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Pancreatic ductal adenocarcinoma (PDA) is a highly chemoresistant and metastatic disease
with a dismal 5-year survival rate of 6%. More effective therapeutic targets and approaches
are urgently needed to tackle this devastating disease. The base excision repair (BER)
pathway has been identified as a predictor of therapeutic response, prognostic factor, and
therapeutic target in a variety of cancers.This review will discuss our current understanding
of BER in PDA and its potential to improve PDA treatment.

Keywords: base excision repair, pancreatic cancer, chemoresistance, therapeutic targets, prognostic factors

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDA) currently ranks as the
fourth leading cause of cancer-related death in Western societies
(1–3) and is projected to become the second leading cause by 2030
(4). Surgery is currently the best chance for a cure, but <15% of
patients present with operable disease due to the lack of specific
symptoms (2, 3). The remaining patients that present with unre-
sectable tumors have a dismal prognosis, with an overall 5-year
survival rate at 6% (5). This poor prognosis is largely due to the
highly metastatic and chemoresistant nature of PDA (6, 7). Recent
years have seen some improvement in treatments for PDA. Gemc-
itabine/abraxane combination therapy is a current standard of care
for unresectable PDA, but this only extends median overall survival
by 8 weeks over gemcitabine monotherapy (8). More aggressive
polychemotherapeutic regimens, such as FOLFIRINOX, are also
employed as treatments for PDA but only extend median sur-
vival by 17 weeks over gemcitabine monotherapy (9) and require
careful selection of candidates for the treatment due to toxicity.
There is clearly an urgent need for novel therapeutic approaches
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repair; FEN1, flap-endonuclease 1; LIGI, DNA ligase I; LIGIII, DNA ligase III;
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lase; MYH, MutY homologue; NEIL1–3, endonuclease VIII-like 1–3; NTH1, Nth
endonuclease III-like 1; OGG1, 8-oxoguanine DNA glycosylase; PanIN, pancreatic
intraepithelial neoplasia; PARP1, poly ADP ribose polymerase-1; PDA, pancreatic
ductal adenocarcinoma; POLB, DNA polymerase β; SMUG1, single-strand selective
monofunctional uracil DNA glycosylase; TDG, thymine DNA glycosylase; TRAIL,
TNF-related apoptosis-inducing ligand; UNG, uracil DNA glycosylase; XRCC1,
X-ray repair cross-complementing protein 1.

if we are to achieve a significant improvement in PDA patient
survival.

A MUTAGENIC ENVIRONMENT: IMPACT ON DNA REPAIR
Pancreatic ductal adenocarcinoma is an epithelial-derived tumor
that is proposed to proceed in a step-wise manner from pancre-
atic intraepithelial neoplasia (PanIN) lesions to PDA (10). PDA
tumors are highly fibrotic and consist of a complex microenviron-
ment containing PDA cells, cancer-associated pancreatic stellate
cells (CA-PSCs), immune cells, and extracellular matrix proteins
(11–13). CA-PSCs play a major role in generating the extensive
fibrotic response that is characteristic of PDA, by secreting exces-
sive amounts of extracellular matrix proteins in response to signals
from PDA cells (11, 12, 14–18). The fibrotic PDA microenviron-
ment drives the highly chemoresistant and metastatic phenotype
of this cancer. Fibrosis distorts the tumor vasculature, creating
a hypoxic and nutrient-deprived microenvironment (11, 19–21).
These two features are known to drive the Warburg effect, which
is a switch from oxidative to glycolytic metabolism, as well as the
transition of cancer cells from an epithelial phenotype to a more
aggressive mesenchymal phenotype (22–25).

While this microenvironment selects for more aggressive pan-
creatic cancer cells, it also imposes mutagenic pressure on the cells,
particularly in the form of oxidative stress (24, 26, 27). Hypoxia
triggers the release of reactive oxygen species from mitochondria,
initiating a signaling cascade that reprograms the cell to facili-
tate its survival (26, 27). In addition, the Warburg effect results
in loss of potent anti-oxidant intermediates, reducing the abil-
ity of cells to deal with increased intracellular oxidative stress
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FIGURE 1 | Mutation induced by 8-oxo-guanine. Reactive oxygen
species can oxidize guanines (G) in DNA to 8-oxo-guanine (O). Replication
machinery can then mis-insert adenine (A) opposite O. In a subsequent
round of replication, a thymine (T) can be inserted opposite A, resulting in a
G:C to T:A mutation.

