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Cancer is the second leading cause of death in females. According to the American
Cancer Society, there are 327,660 new cases in breast and gynecological cancers
estimated in 2014, placing emphasis on the need for cancer prevention and new cancer
treatment strategies. One important approach to cancer prevention involves phytochem-
icals, biologically active compounds derived from plants. A variety of studies on the
impact of dietary compounds found in cruciferous vegetables, green tea, and spices like
curry and black pepper have revealed epigenetic changes in female cancers. Thus, an
important emerging topic comprises epigenetic changes due to the modulation of non-
coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs
and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are
linked to distinct cancer phenotypes, understanding the effects of dietary compounds and
supplements on the epigenetic modulator non-coding RNA is of great interest. This article
reviews the current findings on nutrition-induced changes in breast and gynecological
cancers at the non-coding RNA level.
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Introduction

Current research provides evidence for the importance of nutrition in terms of health and disease
prevention via phytochemicals and their modes of action. Studies on the “epigenetic diet” have
revealed that the consumption of soy, curry spices, red grapes, as well as blueberries has beneficial
effects on the prevention of diseases like cancer (1, 2). This applies not only to the individual
consuming the epigenetic diet but also applies to the exposure of the unborn child in utero, which
can lead to reprograming of the existing epigenetic profiles and hence changes the predisposition
to diseases like cancer (2). One way of exerting its impact is through modulation of non-coding
RNA levels, microRNAs (miRs) in particular, in the individual (3, 4). miRs are endogenous RNAs of
18–25 nucleotides in length that regulate the expression of genes through binding to the 3′UTR
of mRNA, and thus leading to the degradation of the bound mRNA or to the inhibition of
translation. Furthermore, it was shown that miRs can also target the 5′UTR, promoter, or coding
sequences (5, 6).

Since miRs can either modulate or serve as tumor suppressors or oncogenes, two scientific
approaches toward targeting cancer are under current investigation. One approach is to utilize miRs
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such as let-7, miR-34, and miR-29 in patients for anticancer ther-
apy. The other is employing miR levels as biomarkers to diagnose,
classify, and predict the clinical outcome of cancer patients. Due to
the fact that circulation of miRs in blood, milk, urine, and various
other body fluids has been frequently proven, their employment
as biomarkers is self-evident (7). Along with those findings, the
detection of microvesicles containing miR being released only
frombreast cancer (BC) cells further underlines the importance of
investigating miRs in the circulation (8). A goal is to profile miRs
to enable personalized therapies and treatment of patients in the
future, and elucidating the impact of phytochemicals on miRs is
one important aspect of this individualized medicine.

Overview of miR Biogenesis

The genesis of miRs is a multistep process and eventually leads
to the alteration of protein levels by RNA silencing. During this
process, RNA polymerase II transcribes the primary transcript,
pri-miR, from inter-or intragenic regions. The recognition and
cleavage of the primary transcript through Drosha, the micropro-
cessor complex and DiGeorge critical region 8 (DGCR8), follows
thereafter (7). Furthermore, an alternative pathway independent
of Drosha digestion spawning “miRtrons,” functional pre-miRs
which are derived from spliced out mRNA introns, has been
described (7). While Exportin-5, GTP, as well as Ran, promote
the release of the pre-miR from the nucleus into the cytoplasm
by recognizing its 3′ 2-nucleotide (nt) overhang, Dicer, a further
RNase III, digests the pre-miR, creating an approximately 22 nt-
longmiR duplex (7). Common formammals, the twomiR strands
differ in their thermodynamical stability, and the guide strand
with the less stable 5′-end serves as template for target recognition
in the RNA-induced silencing complex (RISC) (9). Until recently,
the remaining strand was thought to be degraded; however, there
has been evidence suggesting that the miR*-passenger strand
levels are in accordance with their corresponding guide strand
levels. It remains unclear whether the guide strand only or the
passenger strand also may be incorporated into the RISC (9). To
date, the guide strand, also referred to as miR-5p form, is thought
to be more active due to its higher abundance than the miR*-
passenger strand (miR-3p form), which shows a higher probability
of degradation. Yet, the relative expression of miR-5p and miR-3p
remains undiscovered (10).

The RISC, consisting of the transactivation-responsive RNA
binding protein and the catalytic component Argonaute, elicits
its action by complementary binding of the 3′UTR mRNA target
through the incorporated miR. Either translational repression or
mRNA cleavage results from mRNA recognition by the RISC. In
case of inaccurate complementary binding, translational repres-
sion occurs, whereas in the case of accurate complementarity
mRNA cleavage is brought about by Argonaute. Subsequently, a
decrease in protein levels is effectuated (11). The level of sup-
pression of protein biosynthesis is thus dependent on the amount
of expressed miR; overexpressed miR leads to under-expressed
target genes and vice versa. In this manner, miRs are able to
modulate pathways and multiple downstream targets involved
in cell proliferation, cell cycle progression, apoptosis as well as
invasion, migration, and differentiation (5).

miR Profiling of Female Cancers

Tumor tissue miRs are commonly studied because particular
expression patterns can be related to certain phenotypes and can-
cer properties. However, the miR pattern is unique to the cancer
type in general as well as to the individual cancer tissue, hence,
making broad generalizations is met with challenges. This also
indicates that the same miR may act as tumor suppressor in one
cancer type, whereas it may act as an oncogene in another. An
epitome of this concept is miR-93. While being overexpressed in
many cancer cases, miR-93 has also been found to have tumor
suppressor properties. In less differentiated BCs, increased miR-
93 expression halts tumor development and metastasis; whereas
its up-regulation in more differentiated tumors was observed to
result in an augmented stem cell population (12, 13). Neverthe-
less, there are commonly described down-regulated miR families
with tumorsuppressor function (oncosuppressormiRs) in female
cancers. Examples are let-7, miR-200, as well as the miR-34 fam-
ily. Oncogenic miRs (oncomiRs) comprise for instance miR-155,
miR-27a, miR-21, and miR-221/222.1 Noteworthy at this point
is the variety of functions of the miR-221/222 cluster. Like miR-
93, this cluster shows oncogenic features by targeting PTEN,
p27/Kip1, p57, and TIMP3 in BC and other cancer types. But
when down-regulated in erythroblastic leukemia, it targets the
KIT oncogene (14).

Taken together, miRs act in complex biological networks that
are not yet fully understood, nevertheless, comprehending these
networks and their contribution to emerging female cancers is of
great importance. When administering chemotherapy, the differ-
ent miR profiles of female cancers have to be taken into account
as there have been indications of the impact of miRs on the
response to treatment, especially on drug resistance (15). Hence,
the understanding of miR profiles in female cancers is essential
before aiming at reversing their aberrant expression by com-
pounds such as phytochemicals. Despite the obstacles of ambiva-
lent miR functions and expression patterns, the classification of
tumors as well as the mapping of miR genes and their regulatory
sequences can provide critical information about the tumor (16).
Going beyond identification of miR clusters through RT-PCR and
microarray techniques is the first step, finding the mechanisms
of dysregulation and potential targets the next toward improving
survival rates of female cancers (Figure 1).

miR Profiles in Breast Cancer – An Insight
According to Cancer Research UK, BC is the second leading
cause of death among cancer cases. While the most common
BC is ductal carcinoma, variable factors including environmental,
lifestyle, and genetic factors are associated with BC risk. Despite
the exposure to Bisphenol A (BPA) as well as age factors, the
National Cancer Institute specifies that the risk of developing BC
is critical to the inheritance of BRCA1 or BRCA2 mutations, as
55%ofwomen are carriers of those altered tumor suppressor genes
andwill develop BC. In this connection,miR-146a andmiR-146b-
5p were discovered to influence BRCA1 by down-regulating it in
sporadic triple negative breast cancer (TNBC) (17).

1http://mir2disease.org/
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FIGURE 1 | Rationale behind miR research in cancer. Especially for
cancer types such as OC with its non-specific symptoms, specific and
reliable biomarkers are actively sought for. miRs can be found in a variety
of body fluids; hence, detection and surveillance of cancer development

as well as assigning it into groups may be accomplished in a non-invasive
manner in the future. Knowledge about the appropriate application of
phytochemicals is inevitable for this approach; however, only little is
established today.

In correspondence with the specific BC subtypes, distinct miR
patterns that made it possible to distinguish between basal and
luminal subtypes in an independent subset of data were reported
(Table 1). For example, miR-18a belonging to the miR-17-92
cluster as well as members of the paralog miR-106b-25 cluster
were found to be significantly higher expressed in grade 3 basal-
like BC, whereas the let-7 family was significantly lower-expressed
in this subtype (18, 19). A preliminary study in TNBC biopsies
endorsed that a comparatively high expression of miR-200b-3p,
miR-109a, and lower miR-512-5p expression may be linked to an
improved response to chemotherapy. Due to the low amount of
samples, however, only a trend could be observed (20).

Although multiple research groups have studied diet and
dietary patterns in correlation to female cancers, many lack inves-
tigations on the miR level. In 2014, a study on the Mediterranean
diet versus the Western diet and their implications on BC risk
was conducted. It implied that the consumption of vegetables and
fruits has a protective effect on TNBC cancer patients. Decipher-
ing the link between diet patterns and tumors of HER2-status, the
study was the first to report that the Mediterranean diet had a
strong protective impact on TNBC. Furthermore, the positive cor-
relation between aWestern dietary pattern and BC risk in general,
especially in premenopausal women, was implied (111). Along
with these findings, McCann et al. discovered that the dietary
intake of lignans is associated with clinical BC characteristics. Lig-
nans are plant-derived polyphenolic substances and available in

flaxseeds, nuts, fruits, vegetables, and other foods (112). Another
striking finding of our group toward a possible future therapy
was the reactivation of ERα in the TNBC cell line MDA-MB-231
through the soy isoflavone genistein, especially in co-treatment
with trichostatin A. Molecular mechanisms, specifically on the
miR basis, are under current investigation (113). Consequently,
finding a way to stimulate miRs with a beneficial effect on the
outcome of a patient through adjusting the patient’s diet would
be valuable and convenient.

