are most sensitive in
the vertical plane (93, 101). In contrast, tri-axial accelerometers
such as the Personal Activity Monitor – PAM AM300 (PAM B.V.
Doorwerth, Netherlands) and RT6 (Stayhealthy Inc., Monrovia,
CA) measure movement in three planes (15).

Tri-axial accelerometers arguably provide a more comprehen-
sive assessment of movement representative of PA than uni-axial
accelerometers. This may be particularly the case in children as
the devices may be more sensitive to some activities including
climbing and jumping (72). Hendelman et al. (85) reported that
tri-axial accelerometers have a higher correlation than uni-axial
devices with EE in adults.

Major advantages of accelerometers include their relatively
small size and capacity to record data continuously over an
extended period (days or weeks) (11, 15, 107) and lack of visual
feedback to the individual wearing the device. The lack of imme-
diate feedback means that the likelihood of an overestimation of
PA (such as is possible with the manipulation of a pedometer)
is reduced. Simple uni-axial accelerometers contrast with more
sophisticated and precise tri-axial devices, particularly regarding
estimation of EE (11).

Accelerometry has enabled both PA and sedentary behaviors
to be measured with greater accuracy and precision (115, 116)
than in older studies using subjective methodologies to quantify
PA (3, 108, 117). A number of large-scale studies have successfully
used accelerometry to assess PA in youth (116, 118) and increas-
ingly accelerometry has been utilized in studies of very young
children (104).

Accelerometry is based on the fact that speed is the change in
position with respect to time, and acceleration is the change in
speed with respect to time. Acceleration is typically measured in
gravitational acceleration units (g; 1 g= 9.8 m/s2). When acceler-
ation is zero, speed does not change, however, movement may still
occur but at a constant speed. Because acceleration is also propor-
tional to the net external force involved, it more directly reflects the
energy costs associated with the movement. Accordingly, measure-
ment of PA using acceleration is preferred to using speed. More
detailed technical aspects of accelerometry are also not the focus
of this review but are available from a number of authoritative
sources (15, 119, 120–122).

Despite a good linear relationship between accelerometer
counts and EE during walking, some concerns have been reported
in studies of running. For example, Brage et al. (123) assessed
the reliability and validity of the CSA (model 7164) accelerom-
eter (MTI) across a wide range of walking and running speeds
in laboratory and field settings and noted that the CSA output
rose linearly (R2

= 0.92) with increasing speed until 9 kph but

remained at ~10,000 counts/min during running. Therefore, oxy-
gen uptake is underestimated at speeds >9 kph. Authors proposed
that the lack of linearity may be due to a relatively constant ver-
tical acceleration in running. Rowlands (101) reported similar
findings from comparisons of uni-axial (ActiGraph) and tri-axial
(RT3) devices and confirmed that activity was underestimated as
speed increased using a uni-axial device with acceleration only
assessed in the vertical plane. Rowlands (101) found that output
from tri-axial devices was strongly related to speed, a reflection
of the predominance of horizontal acceleration at higher speeds.
Improvements in technology have resulted in single devices (124)
measuring and reporting movement in all three axes separately
and simultaneously (RT3). This study assessed whether using three
planes of acceleration signals is superior to using only the verti-
cal plane of the same unit for predicting AEE during locomotion
and activities of daily living (ADL). The tri-axial capacity did not
significantly improve the relationship between movement counts
and AEE compared with uni-axial devices.

Another important comparison is between accelerometry out-
puts and indirect calorimetry. The RT3 motion sensor overesti-
mated AEE for treadmill activity by 9% and underestimated ADL
by 34%. The RT3 underestimated activity with greater upper-body
movements by 24–64%. Compared to DLW assessed over 15 days
and using the proprietary algorithms, Maddison et al. (125) found
the RT3 underestimated AEE by 15% on average. While the RT3
provided a relatively accurate assessment of free-living AEE at
the group level, it generally underestimated the AEE compared to
DLW. These studies demonstrate that is not sufficient to only con-
sider the number of axes used, but rather the technology inherent
in the device or the data processing available. Plasqui et al. (126)
noted that age, body mass, and height collectively explained 64%,
while the tri-axial accelerometer (Tracmor) added only an addi-
tional 19% of the variation in TEE. In some studies, it is possible
that most of the variance is explained by participant descriptors
and the accelerometry data may have only marginal additional
value. Few studies have provided data to demonstrate the ability
of the accelerometer to predict individual AEE rather than AEE on
a group level only; standard errors or limits of agreement should
be presented. Plasqui and Westerterp (120) outline an important
range of issues for consideration when comparing the validity of
different accelerometers.