(24). These free radicals readily react with DNA bases, alter-
ing how DNA polymerases might recognize them. For example,
the most common form of DNA damage induced by reactive
oxygen species is 8-oxo-guanine (8-oxo-G) in guanine:cytosine
(G:C) base pairs (28) (Figure 1). If left unrepaired, replication
machinery can mis-insert adenine (A) opposite 8-oxo-G (29)
(Figure 1). In subsequent rounds of replication, this can per-
manently convert a G:C base pair to a thymine:adenine (T:A)
base pair (29) (Figure 1). Rapidly proliferating PDA cells must
be able to tolerate this increased mutagenic load in order to
replicate their genome, without accumulating genomic damage
that can disrupt its most basic survival functions. Under these
conditions, effective DNA repair becomes critical for PDA cell
survival. The base excision repair (BER) pathway is responsi-
ble for repair of a variety of damaged DNA bases, and plays
a prominent role in repair of oxidative DNA damage, which
is particularly relevant to PDA as outlined above (30). Impor-
tantly, components of this pathway have increasingly been iden-
tified as predictors of cancer risk, prognosis, chemoresistance,
and as direct therapeutic targets in a variety of cancers (31).
This review will discuss components of the BER pathway that
have been identified as therapeutic targets and predictors of ther-
apeutic response in pancreatic cancer. It will also discuss the
untapped potential for other PDA therapeutic targets in this
pathway.

FIGURE 2 | Overview of the base excision repair pathway. (A) DNA
damage “X” is detected and excised by a specific glycosylase leaving an
abasic site (B). (C) The abasic site processed by an apurinic/apyrimidinic
endonuclease. (D) Scaffolding proteins bind the single-stranded DNA and
recruit downstream base excision repair proteins. Repair can then proceed
by (E) short-patch or (F) long-patch base excision repair. (E) A DNA
polymerase fills in the missing DNA base. (F) DNA polymerases fill in the
missing DNA base and continue synthesizing DNA past the initial damage
site, displacing the original DNA strand. (G) A flap endonuclease then
cleaves the flap of single-stranded DNA. (H) A DNA ligase seals the
remaining DNA nick, completing the repair.

THE BASE EXCISION REPAIR PATHWAY
The BER pathway consists of a number of specialized glycosy-
lases, endonucleases, polymerases, and ligases that work together
to repair a variety of damaged DNA bases (Figure 2). Generally
speaking, BER of DNA damage proceeds through five steps.
The first step is detection and removal of the damaged DNA
base, which is carried out by glycosylases (Figure 2A). Glyco-
sylases can be largely grouped by the types of damaged bases
that they recognize and remove (Table 1): uracil/thymine excision
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Table 1 | Base excision repair proteins and function.

Group Protein name Synonym Function in base excision repair

Uracil/thymine glycosylases Methyl-CpG-binding domain protein 4 MBD4 Binds methylated DNA and excision of

5-hydroxymethyluracil

Single-strand selective monofunctional

uracil DNA glycosylase

SMUG1 Excision of uracil

Thymine DNA glycosylase TDG Excision of mismatched thymines and uracils

Uracil DNA glycosylase UNG Excision of uracil

8-Oxo-G repair glycosylases MutY homolog MYH Excision of A mispaired with 8-oxo-G

8-Oxo-G glycosylase 1 OGG1 Excision of 8-oxo-G

Oxidized pyrimidine glycosylases nth endonuclease III-like 1 NTH1 Excision of oxidized pyrimidines

Endonuclease VIII-like 1–3 NEIL1–3 Excision of oxidized pyrimidines

Methyl-purine glycosylase Methyl-purine-DNA glycosylase MPG Excision of methyladenine and methylguanine

Abasic site cleavage and

processing

Apurinic/apyrimidinic endonuclease 1 APE1 Cleavage of abasic sites

Polynucleotide kinase 3′-phosphatase PNKP Processing of cleaved abasic sites left by NEIL glycosylases

Scaffolding proteins Poly ADP ribose polymerase-1 PARP1 Protection of DNA breaks and recruitment of XRCC1