Aberrant miR Profiles in Gynecological
Cancers – An Overview
Ovarian Cancer
There are three general subgroups of ovarian cancer (OC), germ
cell, stromal, and epithelial tumors, with the latter being the
most prominent. A common feature of OC is a disease relapse
within 2 years (114). Combinational treatments with dietary com-
pounds like epigallocatechin gallate (EGCG) from green tea and
sulforaphane from cruciferous vegetables targeting resistant cells
seem promising, and the evoked effects by those kinds of treat-
ments need to be further elucidated on the miR level (18, 115).

Especially in terms ofOCwith its unspecific symptoms, reliable
prognostic and predictive biomarkers are avidly sought for. While
prognostic markers specify the likely outcome of a disease when
the patient is untreated, predictive biomarkers help to determine
the patient who will most likely respond and thus benefit from the
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TABLE 1 | Exemplary dysregulated miRs in female cancers and their indications.

Cancer
type

miR Regulation Indications Diagnostic, predictive, prognostic markers Reference

BC miR-9 ↑ N-Myc and
c-Myc induced miR
expression

Targets E-cadherin, thus facilitating
migration and invasion

Local recurrence and estrogen receptor status (21, 22)

miR-17-92
cluster

↑ Myc binds to
E-box of first intron
of miR-17-92 gene

Amplified in BC Pancreatic cancer (miR-18); CLL (miR-20a);
significantly higher expressed in grade 3
basal-like BC

(18, 19, 21)

miR-93 ↑ Halts tumor development in less diff.
BC; in more diff., tumors increase in
BCSC

Highly expressed in high grade tumors;
differentiation between cancer and cancer-free
controls

(18, 23)

let-7 ↓ Wnt-β-catenin
pathway represses
let-7 expression by
transactivating
Lin28

let-7 family members target large gene
quantity; let-7a suppresses migration
and invasion of BC by down-regulating
C–C chemokine receptor type 7

Down-regulated in BC with high proliferation
index/lymph node metastasis

(24–26)

miR-200c ↓ Targets BMI1, suppresses clonal
expansion of cancer cells and formation
of mammary ducts by normal mammary
stem cells; tumor formation, inhibits
metastasis of BC through targeting
HMGB1; positive impact on Dicer levels

BC progression (27–29)

miR-221/222
cluster

↑ miR-221 facilitates tumorigenesis in
TNBC; miR-221 targets p27

miR221/222 induced repression of Dicer in ERα−
BC, ERα status linked to miR221/222 cluster

(28, 30)

miR-146a,
miR-146b-5p

↑ Decrease BRCA1 expression in
sporadic TNBC

miR-146a levels sigificantly increased in plasma of
BC patients; basal-like breast tumours
decreasedly epxress BRCA1

(17, 31)

miR-34a ↓ Suppresses proliferation and migration
of BC by decreasing levels of Bcl-2 and
SIRT1

Poor prognosis demonstrated in three
independent cohorts of primary BC

(32, 33)

miR-21 ↑ Correlated with advanced clinical stage,
lymph node metastasis, and poor
prognosis

Serum miR-21 high diagnostic accuracy for BC
patients

(34, 35)

miR-155 ↑ Overexpression is associated with
metastasis

Poor prognosis (36)

miR-497 ↓ Inhibts cell growth, migration, and
invasion; targets cyclin E1

Associated with higher differentiation grade,
positive HER-2 expression, higher incidence of
lymph node metastasis, and advanced clinical
stage

(37–39)

miR-205 ↓ In TGF-β or Pez
induced cells that
consequently were
subjected to EMT

EMT by targeting ZEB1 and SIP1;
targets also ERBB2 and VEGF-A;
directly targets HER3 receptor and
inhibits the activation of the
downstream mediator AKT

miR-205 reduced in tumor probes compared to
according normal probes of mammary ducts and
lobules

(40–43)

miR-210 ↑ Induced by
hypoxia (HIF and
VHL)

Involved in hypoxia pathway Predictive effect on poor survival; higher risk of
recurrence and metastasis, thereunder ER−,
lymph-node negative cancers

(44–46)

OC miR-9 ↓ Inhibits talin 1/FAK/AKT pathway;
sensitises ovarian xenograft tumors to
cisplatin and PARP inhibitors

Acts as tumorsuppressor in recurrent OC (47–49)

miR-497 ↓ Represses pro-metastatic factor
SMURF1

Shorter overall survival in patients with serous
cystadenoma

(39)

miR-21 ↑ Increased via
JNK-1/c-Jun
pathway in cisplatin
resistant OC cell
lines

Targets PDCD4, induces cell growth,
inhibition of miR-21 leads to apoptosis
and chemosensitivity in OC; miR-21-3p
increases cisplatin resistance thorugh
targeting NAV3 in OC cell lines

NAV3 is repressed in OC tumors resistant to
platinum treatment

(50–52)

(Continued)
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TABLE 1 | Continued

Cancer
type

miR Regulation Indications Diagnostic, predictive, prognostic markers Reference

let-7 family ↓ ↑ Let-7g sensitises ADR-RES cells to
taxol/vinblastine by down-regulating
IMP-1 and MDR1; let-7 targets HMGA2

Increased expression of let-7b correlated with
poor prognosis in high grade serous OC; in further
study of serous OC, decreased let-7b expression
was associated with poor prognosis; loss of let-7
expression in less differentiated cancer types

(53–56)

miR-200s ↓ ↑ PTEN repression, proliferation,
metatstasis in vitro; miR-200c can
inhibit tumorigenicity and metastasis in
CD117+CD44+ OC stem cells and can
restore of chemosensitivity in xenograft
model

Low miR-200c is associated with poor prognosis (57–59)

miR-221 ↑ Represses p27 and p57 Serum miR-221 up-regulated in EOC patients (60–62)

miR-27a ↑ In ALDH1+ and
chemoresistant
cells

Associated with chemoresistance High in a patient subgroup with very poor
prognosis

(63, 64)

miR-210 ↑ In response to
hypoxia;
up-regulated upon
VHL inactivation

Facilitates tumor growth through
targeting PTPN1 and repressing
apoptosis in vitro; loss of miR-210
function may cause deregulation of
hypoxia response in cancer cells

n/a (65–67)

miR-145 ↓ Targets Sp1 and Cdk6, sensitizes OC
to Paclitaxel; overexpression is linked to
inhibition of proliferation, invasion, and
apoptosis

OC patients have low levels of miR-145 in serum
and tissue

(68, 69)

miR-205 ↑ Facilitates proliferation and invasion of
OC

Together with CA-125 and let-7f, high diagnostic
accuracy for EOC; elevated plasma levels in
cancer patients versus control patients

(70, 71)

miR-214 ↑ Targets p53/Nanog axis in OC stem
cells; targets PTEN thus inducing cell
survival/ cisplatin resistance;
suppresses RNF8

Presence of miR-214 in exosomes as well as in
according tumor samples

(72–75)

UC miR-205 ↑ Targets PTEN, inhibits apoptosis Patients with decreased miR-205 expression
showed better survival compared to patients with
a high miR-205 level

(76, 77)

miR-34a ↑ In uterine
leiomyoma and
endometrioid
endometrial
adenocarcinoma

Inverse correlation between L1CAM
and miR-34a levels in endometrial
cancer cell lines

Primary tumor sections with increased L1CAM
expression showed decreased miR-34a
expression; overexpression in endometrioid
endometrial adenocarcinoma linked to tumor
progression and lymph node involvement

(78–80)

miR-200 family ↑ 200b up-regulates MMP2 activity by
targeting TIMP2, 200c targets ZEB1/2,
VEGFA, FLT1, IKKβ, KLF9, FBLN5, and
TIMP 2, 200c epxression changes upon
transition into cancerous cells;
reintroduction of miR-200c lowers
aggressiveness (migration and invasion)
of endometrial cancer cells; miR-200b/c
and 429 induce cisplatin resistance by
inhibiting AP-2α expression

Compared to normal endometrium, in all EAC
stages examined increased; combination of
miR-205 and miR-200a predicted relapse;
miR-200c ranked prognostic marker for overall
survival of endometrioid endometrial carcinoma
patients; SNP (rs1045385) possible prognostic
marker for cisplatin treatment, as miR binding to
AP-2α reduced

(81–86)

miR-21 ↑ Targets PTEN protein expression, thus
affecting proliferation

Up-regulated in uterine leiomyoma cohorts,
however, n/a for UC patients

(78, 87, 88)

miR-503 ↓ Targets cyclin D1 Patients with relatively higher level improved
survival

(89)

miR-199a-3p,
miR-199b

↓ Target mTOR miR-199b may serve as marker for EEC (90, 91)

(Continued)
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TABLE 1 | Continued

Cancer
type

miR Regulation Indications Diagnostic, predictive, prognostic markers Reference

CC miR-145 ↓ Expression p53
dependent in HPV+
CC cells

Suppresses p53 inhibitors and impedes
invasion of HPV+ CC cells

Possibility in employment as prognostic marker;
decrease linked to aggressiveness and poor
prognosis

(92, 93)

miR-375 ↓ Suppresses cell migration and invasion
via targeting SP1 in CC cell lines

Marginal trend observed that miR-375 expression
is elevated in chemotherapy resistant patient
samples, further samples needed; association
with drug sensitivity in BC observed as well

(94, 95)

miR-181b ↑ AC9 is targeted directly by miR-181b,
promotes proliferation, and inhibits
apoptosis

Further samples needed to verify elevated
miR-181b as a marker

(96)

miR-143 ↓ Targets Bcl-2 abrogates tumor
development suppresses apotosis

No link to histology found in samples; clinical
application researched

(4, 97, 98)

miR-126 ↓ Up-regulation increases sensitivity to
bleomycin targets ADM

Found in serum, correlated with FIGO stage,
histological grade, lymphatic invasion, distant
metastasis; miR-targeting therapeutic under
investigation

(4, 99–101)

Let-7 family ↓ Targets HAS2 linked to cell survival,
invasion

In comparison to normal tissue, cell lines
displayed let-7b/c ↓; validation on tumor samples
needed

(102, 103)

miR-100 ↓ Targets PLK1 protein In high-grade cervical lesions and CC,
miR-100-PLK1 axis not as distinct, hence this
correlation may occur relatively late in cervical
tumorigenesis

(104)

miR-20a ↑ Cell proliferation, migration, and
invasion targets TNKS2

Lymph node metastasis, histological grade and
tumor diameter

(105, 106)

miR-21 ↑ Targets CCL20, PDCD4 stimulation of
cell growth

High in serum of CC patients; miR-targeting
therapeutic under investigation

(3, 4)

miR-29, 29a ↓ Targets HSP47, increases p53 protein
level when transfected into HeLa cells,
inhibits migration and invasion

miR-29 is connected to HPV infection, further
research necessary

(107–109)

miR-200a ↓ Impacts regulation of cell adhesion Based on miR-200a and miR-9, two groups with
significantly different overall survival rates could be
established; indication for miR-200a delivery in
patients

(110)

BC, breast cancer; BCSC, BC stem cells; OC, ovarian cancer; EAC, endometrioid adenocarcinoma; EEC, endometrioid endometrial carcinoma; HPV+, human papilloma virus positive;
diff, differentiated; n/a, not available.

therapy (116). Being able to differentiate between endometriosis
and endometrioid cancer based on the miR profile is a step closer
to prognostic markers. Identifying miR signatures that shed light
on which patient will respond to anti-angiogenesis therapy in
addition to classic therapy is an important goal to identifying
predictive biomarkers. Putative biomarkers for epithelial ovarian
cancer (EOC) in the blood may be, i.e., miR-205/let-7f and miR-
30-1; however, these miRs need further verifications for their
application (10).