Irrespective of the use of accelerometry counts to convert to
EE, a major advantage of the technique is the ability to quan-
tify time spent in activities of different intensities. Accelerometer
outputs are typically related to standard thresholds for activity
of light, moderate, and vigorous-intensity (127–129). However,
a major issue in the field is how to select cut-off points to
define activity intensities. Despite a number of proposed cut-
offs for some devices, there is currently no consensus (3, 130).
If there is inconsistency in the use of accelerometers and cut-
offs to delineate exercise or PA intensity, it is extremely diffi-
cult to make meaningful comparisons between the findings of
different studies (106). Similarly, uniform cut-off points may
not be truly representative of the same exercise intensity across
individuals.

The most widely used accelerometer in studies of children and
adolescents is the ActiGraph; however, the ranges for defining the
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lower limit for different intensities are considerable (3, 75, 131,
132). Most studies (133–135) have used a lower threshold for
moderate PA and vigorous PA as suggested by Trost et al. (73),
whereas some studies (136) have used a significantly higher cut-
off point for moderate and vigorous-intensity PA as suggested by
other validation studies (131, 137).

Accelerometers are most commonly worn on a waist belt and
aligned with the right anterior axillary line and worn at all times
for up to 7 days except when showering, bathing, swimming, or
involved in contact sports. It is also useful to encourage par-
ticipants to keep a record of when they removed the monitor
for any reason. A common epoch length is 30-s with a mini-
mum wear time defined as 10-h/day for 4 of the 7-days, one
of which must be a weekend day (138). Non-wear time should
also be specified, for example 60-min of consecutive zero counts.
Total counts and minutes spent in sedentary, light, moderate, and
vigorous-intensity PA can be calculated using the Actilife 5.5 soft-
ware (ActiGraph, Pensacola, FL, USA) plus published cut-offs, for
example, as described by Troiano et al. (139) for adults. In adults,
the hip-mounted ActiGraph has demonstrated high inter-device
reliability (r = 0.98) (123) and validity against indirect calorime-
try (r = 0.56, p < 0.001) (129) and least variability when compared
with other accelerometers (140).

Accelerometers have low sensitivity to sedentary activities and
are unable to register static exercise (122). Similarly, as accelerome-
try is insensitive to PA that does not involve a transfer of the center
of mass at a rate relative to the energy expended (e.g., weight lift-
ing, walking up a slope, walking, and carrying a load), this will lead
to errors in measurement of TEE (129, 141).

Like all methodologies, accelerometers have a number of limita-
tions including the possibility of reactivity based on the individual
knowing they are being monitored (3). If accelerometers are used
for a limited number of days, these may not be representative of
the individual’s habitual PA. Because accelerometers display inter-
and intra-monitor variability, it is strongly recommended that tri-
als are undertaken to identify outlying monitors and understand
the inter-monitor variability before commencing a study (142).
Further, as outlined above, accelerometers should be calibrated to
each individual user. To improve the categorization of movement,
some studies have used multiple accelerometers worn on different
body parts (trunk, chest, wrists, legs, and feet). Whole-body EE can
be determined from the composite of movements. Heil et al. (143)
developed good guidelines and a very useful decision-making
algorithm associated with accelerometry. Similarly, Mannini et al.
(144) developed an algorithm to process wrist and ankle raw data
from a single accelerometer to classify behavior into ambulation,
cycling, sedentary, and other activities.

In very young children (<5 years), accelerometers and direct
observation are well-established as the preferred PA monitoring
approaches (96, 104) as they can detect short bursts of activity typ-
ical at this age (104, 145). However, the validity, reliability, and fea-
sibility of accelerometry in toddlers (<3 years) have only recently
been addressed (103, 145) and much more work is required in
this area (107). The study by Van Cauwenberghe et al. (107) was
one of the first to assess the feasibility of ActiGraph accelerome-
ter assessment of PA in toddlers and the appropriateness of using
accelerometer cut-points proposed for older children. ActiGraph

accelerometers are the most widely used for PA research in children
and adolescents (108, 145, 146).