X-ray repair cross-complementing

protein 1

XRCC1 Recruitment of base excision repair proteins downstream of

abasic site cleavage

DNA polymerases DNA polymerase beta POLB Re-synthesis of DNA

DNA ligases DNA ligase I LIGI Sealing of DNA nick

DNA ligase III LIGIII Sealing of DNA nick

enzymes (UNG, SMUG1, TDG, and MBD4) (32–37), 8-oxo-G
repair enzymes (OGG1 and MYH) (38–45), oxidized pyrimi-
dine repair enzymes (NTH1 and NEIL1–3) (46–56), and methyl-
purine glycosylase (MPG) (57–59) (Table 1). Their substrates
include many of the damaged bases generated by DNA-damaging
chemotherapeutics (31).

Once a glycosylase has removed a damaged base, it leaves behind
a non-instructional abasic site (Figure 2B). This site can cause
transcription stalling and must be cleaved and processed before
repair can continue (60, 61). The second step in BER is thus
cleavage of the abasic site (Figure 2C). Some glycosylases are
bifunctional, meaning they can cleave the abasic site that they
create (62–65). However, most glycosylases require cleavage of the
abasic site by apurinic/apyrimidinic endonuclease 1 (APE1) (66,
67). Processing of an abasic site leaves a single-strand break, which
needs to be protected to prevent further damage.

The third step in BER is binding of the single-strand break
by scaffolding proteins (Figure 2D). There are two major scaf-
folding proteins in BER, poly ADP ribose polymerase-1 (PARP1)
and X-ray repair cross-complementing protein 1 (XRCC1) (68–
72). Once these proteins are bound to the single-strand DNA
break, they recruit other BER proteins required to complete the
repair (68–72).

The fourth step in BER is insertion of the missing base by a DNA
polymerase, such as DNA polymerase β (POLB) (73). This can
take the form of either single base repair, whereby only one base
is inserted (short-patch repair, Figure 2E), or long-patch repair
(Figure 2F), where a stretch of bases is inserted at and beyond
the initial site of damage, displacing some of the nearby bases

(74). In long-patch BER, an additional step is required involving
the specialized flap-endonuclease, FEN1, to cleave the displaced
stretch of DNA bases (Figure 2G) (75). The final step in BER
is then sealing of DNA nicks left by these processes DNA ligase
I (LIGI, long-patch BER) or DNA ligase III (LIGIII, short-patch
BER) (Figure 2H) (76).

Cancer cells take advantage of BER’s ability to repair DNA
damage in order to resist DNA-damaging chemotherapies and
radiotherapy (31). BER proteins have thus been identified as
potential therapeutic targets and chemoresistance factors in a
variety of cancers (31). More specifically in PDA, the BER pro-
teins APE1, XRCC1, and PARP1 provide well-studied examples
of how BER proteins can be applied as therapeutic targets or
predictors of therapeutic response (detailed below). They also
highlight the complex roles that BER proteins can play outside
of their primary DNA repair roles in the BER pathway, which can
be exploited in therapeutic approaches to elicit a broader impact
in PDA cells.

APE1 AS A THERAPEUTIC TARGET FOR PANCREATIC CANCER
APE1 is an endonuclease that cleaves DNA abasic sites left by the
activity of glycosylases (66, 67). This makes APE1 a central pro-
tein in the BER pathway, as its activity is required downstream of
a variety of glycosylases. It is therefore not surprising that APE1
has been implicated in resistance to a diverse range of therapeu-
tics. Moreover, APE1 can directly repair the replication-blocking
abasic sites generated by alkylating agents (77). An analysis of
APE1 activity in medulloblastomas and neuroectodermal tumors
from patients treated with adjuvant radiation and multi-agent
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chemotherapy, found that increased APE1 activity correlated with
poorer response to treatment (78). The same association has been
observed in grade II–III gliomas, whereby increased APE1 activ-
ity correlated with increased resistance to radiation therapy and
alkylating agents (79). Similar trends have been observed in head-
and-neck cancer in relation to resistance to chemotherapy and
radiotherapy (80). APE1 can also confer resistance to chemother-
apeutics that may not directly generate substrates for the BER
pathway, but may generate secondary types of DNA damage that
BER is required to resolve. For example, APE1 upregulation has
been associated with platinum resistance in ovarian cancer (81).
This is likely due to the generation of reactive oxygen species by
platinum-based therapies, which generates oxidized DNA bases
that require BER to repair (82).