Similar to BC, where the tumorsuppressor miR-497 has been
reported to target cyclin E1, and low BRCA1 expression aug-
mented the incidence risk, miR-479 and BRCA1 are altered in
OC as well. In OC cell lines (OVCAR-3, SK-OV-3, HO-8910,
HO-8910PM) as well as serous cystadenoma specimens, a decline
in miR-497 expression was observed. Patients with serous cys-
tadenoma were shown to have a correlation between miR-497
down-regulation, higher expression of the pro-metastatic factor
SMURF1, and shorter overall survival. This suggests that restora-
tion of miR-497 levels may impede OC metastasis (48, 49).

While miR-9 has been associated with tumor cell motility and
metastasis in BC, its function as tumorsuppressor-miR through
inhibiting the talin1/FAK/AKT pathway has been described in
OC (49). miR-9 was found to sensitize ovarian xenograft tumors
to cisplatin and PARP inhibitors, and its overexpression led to
a higher apoptosis index in xenograft tumor sections (48). An
inverse correlation between BRCA1 and miR-9 expression linked
to a platinum resistance was stated, and with BRCA1 being critical
in the cellular damage response; miR-9 up-regulating compounds
are of great interest for OC (39).

When it comes to dealing with different miR signatures, there
are not only varying patterns between EOC subtypes but also
between primary tumors and their metastases. A study by Vaks-
man et al. was the first to prove that miR signatures are variable
depending on the tumor progression status. They characterized
three different sets of miRs that were highly expressed; the first
one was overlapping in primary carcinomas and effusions, the
second was overexpressed in primary carcinomas, and the last in
effusions (117).
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Uterine and Cervical Cancer
Uterine cancer (UC) is subdivided into endometrial cancer and
uterine sarcoma. Endometrial cancer is rather common among
Caucasian women, whereas African American women have a
higher risk of fatality due to endometrial cancer (85, 118). In
formalin-fixed paraffin-embedded (FFPE) endometrial adeno-
carcinoma tissues, differential expression of miRs between nor-
mal and malignant tissue was investigated by Jurcevic et al. In
this study, 138 miRs with a difference in the expression pattern
between normal and malignant tissue were found. In consensus
with findings of the female cancer types aforementioned, a dis-
crimination of early and advanced endometrial tumors was possi-
ble on the basis of miR profiles. miR-181b, for instance, was first
reported as increased in endometrial adenocarcinoma, targets
TIMP3 and tissue inhibitor metalloproteinase-3, and belonged
to the group of the 138 miRs. Along with miR-181b, miR-148b
and miR-355, which in turn target genes that play a role in the
Wnt signaling pathway, were proven to have a significant higher
expression in the tumor samples (85).

Most cervical cancers (CC) are squamous cell carcinomas and
begin in the majority of cases in the transformation zone, mostly
caused by human papilloma virus (HPV) (119). Although immu-
nizations for HPV and the availability of Pap and HPV testing are
useful, the knowledge with respect to whether a primary lesion
leads to squamous cell carcinoma would influence treatment and
avoid unnecessary concerns of the patient. miR-145 could be one
possible marker. Wang et al. found this miR to be significantly
down-regulated in CC compared to the control; patients with late
International Federation of Gynecology and Obstetrics (FIGO)
stage CC in comparison to those with early FIGO stage showed
a significant decrease as well. Even when correlating lymph node
metastasis-positive patients with lymph node metastasis-negative
patients, or patients with vascular invasion/HPV infection, a sig-
nificantly lower level of miR-145 could be observed. Regarding
the overall survival time, Kaplan–Meier analysis revealed a pro-
portional relation between miR-145 down-regulation and short
overall survival time. Hence, miR-145 may serve as a prognostic
factor in the future (93). Similarly, Yang et al. published that a
down-regulation of miR-126 leads to a poor prognosis in patients
with CC (100). It was demonstrated that the occurrence of host
miRs attributed to viral oncoprotein E6 or E7 made it possible to
distinguish between normal cervix from cervical intraepithelial
neoplasia and CC by calculating the ratio of miR-25/92a and
miR-22/29a (120).

The emerging role for miRs as gene network regulators may
facilitate the classification of different tumor phenotypes reveal-
ing new possible targets and therapies for patients. Table 1 lists
examples of miRs and their indications as well as whether these
exemplary miRs can be employed as biomarkers. An extensive
overview of the miR abundance and regulation, respectively,
cataloging and categorizing tumor types is an important goal
approaching a ubiquitous application of miRs in individualized
medicine. The determination of how diet can protect and prevent
not only occurrence but recurrence of female cancers through
altering the epigenetic modulator miR is one crucial aspect in the
fight against female cancers, and will be reviewed in the following
section.

Phytochemicals, Their Implications, and
Impact on miR Levels in Female Cancers

As measured by the publications of articles and books, the aware-
ness of the importance of a balanced nutrition emergesworldwide.
Yet, there is comparatively little known about the impact of com-
pounds contained in a healthy diet on miR profiles. Many of those
compounds have anticancer as well as other beneficial impacts
such as anti-inflammatory, anti-microbial, or anti-oxidative that
are empowered to reduce mortality (2, 121). With sulforaphane,
EGCG, genistein, resveratrol, and curcumin among themost com-
mon compounds studied, there are decisive approaches toward
the question of what is healthy, and in which combination the
best synergistical effects can be achieved. The search for new
potential antitumor drugs as well as the further elucidation of
novel anti-tumor compounds such as brusatol, thymoquinone,
or methylaervine will be an important part in phytochemical
research (122–124).

There is a plethora of phytochemicals, which have an impact on
epigenetic processes such as DNA methylation, histone modifica-
tions, and non-coding RNA (Figure 2). Because of the frequent
occurrence of epigenetic aberrations in cancer, achieving a tran-
sition of these through nutrition is a simply available, promising
approach to cancer prevention. Not only phytochemicals but also
caloric restriction plays key roles inmitigating biological processes
that yield cancer (125). Understanding how to alleviate tumori-
genic pathways through diet is thus a straightforward approach
advantageous for everyone through primary, secondary, and ter-
tiary chemoprevention. Along with other groups we showed, for
example, that phytochemicals can enhance effects of chemothera-
peutics like Cisplatin, even in chemotherapy-resistant cell lines.
Furthermore, we found a verifiable decrease in cell viability
through the employment of phytochemicals in a combinatorial
manner (115, 126, 127).

Aside from quantity of foods containing chemopreventive
compounds, the quality of these foods appear to be effectual as
well. Compelling results were generated by Zhang et al. suggesting
that horizontal miR transfer from plants to humans is possible.
To be precise, miR-168a, abundant in rice, was found to be
enriched in the sera of Chinese probands (128). These results
make the consumption of genetically modified fruit and vegeta-
bles questionable, although the cross-kingdom delivery of diet-
derived miRs could not be reproduced (129). Conflating these
aspects further underline the interests of investigating dietary
compounds. Table 2 reviews a summary of the hereafter pre-
sented nutraceuticals and their impact on miR patterns, including
signaling pathways in female cancers.

Curcumin
Curcumin can be obtained from the yellow rhizome of Curcuma
longa or turmeric and has health promoting virtues resulting in
telomerase inhibition, decrease ofHDAC1, 3, and 8 protein levels,
as well as induction of DNA hypomethylation. At present, there
are 50 studies listed by the NIH for the use of curcumin in cancer
patients. Although curcumin has been reported to be safe in high
doses (in rats a LD of 5–10 g/kg), its bioavailability even with
high dosage is low (159–161). Due to the fact that numerous
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FIGURE 2 | The idea of the epigenetic diet. Phytochemicals can alter miR
levels and demonstrably up-regulate or silence them. Because oncomiRs
and tumorsuppressormiRs are cell-specific, their function in every different
cell needs to be ascribed before being able to make consistent statements
on the impact of phytochemicals on onco/tumorsuppressormiR-levels. To

date, only little is known about the structure-activity relationship of
phytochemicals and miR genes. Hence, ? stands for the lack of knowledge
concerning the molecular manner in which phytochemicals alter miR
levels – whether this occurs indirectly or through direct binding to miRs or
miR genes in female cancers.

bioavailability studies in rodents as well as humans yielded plasma
levels of curcumin below 1 µmol/L, efforts in therapeutic drug
development are being made. Synthesizing either nanoparticles
conjugated with curcumin or nanocurcumin itself, curcumin-
analogs or creating liposomes is one approach. Another is to add
piperidin, an alkaloid of black pepper. It enhances curcumin’s
bioavailability by inhibiting its glucuronidation which in turn
affects the phase-II-metabolism. Interestingly, curcumin conju-
gates have been proven to negatively influence their bioavailability
through the induction of transcriptional factor Nrf2, account-
ing for the transcription of multidrug resistance-related proteins
which facilitate the active efflux from enterocytes (160, 162).
Moreover, in the CC cell line SiHa (HPV16+), curcumin has
been shown to be a strong but non-specific inhibitor of phos-
phorylation at Y705 of STAT3 signal transducer and activator of
transcription 3, which in turn can promote oncogenesis when
constitutively active (163).