In studies with young children, accelerometers have been pro-
gramed to record data every 15-s (101, 103, 108) and Meterplus 4.2
software used to screen and clean data (Santech). It is also com-
monplace to omit data from both the first and the last day of the
registration period (97) and periods of >10-min of consecutive
zero activity counts regarded as non-wearing time and excluded
(97, 103, 147).

The minimum number of minutes with recorded accelerometer
data (registration time) required to constitute an eligible weekday
and weekend day has been determined by defining the period
during which at least 70% of the study population had recorded
accelerometer data and 80% of that observed period constituted
the minimum registration time (97, 102, 147). Days on which
participants did not achieve the minimum registration time are
considered as non-eligible days and are excluded. Minimum regis-
tration time has been defined separately for weekdays and weekend
days as this often varies (101–103). If data are available for three
valid days, this information is analyzed (103).

ActiGraph cut-points to define PA intensities for 3–5 year-olds
(148, 149) are as follows: sedentary behavior: ≤37; light physi-
cal activity (LPA): 38–419; and MVPA: ≥420. Cut-points for 3-
year old children (132): sedentary behavior:≤301; LPA: 302–614;
MVPA: ≥615. Cut-points by Van Cauwenberghe et al. (147) for
5-year old children were: sedentary behavior:≤372; LPA: 373–584;
and MVPA:≥585.

Van Cauwenberghe et al. (95) found that the Pate cut-points can
be used to classify sedentary and non-sedentary behavior in tod-
dlers. However, none of the three sets of cut-points for preschool
children appeared suitable to differentiate light and moderate-to-
vigorous PA in toddlers. Without suitable equations for toddlers,
Van Cauwenberghe et al. (95) suggest that accelerometer counts
(i.e., counts per minute) be used as a measure of PA participation.

COMBINED APPROACHES
As no single technique is able to quantify all aspects of PA under
free-living conditions, use of multiple complementary methods is
recommended (13). For example, a potentially powerful approach
to quantifying EE is the simultaneous use of accelerometry and
HR monitoring (5, 11, 73, 141, 150). The rationale for combining
these techniques is that accelerometer counts verify that elevations
in HR are due to PA. As mentioned above, the relationship between
HR and EE is influenced by a host of factors including age, gender,
level of training, stroke volume, temperature, etc. (151). Limita-
tions of accelerometry include the inability of the device to account
for additional load carried by the user (5) and changes in the grade
of the exercise surface. The fact that the two sets of limitations are
completely different suggests that a more precise estimation of EE
may be possible with a combined approach (141).

As mentioned in the section on HR monitoring, the HR–VO2

relationship is only linear during moderate to high-intensity exer-
cise (152). Therefore, HR monitoring is useful to quantify PAEE
but not the low-intensity PA characteristic of a large proportion of
the total daily PA undertaken by many individuals. Accelerometry
may be considered as the reverse, very limited in the assessment
of AEE but able to quantify low levels of PA or sedentary behavior
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(73). As a combined HR and movement sensor, Actiheart exploits
the advantages of each technology in a single device. Actiheart has
been validated in adults during treadmill walking and running for
the prediction of PAEE (153) and Corder et al. (5) has confirmed
the same in children. Examples of combined movement counter
and HR monitor include Actiwatch/Actiheart/Actiband; and Acti-
Trainer. A number of the more complex devices, including the
SenseWear Armband, are discussed in a following section.

Examples of prominent international companies producing
HR monitors include Polar1, Suunto2, and Garmin3. A growing
range of products with more sophisticated features are available
and not discussed here. These include the capability of collect-
ing data on both physiological and mechanical variables including
distance, speed, altitude, cycling power output, running pace and
cadence, altimeter features, GPS features, and cycling and running
features. Increasingly, smartphone applications will provide the
new opportunities for monitoring, including the quantification of
non-wear time of objective devices such as accelerometers (154,
155). Discussion of these new approaches is beyond the scope of
the current review.