APE1’s involvement in chemoresistance and radioresistance in
cancer cells has been functionally demonstrated using small mol-
ecule inhibitors and siRNA-based approaches. APE1 inhibitors
have been shown to enhance the sensitivity of HeLa cells to the
alkylating agent methyl methanesulfonate (MMS) (83). In an
siRNA-based approach,APE1 silencing has been shown to increase
the chemosensitivity of ovarian cancer cells to cisplatin via induc-
tion of apoptosis (81). APE1 inhibition has similarly been shown
to sensitize PDA cells (Panc-1) to gemcitabine (84), while Xiong
et al. (85) later reproduced these findings in SW1990 PDA cells.
APE1 downregulation has since been shown to also radiosensitize
PDA cells (86).

APE1 inhibition also highlights how BER proteins can rep-
resent broader intracellular targets that can both chemosensitize
cancer cells and compromise cancer cell survival. APE1 is also
known as Ref-1, as its N-terminal plays a role as a redox factor,
responsible for regulating a variety of transcription factors that
facilitate cell survival in response to oxidative stress (87–92). Sev-
eral studies have identified APE1 as a survival factor in PDA cells.
Jiang and colleagues (93) observed that APE1 silencing in PDA
cells (Panc1 and MiaPaCa2), reduced proliferation/colony form-
ing ability and increased apoptosis, by increasing DNA damage.
Studies have similarly demonstrated this using a small molecule
inhibitor of APE1 (E3330) (94, 95). Fishel et al. (94) showed that
E3330 reduced PDA cell and cancer-associated endothelial cell
proliferation and migration, decreased transcription factor activ-
ity for NFκB, AP-1, and HIF-1α, and reduced tumor growth in
PDA xenograft mouse models. Recently, Fishel et al. (96) fur-
ther demonstrated the complexity of signaling networks involving
APE1. The group identified a novel interaction specifically between
the redox component of APE1 and nuclear factor erythroid-related
2 (Nrf2) in PDA cells. Inhibition of APE1 using small molecule
and genetics approaches increased activation of Nrf2, a protein
known to play a role in protection from oxidative stress (96).
This work identified a potential resistance mechanism that would
need to be co-targeted with APE1 inhibitors. Cardoso and col-
leagues (95) demonstrated that dual targeting of APE1 and the
transcription factor STAT3 synergistically reduced PDA cell sur-
vival and migration. The authors demonstrated that STAT3 DNA
binding and transcriptional activity is under the control of APE1
(95), suggesting that the synergistic effects may have been due to
enhancement of STAT3 inhibition by knocking-down APE1, or by
inhibiting functions of each protein that were independent of the

FIGURE 3 | Potential application of APE1 as a therapeutic target in
PDA. APE1 represents a potential dual target in PDA, whose inhibition can
reduce the ability of PDA cells to respond to oxidative stress through its
redox signaling role, and the ability of PDA cells to resist alkylating agents
and platinum-based drugs through its role as an abasic site endonuclease.

other, in addition of their co-dependent pathway. This also pro-
vides an important example of how the complex signaling roles of
some BER proteins can have far reaching effects on how PDA cells
interact with their microenvironment and migrate.

As a therapeutic target for PDA, APE1 is ideal in its ability to
confer sensitivity to a variety of drugs and to broadly interfere
with the cellular response to oxidative stress (Figure 3). How-
ever, this involvement in a broad range of BER sub-pathways also
makes systemic inhibition of APE1 risky, as off-target toxicity and
the risk of generating cancers elsewhere in the body would not be
unexpected. APE1 knockout is embryonic lethal (97, 98) and it has
been demonstrated to be essential for mammalian cell survival (99,
100). An approach targeting APE1 should preferably be cancer cell-
specific, for example, siRNA complexed to a nanoparticle, which
has cancer cell-specific targeting moieties attached (101, 102).