Owing to its broad range of palliative features, curcumin targets
various members of cellular signaling pathways. Not only does it
play a role in the activation of the ambivalent transcription factor
Nrf2 but it also impacts NFκB, AKT, FOXO1, PTEN, p53, and
various other members of signaling pathways (49, 130, 159, 160,
164). A curcumin-dependent modulation of the aforementioned
pathway mediators can be brought about demonstrably by miRs.
In the human Caucasian ovary adenocarcinoma cell line, SKOV3,
Zhao et al. found that curcumin treatment dose-dependently
resulted in an elevated expression of miR-9, inducing apoptosis
by inhibiting AKT activation and FOXO1 phosphorylation at

unchanged protein levels. Since Weir et al. were able to show that
curcumin induces apoptosis in cisplatin-resistant humanOC cells
through caspase-3 activation and PARP cleavage, the question of
whether miR-9’s pro-apoptotic action was achieved similarly was
posed. It was shown that miR-9 activated caspase-3 as well as
PARP degradation in SKOV3 cells (49).

A further pathway targeted by curcumin is PTEN/AKT/p53 in
BC. This was discovered by a study in 2014 examining the impact
of curcumin on BPAon stimulatedMCF-7 BC cells. Asmentioned
earlier, BPA is closely connected to mastocarcinoma because it
acceleratedly impairs proliferation and apoptosis pathways. In this
study, miR-19, amember of themiR-17-92 cluster, was recognized
to be up-regulated upon BPA stimulation, leading to a decreased
expression of PTEN and p53 in addition to increased levels of p-
AKT, p-MDM2, and PCNA. Curcumin treatment, however, com-
promised BPA-induced proliferation and cell cycle progression
through modulation of miR-19a and miR-19b (Figure 3) (130).

Curcumin acts as an anti-inflammatory agent and because
chronic inflammation is a considerable risk factor for metasta-
sis, the impact of curcumin on the miR-dependent regulation
of the proinflammatory cytokines CXCL1 and -2 was examined.
This was done by assessing miR expression with microarrays in
the TNBC cell line MDA-MB-231 as well as in primary ER+,
HER2-breast tumor samples. Hereby, 3 miRs were decreased
and 10 miRs increased at least 2.5-fold in response to curcumin
dosage of 25 µM (Table 2). Among these miRs detected, miR-
181b was found to down-regulate CXCL1 and -2 through direct
binding of the 3′UTR, as well as MMP-1 and -3, constituting the
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TABLE 2 | Overview of studies indicating effects of phytochemicals on miR levels and cellular reactions as well as pathways in female cancers.

Phytochemical Cancer model miR regulation ↓ ↑ Effects Reference

Curcumin OC SKOV3 miR-9 ↑ Apoptosis by inhibiting activation of AKT and FOXO1 (49)

BC MCF-7 stimulated with BPA miR-19a ↓ Modulates PTEN/AKT/p53 axis in favor of stopping proliferation
and cell cylce progression

(130)
miR-19b ↓

BC MCF-7, SKBR-3, Bcap-37 miR-15a ↑ Bcl-2 down-regulation (131)
miR-16 ↑ Induction of apoptosis

BC MDA-MB-231 181b ↑ Down-regulates MMP-1, MMP-3, CXCL1 and -2 (132, 133)
miR-452-3p↑ Inhibition of NFκB activation
miR-483 ↑
miR-423 ↑
miR-296 ↑
miR-181d ↑
miR-498 ↑
miR-320 ↑
miR-373-3p ↑
miR-519e-3p ↑
let-7e ↓
let-7c ↓
miR-503 ↓

Curcumin in
combination
with Emodin

BC MDA-MB-231 and
MDA-MB-435

miR-34a ↑ Bcl-2 and Bmi-1 down-regulation (134)
Inhibiting proliferation, increasing apoptosis

Genistein BC MDA-MB-435, Hs578t miR-155 ↓ Up-regulates PTEN, FOXO3, CK1α, p27 (135)
Cell growth ↓
Apoptosis ↑

OC SKOV3 miR-27a ↓ Sprouty2 mRNA and protein ↑ (136)
Proliferation ↓
Migration ↓

OC UL-3A miR-135 ↑ ERα and ERβ ↑ (137)
miR-765 ↑ Migration ↓
miR-122a ↑
miR-137 ↑
miR-196a ↑
miR-204 ↑
miR-206 ↑
miR-217 ↑
miR-331 ↑
miR-449b ↑
miR-454 ↑
miR-501 ↑
miR-515 ↑
miR-578 ↑

OC UL-3B miR-135 ↑ ERα and ERβ ↑ (137)
miR-765 ↑ Migration ↓ (lower as in UL-3A)
miR-517c ↑
miR-7 ↑

Resveratrol BC MDA-MB-231-luc-D3H2LN miR-141 ↑ Inhibits BC invasion and CSC phenotype, resveratrol induces Ago2
expression thus promoting RNAi

(138)
miR-200c ↑
miR-26a ↑
miR-34a ↑
miR-125a-3p ↑
miR-126 ↑
miR-128 ↑
miR-185 ↑
miR-193b ↑
miR- 195 ↑
miR-196a ↑
miR-335 ↑
miR-340 ↑
miR-497 ↑

(Continued)
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TABLE 2 | Continued

Phytochemical Cancer model miR regulation ↓ ↑ Effects Reference

Putative oncomiRs:
miR-378-3p ↑
miR-10b ↑
miR-132 ↑
miR-222 ↑

BXC MCF-10A miR-16 ↑ n/a (138)
BC MDA-MB-231-luc-D3H2LN miR-143 ↑
BC MCF-7
BC MCF-7ADR

BC ACI rats miR-10a (↑) Inverse correlation of miR-129, -204, -489, and DNMT3b in normal
tissue; in tumor tissue, miR-489 and DNMT3b inversely correlated
Resveratrol led to demethylation of RASSF-1α

(139)
miR-10b (↑)
miR-21 ↑
miR-129 ↑
miR-204 ↑
miR-489 ↑

BC MCF-7 miR-663 ↑ Retardation of cell division (140)
miR-744 ↑ eEF1A2 mRNA and protein expression, thus silencing of EEF1A2

DIM BC MCF-7 miR-21 ↑ Cell cycle arrest, down-regulation of Cdc25A (141)
ER or p53 genotype seem crucial for DIM induced miR-21 ↑

DIM and
Herceptin

BC SKBR3 miR-200a ↑ FoxM1 ↓ pAKT ↓ (142)
miR-200b ↑ NFκB p65 ↓
miR-200c ↑

BC MDA-MB-468 miR-200a ↓ Cytotoxicity (142)
miR-200b ↓ FoxM1 ↓

NFκB p65 ↓

Sulforaphane BC MCF10DCIS stem-like cells miR-140 ↑ Colony/mammosphere formation ↓ (143, 144)
miR-21 ↑ ALDH1 and expression SOX9 ↓
miR-29 ↓ Differetial miR pattern in exosomes

I3C MCF-7, MCF10A as control mir-34a ↑ Cell-cycle arrest, p53 dependent CDK4 suppression (145)

Polyphenon-60 BC MCF-7 let-7a ↑ Inhibits cell growth (146)
miR-107 ↑
miR-548m ↑
miR-720 ↑
miR-1826 ↑
miR-1978 ↑
miR-1979 ↑

let-7c ↓
let-7e ↓
let-7g ↓
miR-21 ↓
miR-25 ↓
miR-26b ↓
miR-27a/b ↓
miR-92a ↓
miR-125a-5p ↓
miR-200b ↓
miR-203 ↓
miR-342-3p ↓
miR-454 ↓
miR-1469 ↓
miR-1977 ↓

Suppresses:
miR-30b-3p
miR-29a
miR-221
miR-936
miR-1249
miR-200a
miR-424

(Continued)
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TABLE 2 | Continued

Phytochemical Cancer model miR regulation ↓ ↑ Effects Reference

Pomegranate
polyphenols

BC BT-474 miR-155 ↓ Cancer cell-specific growth suppression (147)
BC MDA-MB-231 miR-27a ↓ SHIP-1 ↑
BC BT474 xenografts in nude
mice

ZBTB10 ↑
Sp1, Sp3, and Sp4 ↓
PI3K-dependent pAKT ↓

Ellagic acid ACI rat model miR-122 ↑ ERα ↓ (148)
miR-127 ↑ Bcl-2 ↓
miR-182 ↓ Bcl-w ↓
miR-183 ↓ cyclin D1 ↓
miR-206 ↑ cyclin G1 ↓
miR-375 ↓ FOXO1 ↑

FOXO3a ↑
RASD1 ↑

Betulinic acid MDA-MB-231 xenograft miR-27a ↓ Abrogation of proliferative, angiogenic phenotype: repression of
survivin, Sp 1, 3, 4, VEGF and VEGFR Myt-1 ↑ and thus cell cycle
arrest at G2/M (pcdc2)

(149, 150)

ZBTB10 ↑ in lungs of mice β2-microglobulin ↓

MDA-MB-231 xenograft in nude
mice

miR-106a ↓ ZBTB4 ↑ (150)
miR-106b ↓ Sp1, Sp3, Sp4 ↓
miR-20a ↓ EZH2 ↓

BC BT474 miR-27a ↓ Effects of betulinic acid CB1 and CB2 receptor dependent: (151)
BC MDA-MB-453; both
overexpressing ERBB2

Sp1, Sp3, Sp4 ↓
YY1 ↓
ERBB2 ↓
ZBTB10 ↑

ACA CC Ca Ski, CC HeLa miR-629 ↑ Abates cellular gluthatione levels (152)
miR-487a ↑
miR-483-3p ↑
miR-376a ↑
miR-342-3p ↑
miR-212 ↑
miR-1262 ↓
miR-875-3p ↓
miR-517 ↓
miR-411 ↓

ACA and
Cisplatin

CC Ca Ski, CC HeLa miR-922 ↑ ACA enhances cisplatin efficacy by preventing its inactivation if
administered before cisplatin