SENSEWEAR ARMBANDS
The SenseWear armband4 collects data from multiple sensors: a
skin temperature sensor, near-body temperature sensor, heat flux
sensor, galvanic skin response sensor, and a bi-axial accelerom-
eter. The combination of signals from these sensors enables the
assessment of activity type and intensity and the incorporation of
detail regarding age, gender, height, and weight enables EE to be
estimated using proprietary algorithms. Readers are referred to a
number of recent validation studies (156–158).

INTELLIGENT DEVICE FOR ENERGY EXPENDITURE AND ACTIVITY
The intelligent device for energy expenditure and activity (IDEEA)
(MiniSun) estimates EE from 35 postures and activities and it
can identify and record (159) using multiple sensors. A detailed
overview of the device is available in the papers by Zhang et al.
(160, 161). Much of the published work using the device has been
laboratory-based, either validation studies of EE (160) or highly
controlled, short duration gait and posture analyses (161–163).
The device has also been used to measure patterns of PA and esti-
mate EE over 3 days in a free-living subset of participants in the
DiOGenes study (164). A comprehensive assessment by Whybrow
et al. (159) evaluated the IDEEA to estimate EE against both whole-
body indirect calorimetry, and DLW. The study also compared EE
estimates from measured and estimated calibration values.

Compared to indirect calorimetry reference methods, Why-
brow et al. (159) reported that the IDEEA significantly overesti-
mated EE outside the laboratory but this overestimate is not always
apparent under controlled conditions (161). Using the IDEEA in
a calorimeter, Whybrow et al. (159) found the device underesti-
mated the EE of slow walking and overestimated faster walking.
In contrast, others have reported better agreement when used in

1http://www.polar.fi
2http://www.suunto.com
3http://www.garmin.com
4http://www.bodymedia.com

a more natural walking motion (165), including a treadmill, than
was possible in the calorimeter.

Limitations of the IDEEA system include the relative difficulty
of attaching the sensors, the inconvenience and discomfort of
wearing the sensors, and the limited memory capacity. Further,
the device is unable to detect cycling as an activity and usually
allocates a stationary sitting or standing posture with an estimated
EE unrelated to the work completed. Consequently, the IDEEA
underestimates the EE of cycling (159) and overall is of similar
accuracy in estimating EE to the HR method.

To avoid the cost associated with using multiple devices, and
participant and researcher burden, a number of studies have paid
greater attention to the identification of activity types based on
acceleration data measured with a single accelerometer (166, 167).
Bonomi et al. (168, 169) measured ADL with a single accelerom-
eter in a population of healthy adults and used a decision tree
algorithm to identify the activity types performed. The decision
tree evaluated attributes (or features) of the acceleration signal.
Using DLW as the criterion measure, the identification of types of
PA such as lying, sitting or standing, active standing, walking, run-
ning, and cycling combined with a simple methodology to define
the intensity of activity type, improved the estimation of TEE,
AEE, and PAL compared with activity counts.

In summary, improvements in individual and/or multiple sen-
sors has progressively improved the objective assessment of phys-
ical activity and energy expenditure. For example, Lyden et al.
(170) very recently reported a method to improve the estima-
tion of both free-living active and sedentary behaviours from
an accelerometer and validated against direct observation. One
of the better studies to assess energy expenditure estimation of
several activity monitors consistent with a 4-h stay in a room
calorimeter was undertaken by Dannecker et al. (171). IDEEA and
Directlife estimates of energy expenditure were not different to
measured energy expenditure. In this study, Actigraph and Fitbit
devices significantly underestimated energy expenditure. Adam
Noah and colleagues (172) assessed the new Fitbit accelerome-
ters against an indirect calorimetry system (Cosmed K4) and the
commercially available Actical devices. They also found that Fit-
bit underestimated energy expenditure in a number of activities
however suggested the device was reliable and valid for monitoring
over-ground energy expenditure.

SELECTED SUBJECTIVE MEASURES
A range of subjective approaches complement the objective mea-
sures discussed above. Subjective methods are indirect approaches
and typically involve the individual recording his or her own activ-
ity (93). These include direct observation, activity diaries, PAQs,
and interviews (66), however, here we only address some examples
of such approaches. Each approach assesses different dimensions
of PA, has a variety of outcome variables, and associated strengths
and weaknesses.