XRCC1 AND CHEMOTHERAPEUTIC RESPONSE IN
PANCREATIC CANCER
XRCC1 is a scaffolding protein with no enzymatic activity, which
plays an important role in recruiting and coordinating other BER
proteins at sites of DNA damage (68–72). XRCC1 polymorphisms
that interfere with PARP binding and cause broadly reduced BER
efficiency have been implicated in resistance to platinum-based
therapies in lung and colorectal cancer (103–105). Interestingly,
these are an example of how reduced DNA repair efficiency can
confer resistance to chemotherapeutics. This relationship might
appear illogical as DNA adducts generated by platinum therapies
are not direct targets of the BER pathway and are instead processed
by the nucleotide excision repair pathway (106). However, studies
by Kothandapi and colleagues (107, 108) provide a potential expla-
nation for this relationship and highlight the complex interaction
of DNA repair pathways. The study suggested that rather than
acting directly on the primary DNA damage, that is, DNA inter-
strand cross-links, or adducts, BER could act on DNA that was
exposed and deaminated around platinum-induced DNA adducts
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(107, 108). However, BER at these sites would interfere with the
nucleotide excision repair pathway that directly repairs the DNA
adducts, thus maintaining platinum-induced toxicity (107, 108).
XRCC1 polymorphisms that reduce BER recruitment to these
sites would reduce interference with the nucleotide excision repair
pathway, allowing more effective repair of the DNA adduct and
increasing cancer cell resistance to the drug.

There is also evidence that lower XRCC1 expression is asso-
ciated with increased sensitivity to platinum-based therapies in
ovarian cancer cells, as demonstrated by increased accumulation
of DNA double-strand breaks in response to platinum-based ther-
apies (109). While these results may appear to be conflicting with
the studies presented so far, they actually highlight two important
points that we need to consider to effectively use BER proteins
as a predictor of therapeutic response: (i) the biochemistry of
the DNA damage induced by a therapeutic and (ii) cross-talk
between DNA repair pathways that respond. In this case, we
need to note that XRCC1 is also required for the final stages
of the nucleotide excision repair pathway, which directly repairs
the toxic DNA adducts generated by platinum drugs (110, 111).
Thus, decreased XRCC1 interferes with the ability of nucleotide
excision repair to remove the DNA adducts that facilitate cell
death. On the other hand, polymorphisms that hinder recruit-
ment of XRCC1 through the BER pathway reduce this interfer-
ence with nucleotide excision repair and increase resistance to
platinum-based therapies.

XRCC1 polymorphisms can similarly be applied in PDA to
predict response to platinum-based drugs and to identify indi-
viduals with increased risk of pancreatic cancer incidence. In
particular, a polymorphism in Arg399 of XRCC1 has been iden-
tified in pancreatic cancer studies as a risk factor and predictor
of therapeutic response (112–114). This polymorphism occurs
within a PARP binding domain of XRCC1 and has been associ-
ated with decreased BER function (112). Giovanetti and colleagues
(113) identified a significant correlation between the Arg399 poly-
morphism of XRCC1 and a worse response to platinum-based
therapeutic regimens (113), indicating that XRCC1 could be used
in PDA to predict response to platinum-based therapies as in other
cancers.

Moreover, XRCC1 polymorphisms can be used to predict PDA
risk. Duell and colleagues (112) observed that carriers of this
XRCC1 polymorphism who were smokers,had significantly higher
risk of developing PDA than other members in the cohort of 309
PDA patients and 964 control individuals. Nakao et al. (114) sim-
ilarly found a significant correlation between the XRCC1 Arg399
polymorphism and increased pancreatic cancer risk in a cohort
that included 185 Japanese pancreatic cancer patients. As men-
tioned earlier, BER plays a major role in repairing oxidative DNA
damage (30). Oxidative DNA damage occurs as a consequence of
normal cell metabolism and can be increased by environmental
factors, especially smoking (115–118). The increased pancreatic
cancer risk in individuals carrying the Arg399 polymorphism of
XRCC1 is potentially the result of a reduced cellular capacity to
repair mutations that result from oxidative DNA damage. Thus,
the XRCC1 Arg399 polymorphism, in combination with envi-
ronmental factors, could potentially be used to identify high-risk
individuals for early pancreatic cancer screening.