(152)
miR-744 ↑
miR-523 ↑
miR-210 ↑
miR-138 ↑
miR-1271 ↓
miR-224 ↓
miR-21 ↓

Garcinol BC MDA-MB-231 miR-200b ↑ Induction of apoptosis and MET (153)
BC BT-549 miR-200c ↑ NFκB p65↓

let-7a/e/f ↑ Inhibition of Wnt signaling (nuclearβ-catenin ↓)
Vimentin ↓
ZEB-1 ↓
ZEB-2 ↓
E-cadherin ↑

Glyceollins BC MDA-MB-231 miR-181 c/d ↑ Apoptosis (154)
BC MDA-MB-468; miR-22 ↑ repression of SLC7A11
xenografts miR-26b ↑

miR-29b/c ↑
miR-30d ↑
miR-34a ↑
miR-195 ↑
miR-663 ↑

(Continued)
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TABLE 2 | Continued

Phytochemical Cancer model miR regulation ↓ ↑ Effects Reference

miR-193a-5p ↓
miR-197 ↓
miR-224 ↓
miR-486-5p ↓
miR-542-5p ↓

Matrine BC MCF-7 miR-21 ↓ miR-21/PTEN/AKT axis targeted: (155)
pAKT ↓
pBAD ↓
p21 ↑
p27 ↑

Artemisinin and
artesunate

MCF-7, T47D Mir-34a↑ Cell-cycle arrest, p53 independent CDK4 suppression (145)

Ascorbic acid BXC MCF-10A, miR-93 ↓ NRF2 and NRF2 related genes ↑ (156)
BC T47D MCF-10A: decrease in colony and mammosphere formation

Calcitriol OC OVCAR3 miR-498 ↑ hTERT mRNA stability ↓ (157)
[OC A2780, OC A2780-CP,
OC C13]

Calcifediol BXC MCF10A miR-182 ↓ Protection of BXC from oxidative/low serum/hypoxia stress (158)
BXC MCF12F suppression of cell proliferation

CSC, cancer stem cell; ↑, marginally significant trend; OC, ovarian cancer; CC, cervical cancer; BC, breast cancer; BXC, non-cancerous breast epithelial cell line; n/a, not available.

FIGURE 3 | Curcumin’s impact on miR levels and their targets in
female cancers. Yellow arrows demonstrate effect of curcumin on indicated
targets/processes on female cancer models. See text for indicated changes,
as each presented axis represents findings illustrated in the text.

anti-metastatic effect of curcumin. Moreover, the group could
attribute the anti-proliferative, pro-apoptotic, and pro-necrotic
traits of curcumin to the curcumin-induced up-regulation ofmiR-
181b as well as the inhibition of NFκB in BC cells (132, 133).

Bcl-2 is a key oncogene since it can alter mitochondrial per-
meability and cytochrome c release, thus it can favor cell survival.
Due to the fact that it is overexpressed in numerous cancer types,
including female cancers, finding phytochemicals which target
Bcl-2 is advantageous. Yang et al. depicted a curcumin-dependent
apoptosis in MCF-7 cells through down-regulation of Bcl-2 effec-
tuated by increased miR-15a and miR-16 levels. Other BC cell

lines, namely SKBR-3 and Bcap-37, showed similar results after
the administration of 60 µmol/L curcumin (131). Because miR-
34a’s tumorsuppressive character had been previously described,
Guo et al. studied if curcumin impedes cancer cell growth and
metastasis through miR-34a. In combination with emodin, a phy-
tochemical derived from Rheum palmatum (rhubarb root) that
has broadly found application in Chinese medicine, the effect
of curcumin was enhanced. Not only did a combinatorial treat-
ment of curcumin and emodin inhibit TNBC cell proliferation,
increase apoptosis, and suppress invasive potential but also syn-
ergistically incremented miR-34a expression. As a result, Bcl-2
and Bmi-1 showed decreased levels in MDA-MB-231 and MDA-
MB-435 cell lines (134). Investigating synergisms of curcumin
and Cisplatin as well as EGCG and Cisplatin, Yunos et al. could
furthermore demonstrate in the human ovarian tumor models:
A2780, A2780cisR, and A2780ZD0473R, growth inhibitory effects, as
well as a potentiating outcome of the treatments. Changes on the
miR-level, however, remain unknown (165).

Moreover, curcumin has been proven to alter miR profiles in
various other cancer types such as pancreatic, prostate, colorectal,
and bladder cancer to name a few. Interestingly, several of the
currently described miRs targeted by curcumin in these cancers
are known to be dysregulated in female cancers as well. One
prominent example is the let-7 family and its down-regulation
in a diverse range of cancer types (166, 167). Ali et al. demon-
strated that in the human pancreatic cancer cell lines COLO-357,
MIAPaCa-2, and BxPC-3, the treatment with a curcumin analog
led to a re-expression of let-7 alongwithmiR-143 and a decrease of
miR-21. This triggered the inhibition of cancer cell growth in vitro
and in vivo. A corroboration of whether curcumin has a similar
impact onmiR-21, 143, and let-7 in female cancers may be impor-
tant, as miR-21 overexpression is associated with invasive CC,
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miR-143 overexpression was linked to Bcl-2 inhibition in HeLa
cells and restoration of let-7b in OC cells dramatically reduced
tumor cell growth (98, 167, 168). Since Zhang et al. suggest a worse
prognosis of endometrioid cancer patientswith a down-regulation
of miR-143, findings of whether curcumin induces the expression
of miR-143 in endometrioid carcinomas like in pancreatic cancer
cell lines may be of special interest (169).

In the context of nutrition, BC treatment, and chemother-
apy, a striking discovery has been made. Somasundaram et al.
observed antagonistic effects between curcumin and chemother-
apeutic agents in MCF-7, MDA-MB-231, and BT-474 human BC
cells, with an inhibition by up to 70%. This was verified in an
in vivo model of human BC in mice. Since curcumin is able to
inhibit the formation of reactive oxygen species (ROS) and the c-
JunNH2-terminal kinase (JNK) pathway, the group suggested that
patients receiving camptothecin, mechlorethamine, doxorubicin,
or other chemotherapeutics, which exert their anti-tumor effects
by generating ROS and activating JNK, ought to take precautions
when consuming curcumin (170). The manner of how miRs exert
their function in this case, however, is not known and might be
a missing link toward grasping the molecular mechanisms of this
counteraction more profoundly.

In conclusion, curcumin or its analogs are capable of altering
miR signatures in female cancers (Figure 3; Table 2). The stud-
ies suggest that curcumin-dependent changes in the miR profile
modulate cell growth and induction of apoptosis as well as necro-
sis and invasive traits of female cancers. However, these changes
are heavily cell context-dependent, and further research on which
patient will benefit from curcumin consumption andwhich rather
ought to avoid it is of particular necessity. Implications for
curcumin on the effect of miR patterns in female cancers, its syn-
ergisms with chemotherapeutics as well as increasing its bioavail-
ability sustainably will need further investigation in the future.

Genistein
The consumption of soy products has gained significance due in
part to epidemiological studies indicating increased breast and
prostate incidences in theWesternworld in contrast toAsia, where
a soy-based diet is typically consumed. Genistein, a predominant
soy isoflavone, is known to impact cancer cell proliferation, angio-
genesis, induction of differentiation by directly targeting molecu-
lar signaling pathways like NFκB and AKT, as well as modulating
epigenetic events, especially DNA methylation. While curcumin
has low bioavailability, this is not the case for genistein: a soy-rich
diet results in a noticeable plasma level of genistein (2, 159, 171).

In prostate cancer, a mix of isoflavones containing 70.5% genis-
tein were shown to demethylate promoters of miRs acting against
tumor invasion and proliferation (e.g., miR-29a and miR-1256).
However, in female cancers, genistein holds an ambivalent role,
specifically in BC (172, 173). On one hand, as our group already
reported, genistein significantly inhibits early breast tumorigen-
esis in a dose-dependent manner by increasing the expression
of tumorsuppressor genes like P21 and P16 and decreasing the
expression of BMI1 and c-MYC through promoter alterations
(174). On the other hand, genistein stimulated tumor growth at
low concentrations and extenuated the effect of tamoxifen due to
its phytoestrogen features in ER+ BC (173). Hence, the finding

of an adequate exposure window is critical and BC risk may be
reduced by a diet high in soy during childhood and adolescence.
In adult women as well as during pregnancy, beneficial genis-
tein consumption has been questioned. Nevertheless, genistein
induced the inhibition of human telomerase reverse transcriptase
(hTERT) and three DNMTs in BC cell lines (175).

Probably due to its pleiotropic effects, little information on
the effect of genistein on miR levels in BC has been published.
In MDA-MB-435 and Hs578t BC cells, however, genistein was
found to inhibit the expression oncomiR-155 while up-regulating
its targets such as PTEN, FOXO3, CK1α, and p27 at low phys-
iological concentrations (135). Notably, in the five subgroups of
BC, a differential expression between ER− and ER+ tumors of
miR-155 prevails (18).

Aside from the limited findings with respect to genistein altered
miR levels in BC, Xu et al. reported an overexpression of miR-
27a in 20 FFPE ovarian tissue samples. This overexpression was
abrogated upon 50 µM genistein treatment in SKOV3 OC cells,
followed by a significant increase in mRNA and protein level of
the putative target ofmiR-27a, Sprouty2. Sprouty2, an intracellular
regulator of receptor tyrosine kinase signaling associated in pro-
cesses like cell growth and differentiation, is a target gene of the
Wnt/β-catenin pathway. Interestingly, Sprouty2 is up-regulated in
the majority of colon carcinomas, while an increase in the SKOV3
cell line seems to be favorable (136, 176). Genistein has also been
reported to target miR-27a, which in turn affects ZBTB10 expres-
sion in uveal melanoma, thereby raising the question of whether
this applies to female cancers as well (177). In MCF-7 and OC
cell lines, miR-27a was shown to play a role in cellular processes
and signaling pathways. In the former cell line, miR-27a indirectly
regulates ERα expression and hormone responsiveness, while in
latter it is connected to the ZBTB10-specificity protein pathway
(178, 179). Further investigation will be required to determine if
genistein exerts its function in female cancer in a similar manner
as it does in uveal melanoma.