The fundamental shortcoming of all subjective approaches is
the potential to influence the voracity of the information collected
(173). Questionnaires rely on one’s recollection of PA and enable a
categorization of individuals from sedentary and inactive, through
to active or very active. Simply stated, subjective approaches quan-
tify the perception of PA as opposed to PA per se (108) as typically
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questionnaires lack the precision needed to detect PA changes on
a day-to-day basis (174, 175).

Because of the absence of inexpensive, readily available, non-
invasive, valid, and reliable objective technology for the assess-
ment of AEE in large numbers of free-living individuals, many
researchers rely on estimates of AEE derived from PAQs (176).
However, most PAQs have demonstrated limited reliability and
validity (173) and it is questionable whether any are valid for
estimating AEE at the individual and group levels (176).

Valid measurement of PA is also very challenging in some pop-
ulations, including children <5 years of age, mainly due to the
sporadic and intermittent nature of their movement (100, 104,
108). Proxy reports from parents can be useful for rank ordering
young children on PA behavior (97), however, inaccurate estimates
of the amount and intensity of PA is a primary concern with this
approach (103, 104). Cognitive limitations of children younger
than 10 years of age also limits the accuracy of questionnaire-
derived PA data from young children (114), therefore proxy reports
are commonly used (100).

At the individual level, the validity of data derived from sub-
jective approaches for the calculation of PAEE and MVPA is
questionable compared to objective alternatives such as accelerom-
etry and the DLW technique that enable data collection over an
extended period of time (106, 177). The choice between subjec-
tive and objective approaches is typically based on the resources
available and the number of participants required for the study.
Subjective data from PAQs tend to be more valid at a group level
and this combined with the relatively low cost, means that a larger
number of people can be surveyed or assessed (11, 14).

A fundamental problem in the field is when data derived from
a self-report PAQ are converted to units of EE. An appreciation of
the variability in MET value is important here. Clearly, it is not
feasible to measure the energy cost of activities for each individual
in large epidemiological studies (176), hence the Compendium of
physical activities is widely used (17, 58, 59). An important limita-
tion of the Compendium is the reliance on group averages based
on assumed body weight or REE and therefore energy equivalents
that may not apply to individuals (18, 178, 179).

In youth, there is no standardized reference to parallel the 1
MET equivalent of 3.5 mL/O2/min for adults (106) despite possi-
ble differences for MET multiples for the same activities in children
and adults (180). Estimations of EE from self-report PAQs in youth
typically use adult-derived standard energy costs of specific activ-
ities (17). However, these can be adjusted for the higher REE in
children (181). Ridley et al. (182) have developed a Compendium
of EE for youth, however, only 35% of the values in this Com-
pendium are derived from data measured in young people with
other values extrapolated from adult data (183). Recent published
literature has also provided guidance regarding the relative merits
of different PA assessment tools for use in defined populations,
including overweight and obese children (183).

Self-report PAQs are often the only feasible way to assess PA
in many situations (106, 176) particularly in studies involving a
large number of participants. Similarly, self-report approaches are
important for the assessment of aspects of PA not easily mea-
sured objectively, including mode and domain (184). Some PAQs
can accurately determine the mode of activity and can be used to

rank, group, or categorize PA levels with a degree of confidence
(185, 186).

While some studies contend that it is possible for self-report
PAQs to assess some aspects of MVPA (187, 188), most agree that
PAQs are less accurate than objective methods for estimating PAEE
and MVPA (11, 106, 189).

Relatively, few validation studies of PAQs have used DLW (185,
186) with accelerometry being the most common criterion (184,
188, 190). Corder et al. (106) were the first to simultaneously assess
the validity of estimated PAEE and MVPA from PAQs against both
DLW and accelerometry. This approach enabled the assessment
of the strengths and weaknesses of self-reported PA not possible
when only one criterion method is used. A major finding was that
all PAQs consistently underestimated PAEE (106, 177). Readers are
also referred to a paper by Patterson (191) for an explanation of
associations between questionnaires and objective measures and a
multi-step process of developing an instrument to measure a con-
struct such as PA. Too often researchers refer to validation when
a questionnaire is correlated with an objective measure, however,
this does not represent criterion-related evidence of validity (177).