FIGURE 4 | Potential application of XRCC1 as a predictor of therapeutic
response in PDA. XRCC1 expression and polymorphisms can potentially
be applied in PDA to predict therapeutic response. XRCC1 downregulation
predicts increased sensitivity to platinum-based therapies. XRCC1 Arg399
polymorphisms that decrease base excision repair efficiency predict poorer
response to platinum-based therapies.

While the development of PARP inhibitors (discussed in
next section) removes some incentive to therapeutically target
XRCC1, this protein clearly represents an important predictive
factor for cancer risk and platinum-based therapeutics in PDA
(Figure 4).

PARP1 AS A THERAPEUTIC TARGET FOR PANCREATIC
CANCER
Poly(ADP)-ribose polymerase-1 binds single-strand and double-
strand DNA breaks and interacts with XRCC1 to help recruit
downstream BER proteins to facilitate repair (68, 72). However,
unlike XRCC1 it can also directly regulate proteins, particularly
histones and transcription factors, by adding poly(ADP)-ribose
units to them (termed PARylation), which it synthesizes from
NAD+ (119). PARP uses this activity to rapidly co-ordinate DNA
repair in response to the DNA breaks (119). PARP inhibitors are
the perfect example of how an understanding of BER and its
interaction with other pathways can be effectively applied to tai-
lor therapeutic approaches for cancer. This field was launched by
two landmark studies published in 2005 (120, 121) demonstrating
that PARP inhibition was an effective approach to treat BRCA1-
and BRCA2-defective cancer cells (cells defective in homologous
recombination). These studies not only identified a new therapeu-
tic target but also highlighted the potency of “synthetic lethality”
approaches – approaches that compound existing weaknesses in
DNA repair in cancer cells by eliminating complimentary repair
pathways, thus overwhelming cells with DNA damage. BRCA1/2-
deficient cells are unable to carry out effective homologous recom-
bination to repair DNA double-strand breaks (122). Inhibition
of PARP-1 eliminates the remaining active DNA repair path-
ways that can respond to these breaks and potentially generates
more breaks by inhibiting multiple DNA repair pathways. PARP
inhibitors are now applied in the clinic for BRCA1/2 defective
ovarian and breast cancers and are in clinical trial for a variety of
other BRCA1/2-defective tumors (123).

Pre-clinical studies in PDA cells have similarly demonstrated
the efficacy of PARP inhibitors in synthetic-lethal approaches and
in sensitization of PDA cells to therapeutics. Drew and colleagues
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(124) demonstrated that BRCA2-defective PDA cells (CAPAN-
1 line) were sensitive to the PARP1 inhibitor AG014699 in vitro
and in sub-cutaneous mouse tumors. More recently, Chen et al.
(125) combined inhibition of PARP family proteins by olaparib
with inhibition of Bcl-2, an anti-apoptotic protein that is now
recognized as a suppressor of non-homologous end-joining,which
is an alternate pathway for double-strand DNA break repair (126,
127). This drug combination synergistically caused growth arrest
and non-apoptotic cell death in PDA cells in vitro and in PDA
xenografts (125). A possible explanation for these synergistic
effects might be that PARP inhibition increases the persistence of
double-strand breaks while Bcl-2 inhibition increases erroneous
joining of DNA double-strand breaks by the non-homologous
end-joining pathway, eventually leading to impairment of cell
function by accumulation of translocations and mutations.

PARP inhibition need not only be applied on BRCA1/2-
defective backgrounds but can also improve the efficacy of DNA-
damaging agents by the same principle. For example, Jacob et al.
(128) showed that PARP inhibition using 3-aminobenzamide (an
inhibitor that competes with NAD+), could enhance the efficacy
of gemcitabine in PDA cells. In an approach that indirectly tar-
geted PARP1, Piao and colleagues (129) showed that silencing
PARP1 binding protein (PARBP), a protein that enhances PARP1
activity, sensitized KLM-1 PDA cells to adriamycin, H2O2, and
UV irradiation. Moreover, several studies have demonstrated the
radiosensitizing effect of PARP inhibition in PDA cells (130–132).
PARP inhibitors are currently in clinical trial for PDA (ClinicalTri-
als.gov identifiers: NCT00515866, NCT01286987, NCT00047307,
NCT01989546, NCT02042378) (123, 133).