It has been reported that genistein significantly reduces invasive
traits andmodifies miR profiles in cell lines derived from a patient
with papillary serous adenocarcinoma of the ovary. Compared to
the cell line UL-3A, which was collected and cultured at diagnosis,
UL-3B cells were isolated after 6months of failed treatment with
Cisplatin/Paclitaxel. Differential expression of miRs after genis-
tein treatment was observed in both cell lines: miR-135 and miR-
765 levels were increased (Figure 4; Table 2). UL-3A showed 12
up-regulated miR species: miR-122a, miR-137, miR-196a, miR-
204, miR-206, miR-217, miR-331, miR-449b, miR-454, miR-501,
miR-515, and miR-578. UL-3B cells, however, only showed an
induction in miR-517c and miR-7, indicating that ineffective
Cisplatin/Paclitaxel treatment yields considerably less genistein-
induced miR profile changes. Western immunoblotting as well as
real-time PCR analysis furthermore demonstrated an increase in
ERα and ERβ. Interestingly, miR-206, which was up-regulated in
UL-3A cells upon genistein treatment, represses ERα in BC cell
lines. Because the ratio of ERα/ERβ is high in OC, the group
suggests a protective role for ERβ, consequently emphasizing the
importance of ERβ-inducing compounds (137).

Isoflavones, genistein in particular, were indicated to have pos-
itive effects on endometrial carcinogenesis in a mouse model
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FIGURE 4 | Genistein and its miR-related targets in female cancers.
Green arrows show according impact on the particular target in female cancer
models. ? addresses the following: genistein was shown to target ZBTB10 in
uveal melanoma; however, it remains unclear whether this applies to female
cancers as well. Displayed axes represent the findings of presented studies in
the text.

as well as TNBC (180, 181). Genistein was shown to facilitate
the expression of pro-apoptotic factors like PTEN, FOXO3, and
p27 through miRs in BC. Due to its structural resemblance to
hormones, genistein functions as a phytoestrogen and is able to
bind to ERs. It interacts with higher affinity to ERβ than estrogens
(137, 182). These results are in favor of genistein application in
cancer patients; nonetheless, further studies examining the con-
ditions which render genistein intake as beneficial are needed. In
addition, the exposure timing of genistein to female patients seems
to be critical. For this, studying genistein-dependent changes in
miR profiles opens exciting new avenues.

Resveratrol
Resveratrol (trans-3, 4′, 5-trihydroxystilbene) is a natural bioac-
tive polyphenol found in red grapes, peanuts, and blueberries for
instance. It exhibits a plethora of physiological properties such as
anti-oxidant, anti-inflammatory, and anti-cancer by altering cell
signaling such as up-regulating the expression of Bax, PUMA,
Bim, p53 and down-regulating Bcl-2, Bcl-XL, as well as survivin.
Furthermore, resveratrol can cause cell cycle arrest at G1 and G1/S
phases through the induction of the expression of CDK inhibitors
leading to growth inhibition accompanied by apoptosis. In MCF-
7 BC cells, the modulation of phosphorylated AKT and caspase
9 has been suggested to act as apoptosis trigger. Excitingly, it can
also prevent epigenetic silencing of BRCA-1 in MCF-7 BC cells.
Whether resveratrol acts as an ER agonist or antagonist appears to
be dependent, at least in part, on cell type and dosage of resveratrol
(159, 183–187).

Given the number of clinical studies listed2, resveratrol is
employed frequently for the treatment colon cancer, whereas
among female-related diseases, currently only studies for patients

2https://clinicaltrials.gov/

FIGURE 5 | Effects of resveratrol-induced changes in female cancers
on miR levels and its targets/phenotypes/pathways. Red arrows depict
resveratrol-dependent alterations in female cancer models. Displayed axes
represent the findings of presented studies in the text.

with polycystic ovary syndrome are conducted. In vivo experi-
ments, however, indicated a clinical significance for resveratrol
administration in female cancers (Figure 5). Hagiwara et al.
were not only able to show that intraperitoneal injection of
25mg/kg/day into SCID outbread mice significantly suppressed
MDA-MB-231-luc-D3H2LN tumor cell growth but also that
CD44+/CD24− cancer stem cells (CSCs) significantly decreased
by sixfold upon resveratrol treatment. Hypothesizing that these
properties were brought about by a change in the miR level, the
group showed convincingly a resveratrol-mediated up-regulation
of miR-141 and miR-200c, which are known to be capable of
inhibiting BC invasion as well as the CSC phenotype. Irrespective
of the miRs aforementioned, an up-regulation of the tumorsup-
pressive miRs 26a, 34a, 125a-3p, 126, 128, 185, 193b, 195, 196a,
335, 340, and 497 was detected. From the group classified as
oncomiRs, levels of 378-3p, 10b, 132, and 222were increasedmore
than twofold. InMCF10A control cells, a significant up-regulation
of primary, mature miR-16 and miR-143 at a concentration of
25 µM resveratrol was observed. Aside from these findings, the
group also presented a significant transcriptional induction of
Argonaute 2 (Ago2) expression, which in turn enhanced the RNAi
activity (138).

The assessment of resveratrol induced effects in estrogen-
dependent mammary carcinoma tissue versus normal tissues of
August Copenhagen Irish (ACI) rats, which develop BC when
exposed to 17-β Estradiol, further underlined the epigenetic
impact of this compound. First, resveratrol treatment resulted in
a lag of tumor development as well as a significant DNMT3b
down-regulation in tumors compared to normal mammary tis-
sue. Second, miR-10a and miR-10b showed a marginally sig-
nificant increase in tumor tissue related to a low dose treat-
ment of 5mg/kg/day, while high dose resveratrol treatment of
25mg/kg/day augmented the expression of miR-21, miR-129,
miR-204, and miR-489 more than twofold in tumor tissue. A gen-
eral trend showed inverse proportional miR levels in tumor tissue
compared to normal tissue. Furthermore, an inverse correlation of
RNA levels betweenmiR-129, 204, 489, and DNMT3b was seen in
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normal tissue; in tumor tissue, this was only observed for miR-
489. DNMT3b is perceived as the prevalent methyltransferase
in breast carcinogenesis; hence, the inverse correlation between
DNMT3b and miR-129 and 204 needs further examination with
respect to its role in tumor development. As an antipode, resver-
atrol was moreover found to increase miR-21 expression in the
ACI rat model, although miR-21 overexpression correlates with
advanced BC stages and is linked to aggressiveness along with
hormone insensitivity in HER2+ tumors and to various other
female malignancies. Due to the fact that the mammary tumors in
this study were hormone sensitive and HER2− and miR-21 might
have different implications, further analysis will be needed in this
model (139).

In 2002, Anand et al. identified eukaryotic translation elonga-
tion factor 1A2 (eEF1A2) as a proto-oncogene in OC. Embodying
a key role in protein synthesis by binding aminoacyl-tRNA and
transmitting it to the ribosomal A-site, eEF1A2 was found to
acquiesce anchorage-independent growth and increase growth of
ES-2 ovarian carcinoma cells in nude mice. Recently, a study indi-
cated that miR-663 and miR-744 directly target EEF1A2 expres-
sion at mRNA and protein levels. Resveratrol was found to post-
transcriptionally down-regulate both mRNA and protein levels
by stimulating miR-663 and 744 expression in MCF-7 BC cells
implying that it reactivates a miR-mediated silencing mechanism
of eEF1A2 (140, 188).

Along with caloric restriction and blueberry powder, resvera-
trol has demonstrated to have anti-cancer properties (181, 189).
Up-regulating miR-663 in THP-1 monocytic cells, impairing
prostate cancer cell growth through inhibition of themiR-21/AKT
axis as well as decreasing oncomiRs such as miR-7, miR-20b,
and miR-1260 in prostate cancer make resveratrol a promising
phytochemical in epigenetic cancer chemoprevention (190–192).
Because oral application of resveratrol results in 20% bioavailabil-
ity, one may consider the more stable pterostilbene, with similar
indications, including the increase of tumorsuppressor miRs like
miR-143 and 200c inMDA-MB-231-luc-D3H2LNcells as a potent
alternative (138). Eminently in reference to BC chemoprevention,
resveratrol was capable of reducing the incidence and multiplicity
by 45 and 55%, respectively (139). Although there have been stud-
ies conducted toward its beneficial impact in ovarian, uterine, and
CC, the resveratrol inducedmiR alterations in these gynecological
cancer types still remain unknown.

Phytochemicals Contained in Cruciferous
Vegetables
In conjunction with curcumin, genistein, and resveratrol, there
have been several discoveries on the impact of phytochemicals,
such as 3, 3′-diindolylmethane (DIM), sulforaphane, Indole-3-
carbinol, and a plethora of other biologically active components
on miR signatures in female cancers. To begin with, DIM, a bras-
sica vegetable-derived glucosinolate and a condensation product
of idole-3-carbinol, represses growth of xenografted human breast
carcinoma cells (MDA-MB-468 or MCF-7) in Balb/c athymic
(nu/nu) mice. Regardless of p53 rank and hormone sensitivity, it
furthermore induces cell-cycle arrest (atG1 andG1/G2Mphase) in
both cell lines through impacting cell-cycle regulators, for instance
up-regulating p21 levels, and down-regulating Cdc25A. miR-21

on the other hand targets oncogene Cdc25A directly through a
binding site in the 3′UTR of Cdc25A. Certainly, this contributes
to the not yet fully understood controversial traits ofmiR-21. DIM
treatment resulted in an up-regulation of miR-21 in MCF-7 cells
but not in the TNBC MDA-MB-468 p53 mutants, indicating that
ER or p53 status is crucial for the DIM-related effect on miR-21 in
BC (141, 142).