A comprehensive appraisal of the use of PAQs to assess AEE in
population-based studies by Neilson et al. (192) is particularly
informative. They concluded that despite numerous validation
studies (using DLW), the validity of PAQs for AEE estimation
remains unclear. Neilson et al. (192) contend that weaknesses in
study design and reporting of studies is a major contributing
factor, along with a failure to make PAQs freely available. Some
reasons for discrepancies in estimates of AEE between PAQs and
DLW could include the failure of the PAQ to incorporate key activ-
ities and differences in length of time assessed in each approach
(192).

PHYSICAL ACTIVITY RECORDS OR DIARIES
Records or diaries can provide very detailed information regard-
ing activity types and patterns, for example walking, watching
television, etc., purpose: for example PA, exercise, occupational,
transport, etc., intensity (light, moderate, vigorous), duration (in
minutes or hours), frequency (how often), and mode or body
position (for example sitting, standing, walking) (2). Detailed
recordings enable one to account for PA (or EE) undertaken in
relatively short 15-min time intervals. Over a 24-h timeframe, one
can determine how long an individual engaged in various activi-
ties and subsequently translate this into EE predictions using MET
values for each task and intensity level (2). As mentioned above, a
wide range of physical activities have been coded and published in
a Compendium of physical activities that categorizes each task or
activity into domains and intensities (commonly based on METs).
The Compendium was developed in 1989 and extensively updated
in 2000 and again in 2011. A disadvantage of activity diaries is the
high participant burden, including the time needed for individu-
als to record physical activities in blocks of 15 min across multiple
24-h periods.

MULTIMEDIA ACTIVITY RECALL
A well-developed use of time measure is the Multimedia Activ-
ity Recall for Children and Adults (MARCA). The MARCA is a
computerized 24-h recall tool that asks participants to recall their
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use of time in the previous day from midnight to midnight using
meal times as anchor points across the 24-h period day (138). Par-
ticipants recall their day in blocks of 5-min or more by choosing
from 520 activities organized under different categories including
“Self-Care,” “Occupation,” and “Sport/Recreation.” Each activity
in the MARCA is assigned a MET value to estimate EE based on
an expanded version of the Ainsworth Compendium (17, 58).

The MARCA was originally designed for use in children
and adolescents (193) but has been modified for use in adults
(194). The adult version has test–retest reliabilities of 0.990–0.997
(p≤ 0.0001) for MVPA, PAL (average daily rate of EE in METs),
sleep and screen time, and convergent validity between PAL (esti-
mated average rate of EE) and accelerometer counts/minute of
ρ= 0.72 (186). A recent comparison with the DLW technique
displayed correlations of ρ= 0.70 for TEE (195).

The MARCA enables a determination of EE based on minutes
spent in the following zones: 0.0–0.9 MET (sleep); 1.0–1.9 METs
(very light physical activity, VLPA); 2.0–2.9 METs (LPA); 3.0–5.9
METs (moderate physical activity, MPA); and ≥6 METs (vigor-
ous physical activity, VPA). A time-use profile is determined by
minutes spent in major “activity sets” including physical activity,
computer, active transport, passive transport, quiet time, self-care,
socio-cultural, work/study, chores, sleep, and TV/videogames.

PHYSICAL ACTIVITY QUESTIONNAIRES
Physical activity questionnaires are the most widely used approach
to monitor activity levels (14). Global questionnaires are easy to
administer and complete; however, most only provide minimal
information about activity and simply enable a group to be cate-
gorized as “active” or “inactive.” Recall questionnaires are longer
and provide more detailed accounts of PA including information
about frequency and duration of activities over extended periods.
The significant variability in PAQs includes the amount of detail
provided, length of time assessed, and the extent of supervision
required to successfully complete the questionnaire (173). Neilson
et al.’s (192) systematic review of PAQs provides a comprehensive
appraisal of the strengths and weakness of PAQs and their ability
to quantify AEE in relation to DLW.