Poly ADP ribose polymerase 1 is a complex protein with roles
in other DNA repair pathways, chromatin remodeling, transcrip-
tional regulation, and cell death pathways (119). This extensive
network of interactions means that PARP1 inhibition can affect
more than just DNA repair. For example, Yuan et al. (134)
found that PARP1 was elevated in pancreatic cancer cell lines
resistant to TNF-related apoptosis-inducing ligand (TRAIL) anti-
body therapy (Panc1 and SUIT2) but low in TRAIL-sensitive
lines (MiaPaCa2 and BxPC3). Silencing PARP1 in these resis-
tant lines increased their sensitivity to TRAIL therapy in vitro
and in a sub-cutaneous animal model (134). Klauschen et al.
(135) investigated PARP expression and localization in 178 human
PDA tissue specimens, using immunohistochemistry. The patients
had undergone surgery for pancreatic masses, without use of
chemotherapeutics prior to surgery. The group found that low-
level nuclear expression of PARP significantly correlated with
reduced median survival (135). As with XRCC1, these results are
not necessarily conflicting with the proven effective application
of PARP inhibitors in the clinic. A possible explanation is that
PARP inhibitors, which inhibit specific functions or regions of
PARP, produce very different effects to downregulation of total
PARP protein and thus all PARP functions. It again highlights
the importance of understanding all of the roles of a BER pro-
tein and its overlap with other repair pathways when designing
a therapeutic approach. PARP inhibition has proven to be a suc-
cessful therapeutic approach in many other cancers and is likely to
become an effective treatment in synthetic-lethal approaches for
PDA (Figure 5).

FIGURE 5 | Potential application of PARP1 as a therapeutic target in
PDA. PARP1 can be targeted in PDA in both synthetic-lethal approaches
and in approaches that sensitizPARP1e PDA cells to therapeutics. PARP1
inhibition can be combined with BRCA1/2 defects or Bcl-2 inhibition to
induce PDA cell death through double-strand DNA breaks. PARP1 inhibition
can also be combined with DNA-damaging therapeutics, radiotherapies,
and antibody-based TRAIL therapy to enhance their efficacy.

FUTURE DIRECTIONS: THE UNTAPPED POTENTIAL OF BASE
EXCISION REPAIR
The information that we already have on the BER proteins APE1,
XRCC1, and PARP1 can be applied to better tailor therapeutic
approaches for PDA (Table 2). However, there is a lot of untapped
potential for PDA therapeutic targets in this pathway. Glycosy-
lases carry out excision of damaged DNA bases and are possible
direct therapeutic targets for the chemosensitization of PDA cells.
There are several examples of this in other cancers. For example,
MPG inhibition is capable of sensitizing cancer cells to alkylat-
ing agents (136). The uracil excision glycosylase SMUG1 carries
out the majority of the repair of 5-FU and could be targeted to
increase sensitivity to this drug (137). There is also promise in
BER proteins that are more downstream in the pathway, for exam-
ple, inhibition of DNA polymerase beta POLB inhibition has been
shown to sensitize cancer cells to the oxaliplatin, cisplatin, and the
DNA methylating compound temozolomide (138–140).

Moving forward, the examples in this review also provide
valuable lessons for the effective targeting of BER proteins in ther-
apeutic approaches. BER proteins can have complex roles outside
of their primary role in the BER pathway. It is critical to understand
these additional functions when deciding how to target a BER pro-
tein. Small molecule inhibitors may produce very different effects
to knocking-down total protein, by leaving supplementary func-
tions intact. BER proteins may also represent dual targets because
of these additional roles, capable of both chemosensitizing can-
cer cells and interfering with basic survival functions in response
to microenvironmental stress; it is essential to understand both
the type of DNA damage induced by a chemotherapeutic (there
may be multiple forms induced by one chemotherapeutic, either
directly or indirectly), as well as the cross-talk between BER and
other DNA repair pathways that can respond to the damage. The
involvement of XRCC1 in response to platinum-based therapies
demonstrates how DNA repair pathways can be linked and can
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Table 2 | Summary of APE1, XRCC1, and PARP1 studies in pancreatic cancer.