A major obstacle for HER2+ patients is Herceptin resistance,
regardless if gained primarily or secondarily. Circumventing this
resistance with the aid of dietary components was addressed in
a further study on DIM. Here, a synergism between DIM and
Herceptin (Trastuzumab) was ascertained. Combinatorial treat-
ment of SKBR3 cells not only led to the decrease of FoxM1 and
phosphorylated AKT, but to a significant increase in miR-200a,
miR-200b, and miR-200c as well. Aside from this cell line derived
from pleural effusions of breast adenocarcinoma overexpressing
Her2/neu, the group employed the TNBC cell lineMDA-MB-468.
Cotreatment ofMDA-MB-468 cells showed cytotoxic effects and a
significant up-regulation ofmiR-200a andmiR-200b. Transfection
studies in both cell lines revealed that pre-miR-200 in combination
with DIM and Herceptin treatment decreased FoxM1 and NFκB
p65 expression, indicating that this down-regulation is mediated
through miR-200. Hence, important findings toward vanquishing
Herceptin resistance as well as providing a new basis for the future
treatment of patientswithTNBChave beenmade. Comprehensive
investigations on how the synergism of DIM with Herceptin or
other drugs such as Paclitaxel works on a molecular basis and
applying those findings to cancer therapy will need to be further
pursued (142, 193).

Another phytochemical obtained from cruciferous vegetables
is the isothiocyanate sulforaphane, which has been reported to
reduce the risk of cancer development. A plethora of studies on
its molecular impacts, including epigenetic effects, have been
made, and cues that early-life consumption of sulforaphane
as well as exposure of the embryo in utero are beneficial have
been provided (2). In ductal carcinoma in situ (DCIS) stem-like
subpopulations, a declined colony/mammosphere formation and
ALDH1 expression in addition to differential miR expression
in DCIS exosomes were observed upon sulforaphane treatment.
To be precise, a higher abundance in miR-140 and a lower
abundance in miR-21 and miR-29 were detected in the exosomes.
Interestingly, treatment of MCF10A and MCF10DCIS cells
revealed that stem cells of the former cell line released more
miR-140 than MCF10A non-stem cells, whereas MCF10DCIS
stem cells secreted a lower number of miR-140. Sulforaphane, in
turn, was suggested to alter the microenvironment by increasing
the exosomal miR-140 secretion, thereby affecting cell signaling.
miR-140 not only regulates CSCs in luminal subtype invasive
ductal carcinoma but also directly targets SOX9 and ALDH1,
critical stem cell factors. In vitro and in vivo, sulforaphane restored
miR-140 expression and decreased the tumor volume. These
findings provide evidence that the consumption of sulforaphane
may eliminate stem cell like cells in DCIS lesions through miR
regulation. Indeed, the question whether miR excretion plays
a significant role for in vivo signaling requires further analysis.
Generally, two different assumptions regarding the function
of extracellular miRs are being made, either that these miRs
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FIGURE 6 | Axes targeted by Sulforaphane, DIM, and Herceptin as well as I3C. Green arrows demonstrate specific effect of sulforaphane/DIM in female
cancer models. See text for indicated changes, as each presented axis represents findings illustrated in the text.

are simply byproducts or that they function as intercellular
communicators (143, 144, 194). In conclusion, nutraceuticals
contained in brassica vegetables have been proven to alter the
miR expression profile of female cancer (Figure 6) while their
impact on miR levels of gynecological cancers is still unexplored.

A very recent finding indicates that Indole-3-carbinol (I3C) is
able to induce cell cycle arrest and stimulate miR-34a expression
in the BC cell line MCF-7 in a wild-type p53 dependent response.
As a result, miR-34a target CDK4 is suppressed. Interestingly, this
is one of the first studies aiming at deeper mechanistic insights on
the mode of action of phytochemicals and their impact on miR
levels in female cancers (145). Thus, further research, especially
on how phytochemicals bring about changes in miR levels on a
molecular basis is necessary. For this, questions such as in which
manner do phytochemicals promote or suppress miR genes ought
to be posed.

Polyphenon-60
Among the most consumed beverages worldwide is tea, and the
catechins occurring in green tea are known to be biologically
active. We demonstrated that EGCG, a major polyphenol of
green tea, induces apoptosis in Paclitaxel- and Cisplatin-resistant
OC cells through modulating cellular signals and enzymes like
hTERT. The role of miR epigenetics, however, remains to be fully
explored (115, 126). Polyphenon-60 (P60), a green tea extract
with 60% catechins, inhibits cell growth and influences the miR
signatures of MCF-7 BC cells. While 7 miRs, miR-30b-3p, miR-
29a, miR-221, miR-936, miR-1249, miR-200a, and miR-424 were
found in untreated samples compared to the treated ones, 23
miRs were detected to be differentially expressed upon treatment
with 10 µg/ml P60 for 48 h; Seven of these were found increased
(let-7a, miR-107, miR-548m, miR-720, miR-1826, miR-1978, and
miR-1979); 16 miRs were observed to be decreased (let-7c, let-7e,

let-7g,miR-21,miR-25,miR-26b,miR-27a/b,miR-92a,miR-125a-
5p, miR-200b, miR-203, miR-342-3p, miR-454, miR-1469, and
-1977) (146). Aside from let-7a (down-regulated in breast and
OC) and miR-107 (specific to ERBB2 status in BC, found in OC-
derived exosomes), the remaining up-regulated miRs have not
been detected frequently in the context of female cancer (195–
197)1. let-7a is down-regulated not only in BC but in cervical
and OC as well. The fact that let-7a was among the most highly
increased miRs due to treatment is not only demonstrating P60’s
anti-cancer potential in BC but poses the question of whether
this applies to cervical and OC as well. Whether P60 treatment
is beneficial for bladder cancer and various other cancer types
along with Alzheimer’s disease or Creutzfeldt-Jakob disease needs
further investigation, since reported dysregulated miRs in these
medical conditions were altered by P60 (146).

Pomegranate Polyphenols
Pomegranate contains the polyphenols punicalagin A and B
(ellagitannins) and delphinidin 3-glucoside, cyanidin-3-glucoside
(anthocyanins), as well as ellagic acid glucoside and free ellagic
acid. These polyphenols abolish cancer-promoting characteris-
tics of estrogen and sensitize ERα+, tamoxifen-sensitive and, -
resistant cancer cells to tamoxifen treatment. Pomegranate extract
induces a decrease of miR-155 followed by a rise in SHIP-1
(Inositol 5‘phosphatase)mRNAand protein expression alongwith
an inhibition of the PI3K dependent AKT phosphorylation. The
transcription factors Sps (specificity proteins) are frequently over-
expressed in a variety of tumors, and can be inhibited by the zinc
finger protein ZBTB10. Pomegranate polyphenols were shown to
down-regulatemiR-27a, a suppressor of ZBTB10, hence leading to
an up-regulation of ZBTB10 and an abolishment of Sp (Figure 7).
These findings explain to an extent the anti-inflammatory and
anti-cancer effects of pomegranate extracts on the molecular
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FIGURE 7 | Targeted axes in female cancer models by pomegranate
phenols and betulinic acid. Displayed axes represent the findings of
presented studies in the text.

basis (147, 198). Thus, disrupting the miR-155-SHIP1 as well as
the miR-27a-ZBTB10-Sp axis in human BC by pomegranate or
other phytochemicals such as curcumin or betulinic acid appears
promising. Munagala et al. moreover demonstrated in an ACI
rat model that 3 weeks after primary 17β-Estradiol exposure, the
miR profiles changed, and ellagic acid, found in pomegranate
and raspberries, abrogated carcinogenesis by repealing miR-122,
miR-127, miR-182, miR-183, miR-206, and miR-375 deregula-
tion. As a result, the target proteins, including ERα, Bcl-2, cyclin
D1, and cyclin G1, were decreased in either mRNA or protein
expression levels or both respectively. The FOXOproteins FOXO1
and FOXO3a, in contrast, increased upon ellagic acid treatment,
ascribed to miR-182 down-regulation. Similarly, miR-375 expres-
sion was diminished due to the treatment and thus led to a higher
abundancy in RASD1 protein (148).

Other Phytochemicals and Nutraceuticals

Aside from the prominent phytochemicals such as curcumin,
genistein, or resveratrol, further remarkable compounds found in
nature have been reported to affect miR signatures in female can-
cers. This section addresses betulinic acid, 1′S-1′-acetoxychavicol
acetate, garcinol, glyceollins, matrine, artemisinin, and certain
vitamins with respect to miR levels and the resulting effects in
female cancer models.

Betulinic acid
Alongside pomegranate polyphenols, betulinic acid, a pentacyclic
triterpenoid rife in barks of trees such asBetula pubescens aswell as
rosemary, is able to decrease miR-27a levels in MDA-MB-231 BC
cells. Thus, the same axis targeted by pomegranate polyphenols
is affected by betulinic acid (Figure 7). In the according study,
the group established the fact that betulinic acid nullified the
angiogenic, proliferative phenotype caused by Sps overexpression
not only through their repression but also by reducing vascular

FIGURE 8 | Betulinic acid impacts a miR-ZBTB4-Sp-axis in female
cancers through CB1/CB2 receptors. Green arrows show actual impact of
betulinic acid on targets in female cancer models. See text for indicated
changes, as each presented axis represents findings illustrated in the text.

endothelial growth factor (VEGFR) mRNA, down-regulation of
miR-27a, and consequently Myt-1 up-regulation. Myt-1 in turn
catalyzes the repressive phosphorylation of cdc2 and blocks in
this manner G2/M cell cycle progression (149). Moreover, Yang
et al. reported a disruption of an oncogenic miR-ZBTB4-Sp axis.
Similar to ZBTB10, ZBTB4 is repressed by miRs, namely miR-
20a, miR-106a, and miR-106b from the miR-17-92, miR-106a-
363, andmiR-106b-25 clusters. Betulinic acid at 15 µMeffectuated
a higher abundance in ZBTB4 and a lower abundance in Sp1, Sp3,
Sp4, EZH2, miR-106a, miR-106b, and miR-20a. In MDA-MB-231
xenografts in athymic nude mice, 15mg/kg/day of betulinic acid
showed the same results (150). ERBB2 overexpressing BT474 and
MDA-MB-453 BC cells revealed in a further study that treatment
with betulinic acid in the range of 1–10 µmol/L resulted in a
decrease of Sp1, 3, and 4, and consequently in a decrease of YY1
promoter activity as well as a decrease in ERBB2. It was moreover
discovered that the impact of betulinic acid on the aforementioned
axis was cannabinoid 1 (CB1) and CB2 receptor-dependent (151)
(Figure 8).