Physical activity questionnaires are completed over a minimum
of a 24-h period and up to 7-days (184). PAQs are commonly more
valid when administered in an interview context, either by tele-
phone or face-to-face, however, are notorious for overestimating
vigorous PA and underestimating time spent undertaking ADL
(2). Miscalculation of the total volume or intensity of PA may
have different implications, for example, in the determination of
the dose–response relationship between PA and health. Therefore,
it is highly desirable to include objective measures with self-report
instruments to minimize intentional or unintentional misreport-
ing of PA. Welk et al. (196) recently reported on the validity of
a 24-h PA recall compared with EE using SenseWear Armbands.
There was good agreement between approaches; however, PA recall
may result in biased estimates of MVPA in adults at the group
and individual level. If a combined approach is not possible in
the whole cohort, it is highly recommended that both measure-
ment approaches be used in a representative sub-sample. Strengths
and limitations of PAQs, with specific reference to individual
questionnaires, are outlined in Table 2.

Table 2 | Strengths and weaknesses of self-report PAQs.

Strengths Limitations

• Able to measure large numbers

of participants at low cost

• Theoretically, recall does not alter

behavior

• A variety of dimensions of PA can

be assessed

• Can extrapolate to EE

• Suitable for a wide range of

populations

• Measurement tool can be

adapted to suit the population

• Possible to compare results from

different locations when using

the same instrument, e.g., IPAQ

• Recall challenges for some

populations, e.g., children and the

aged

• Semantics may be an issue, e.g.,

terms like “moderate-intensity”

may be ambiguous

• Dependent upon response rates

and ability of participants to

follow instructions

• Completeness of answers

• Activity choices listed in

questionnaire may not be relevant

for some populations

• Minimum amount of detectable

change (sensitivity)

CONCLUSION
With so many approaches available, the accurate assessment of
PA and quantification of EE can be very challenging. It is impor-
tant to appreciate that irrespective of the apparent sophistication
of techniques, all have inherent strengths and weaknesses. A better
understanding of the merits of different approaches should inform
decision-making and selection of the best approach for the situ-
ation, including for specific populations such as overweight and
obese children (183).

Objective measurement approaches have been the primary
focus of this review; however, subjective approaches, including
diaries and PAQs, have the potential to provide rich descriptive
data. However, an acknowledged major shortcoming of subjective
approaches is their heavy reliance on an individual’s recollection
of events. Therefore, depending on the context, such approaches
may be prone to under- or over-reporting.

Despite the advantages of objective measures, some approaches
and devices, including accelerometry, are inappropriate for the
quantification of activities other than walking and running. For
example, accelerometers are not able to quantify movement in
swimming and cycling.

The ideal scenario is for PA and EE to be measured with research
quality tools and approaches. If one is interested in total PA,
an understanding of physical inactivity is also important. The
measurement of total PA or EE is informative but much richer
information is available when PA and exercise intensity is mon-
itored, not simply the total dose of PA undertaken. One of the
fundamental shortcomings of any approach, again irrespective
of the level of sophistication, is the integrity of the device. This
includes the reliability of each instrument and whether the device
has been calibrated to each individual for maximum benefit.

In summary, PA is a complex construct encompassing dif-
ferent dimensions, such as PAEE or MVPA; a range of contexts
such as occupation, transportation, exercise, and daily activities;
and different types of activity or exercise (177). Given the variety
of applications for measures of PA, for example, in surveillance,
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epidemiology, clinical, and intervention research, it is highly
unlikely that a single measure of reported PA would suffice,
indeed be achievable. As mentioned in an earlier section, signif-
icant advances have been made with approaches that combine
objective measures such as accelerometers, HR monitors, and geo-
graphic location sensors with self-report of context and purpose,
sometimes reported in real time (154, 177).

Troiano (177) has provided sound advice regarding improve-
ments to self-report approaches, including the suggestion that
consideration of study or project requirement influence the choice
of assessment instrument. Specifically, what aspect(s) of PA does
one wish to measure, what are the characteristics of the target pop-
ulation, and will the data be used to describe groups or individuals?
Secondly, Troiano (177) suggests that findings from self-report
instruments should be addressed as “reported PA” in recognition
that what has been reported may not “precisely and accurately
reflect the behavior being sought.”
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