Protein Findings Reference

APE1

APE knockdown decreased PDA cell proliferation/clonogenicity by inducing apoptosis (93)

APE1 inhibition reduced PDA cell proliferation and migration; reduced PDA xenograft growth (94)

APE1 inhibition increases Nrf2 activation (potential resistance mechanism to APE1 inhibition) (96)

Dual inhibition of APE1 and STAT3 synergistically decreased PDA cell survival and migration (95)

APE1 inhibition sensitized PDA cells to gemcitabine (84)

APE1 inhibition sensitized PDA cells to gemcitabine (85)

APE1 knockdown radiosensitized PDA cells (86)

XRCC1

XRCC1 Arg399 polymorphism increased PDA risk in smokers (112)

XRCC1 Arg399 polymorphism increased PDA risk (114)

XRCC1 Arg399 polymorphism reduced PDA patient response to platinum-based therapies (113)

PARP1

BRCA2-defective PDA cells were sensitive to PARP1 inhibitor AG014699 in vitro and in PDA xenografts (124)

Combined PARP1 and Bcl-2 inhibition synergistically reduced PDA cell tumorgenicity (125)

Knockdown of PARP1 binding protein sensitized PDA cells to adriamycin, H2O2, and UV irradiation (129)

PARP1 inhibition radiosensitized PDA cells (130–132)

PARP1 knockdown sensitized PDA cells to TRAIL therapy (134)

Low nuclear PARP1 correlated with reduced median survival of PDA patients (135)

Studies implicating BER proteins as risk or prognostic factors are highlighted in gray.

even compete with each other in response to DNA damage (107,
108). By extension, an effective synthetic-lethal approach requires
an understanding of how defects in one DNA repair pathway can
make BER the Achille’s heal of a cancer cell, as demonstrated by
PARP inhibitors. On this point, recent data from the Australian
Pancreatic Genome Initiative showed that 14% of pancreatic can-
cers display high genomic instability and a further 36% display
substantial “scattered” genomic instability (141). These have been
linked to defects in genes involved in DNA double-strand break
repair including BRCA1 and BRCA2 (known to be responsive to
PARP1 inhibitors as discussed above) (141). The identification
of pancreatic cancer sub-types based on their genomic instabil-
ity, represents an exciting advance in our knowledge of PDA and
could be exploited to personalize synthetic-lethal therapies using
BER-targeted approaches.

The paradox in targeting BER and, in fact, any DNA repair path-
way is that defects in DNA repair is responsible for cancer initiation
and progression. How can we be sure that targeting BER proteins to
treat one cancer would not generate more aggressive and chemore-
sistant cancer cells? For a DNA-damaging therapeutic approach
to be effective, it must induce enough damage to overcome any
advantageous mutations that might arise as a consequence of the
treatment – an advantageous mutation is useless if a cancer cell has
accumulated so much genomic damage that it cannot maintain the
basic functions it requires to stay alive. This is the principle behind
DNA-damaging radiotherapies and chemotherapeutics. This is
not to say that the recurrence of chemoresistant cancers is not
a possibility and it has been documented in multiple cancers in
response to DNA-damaging agents (142). Targeting BER proteins
in combination with chemotherapeutics can improve the efficacy
of existing treatments and potentially reduce the chances of leav-
ing resistant cancer cells behind. Future therapeutic approaches for
PDA may involve inhibiting two or more BER proteins responsible
for repairing very different types of DNA damage, in combination

with multiple structurally diverse chemotherapeutics to maximize
genomic damage in PDA cells. If we are to reach that stage, a better
understanding of BER proteins in PDA cells and their interac-
tions with other DNA repair and signaling pathways is critical.
An equally important consideration is the potential for off-target
effects when systemically targeting DNA repair proteins. There is
the potential that inhibition of DNA repair proteins could either
cause toxicity in normal cells in the body or worse yet, generate an
initiating mutation for a cancer elsewhere in the body. This is why
a cancer cell-specific approach is preferable when targeting BER
proteins.

In summary, the BER pathway holds a lot of potential as a
therapeutic target in PDA that is still largely untapped. As we
move toward more personalized treatments for patients, BER pro-
teins could be inhibited in combination with existing mutations
in cancer cells in synthetic-lethal approaches, in combination with
microenvironment-induced stress to reduce cancer cell survival,
or in combination with DNA-damaging agents to improve their
efficacy. Further studies into the BER pathway in PDA are critical
in our search for more effective therapeutic approaches for this
devastating disease.
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