1′S-1′-Acetoxychavicol Acetate
In addition to theDIM-Herceptin synergism, an interesting obser-
vation was made by Phuah et al. Alpinia conchigera, also known
as wild ginger, contains the phytochemical 1′S-1′-acetoxychavicol
acetate (ACA). ACA acts, when administered before or together
with Cisplatin, synergistically in Ca Ski and HeLa cells and may
provide a possible future therapeutic approach of cervical car-
cinoma treatment. To determine the induced changes in global
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miR levels, microarray studies were conducted. These revealed in
total 25miRs differentially expressed due toACA and/or Cisplatin
treatment. ACA alone induced up-regulation of miR-629, 487a,
483-3p, 376a, 342-3p, and 212 expression, while the expression
of miR-1262, 875-3p, 517, and 411 was down-regulated due to
ACA treatment. A combinatorial approach with Cisplatin resulted
in increased levels of miR-922, 744, 523, 210, and 138; miR-
1271, 224, and 21 levels in turn were decreased. In silico analyses
furthermore suggested for miR-138, miR-210, and miR-774 an
involvement in Wnt, ERK, NFκB, TGF-β, and Ca2+ signaling.
ACA embodies a promising chemosensitization agent for abating
cellular glutathione levels, which can prevent Cisplatin inactiva-
tion, DNA repair, and reduced oxidative stress in cancer cells.
Importantly, it antagonizes Cisplatin when the cells were pre-
treated with Cisplatin. This notion sheds valuable information on
feasible future combinatorial therapy approaches (152).

Garcinol
Garcinol, a polyisoprenylated benzophenone derivative found in
Garcinia indica also known as kokum, is utilized broadly in Indian
cuisine and Indian traditional medicine. It has pleiotropic effects
on various diseases, such as cancer. Ahmad et al. were the first
to establish that garcinol induced cancer cell-specific apoptosis
and MET through down-regulation of NFκB p65, modulation of
miRs, and inhibition of Wnt signaling. miR-200s were shown to
be an opponent of the p65 subunit of NFκB, the intercept point of
multiple signaling pathways. These results were based on the dis-
covery that garcinol induced down-regulation of the mesenchy-
mal markers vimentin, ZEB-1, and ZEB-2 and also up-regulation
of the epithelial marker E-cadherin. Garcinol furthermore sig-
nificantly increased the expression of miR-200b, miR-200c, and
the let-7 family members let-7a, let-7e, let-7f. miR-200 and let-
7 family have been propounded to maintenance and regulation
of EMT/MET. A connection between the Wnt pathway and miR-
200s is constituted through the fact that miR-200a may target
β-catenin. Taken together, the in vitro and in vivo findings on
garcinol’s impact ought to be enlarged. It is of particular inter-
est whether synergism with other nutraceuticals or chemothera-
peutics in female cancers exists. Curcumin and gemcitabine for
instance were already tested and verified in studies in pancreatic
cancer, but synergistic pairs involving garcinol are not identified
in breast and gynecological cancers (153, 199–201).

Glyceollins
Soy plants grown in stress conditions produce a large quantum
of the phytoalexins glyceollin I–III. In vivo glyceollins withhold
the tumor formation of ER+ and estrogen-dependent BC mod-
els by exhibiting an anti-estrogenic effect. Following the notion
that glyceollins may affect ER− cancer, the impact of glyceollins
on the TNBC cell lines MDA-MB-231 and -468 was studied.
This assumption was confirmed when treatment of mice with
xenografts resulted in partial tumor growth suppression. InMDA-
MB-231 cells treated with 10 µMof glyceollins for 18 h, significant
changes in the miRnome and the proteome were observed. miR-
181c/d involved in cell cycle arrest and inhibition of proliferation;
miR-22, 29b/c, 30d, 34a, and 195 associated with suppression of
EMT and metastasis in breast/other cancers as well as miR-26b

targeting oncogenes directly were highly expressed upon treat-
ment. In reference to their functions and effects, miR-22 targets
the pro-metastatic EZR in OC and oncogenes EVI-1, ERBB2,
CDC25 in metastatic BCs. Glyceollin-induced miR-26b elevation
suppresses SLC7A11, thus leading to apoptosis in BC samples,
while miR-29b and c seem to hold an ambivalent character. In
HeLa and HFF cells, miR-29b/c induces tumor cell senescence,
while they are members of an up-regulated miR group that has
been associated with a poor prognosis in BC samples. Similar to
resveratrol, miR-663 was up-regulated by glyceollins. Concern-
ing the putative oncomiRs involved in cancer progression, miR-
193a-5p, 197, 224, 486-5p, and 542-5p were down-regulated by
glyceollins. The latter were suggested to target non-metastatic
cells 1 (NME1), a metastasis suppressing gene. Thus, glyceollins-
dependent decrease of 486-5p and 542-5p led to a significant
increase of NME1. In contrast to miR-193a-5p, 197, and 486-
5p, which have not been ascribed a role in female malignancies
yet1, miR-224 was differentially expressed in OC and miR-542-
5p up-regulated in the mesenchymal phenotype compared to
the epithelial phenotype of endometrial carcinosarcoma (42, 154,
202–204).

Matrine
Present studies on the alkaloid matrine from Sophora flavescens,
an evergreen shrub of the Fabaceae family, commonly employed
in Chinese medicine, reveal inhibitory effects on BC cell division,
migration, and metastasis in vitro and in vivo. As a consequence,
matrine was utilized as adjuvant therapy to enhance 5-year sur-
vival rate of mastocarcinoma patients in China. Although little
is known about matrine’s molecular effects, Li et al. investigated
this in MCF-7 BC cells. MTT assays indicated an IC50 of ~0.8mM
for 48 h. Akin to curcumin, genistein, and resveratrol, matrine
targets the miR-21/PTEN/AKT axis in cellular signaling of BC
cells. Matrine treatment resulted in down-regulation of miR-21,
accordingly an augmentation of PTEN protein and dephospho-
rylated AKT; therefore, downstream targets of AKT such as BAD
(dephosphorylated), p21, and p27 (up-regulated) were affected as
well (155).

Artemisinin and Artesunate
The phytochemical artemisinin, a compound found in the sweet
wormwood plant, and its derivative artesunate, have been stud-
ied as compounds against BC recently. Exhibiting potent anti-
malarial activity, artemisinin and its derivative artesunate have a
peroxide moiety that can react with iron resulting in the forma-
tion of free radicals. Due to the fact that cancer cells hold more
intracellular free iron, these compounds act cancer-cell specific
(205). In a study of Hargraves et al., it was shown that these
compounds induce cell-cycle arrest in MCF7 and T47D BC cells.
Furthermore, artemisinin and its derivative were able to suppress
CDK4 through up-regulation of miR-34a in a p53 independent
manner, as opposed to the aforementioned compound I3C (145).
Owing to their short plasma-half life, more potent analogs are
under investigation (205).

Vitamins
Although vitamins are not primarily considered phytochemicals, a
part of these are essential nutrients with a demonstrable impact on
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miR signatures in breast and gynecological cancers. One of them
is ascorbic acid (vitaminC). Ascorbic acid up-regulates expression
of NRF2 as well as NRF2- related genes, superoxide dismutase and
NAD(P)H:quinone oxidoreductase, by decreasing miR-93 levels
inMCF10A and T47D cells. Furthermore, reduced levels in NRF2
due to an increase of miR-93 were reversed upon vitamin C
treatment in an E2-induced ACI rat model. In MCF10A cells,
miR-93 suppression promoted a decrease in colony and mammo-
sphere formation as well as apoptosis induction. These findings
highlight not only a further mechanism through which diet can
influence cancer but also a possible combinatorial approach of
cancer treatment in the future (156).

Vitamin D3 occurs in several forms, such as calcitriol and
calcifediol. Both are synthesized by the body itself and exert
hormonal function; nevertheless, supplementing vitamin D3 in
30–80 ng/ml doses were determined as beneficial in terms of car-
cinogenesis. 1, 25-dihydroxyvitamin D3 (calcitriol) acts through
the vitamin D receptor (VDR) as a modulator of the immune
system, cancer cell proliferation, and apoptosis. Ligand binding
to the VDR is followed by heterodimerization with the retinoid
X receptor (RXR) and consequently interaction with vitamin D-
responsive elements in the regulatory region of according genes.
Kasiappan et al. substantiated that in response to calcitriol treat-
ment, not only hTERT mRNA stability decreased through incre-
ment of miR-498 expression within 30min of 10−7M calcitriol
(157). These results may deem the miR-498 gene as an immediate
response toward the treatment.

Because cholecalciferol may confer toxicity in terms of evoking
hypercalcemia, the prohormone calcifediol has gained attention
as it is able to protect against cellular stress, such as hypoxia or
induction of ROS, a risk factor for developing cancer. In a study
performed with non-malignant MCF12F breast epithelial cells,
five miRs (miR-26b, miR-182, miR-200c, miR-200b, and let-7b)
have been identified to be comprised in the cellular stress response
(158). Consecutively, the highest increased miR, miR-182, having
two binding sites for p53, was shown to be decreased by calcifediol
and suppressed cell proliferation when overexpressed in MCF12F
cells. These resultsmay indicate that dietary supplementationwith
calcifediol can contribute to chemoprevention (157, 158, 206).
Table 2 gives an overview of the miRs targeted and altered by
phytochemicals in female cancers.

Conclusion and Future Perspectives

ClinicalTrials.gov2 listed 407 studies to date and counting on the
effect of diet on female cancers revealing the ubiquitous under-
standing that nutrition can have a beneficial influence on cancer
prevention and treatment. This is supported by the plethora of
findings which substantiate that nutraceuticals are important in
primary, secondary, and tertiary chemoprevention as well as in
combination with chemotherapeutic agents. Reactivation of ERα
or enhancing the effect of Cisplatin, Herceptin, and various other
chemotherapeutics implies the necessity of a combinatorial ther-
apeutic approach for cancer therapy. Therefore, the all-embracing
understanding of the molecular mechanisms induced by these
compounds is not only salutary but inevitable: examining miR

patterns and their associated phenotypes in response to phyto-
chemical treatment is a central approach.

In fact, little is known on the structure-activity relationship
of phytochemicals with miRs in female cancers. Major open
questions, such as in which manner phytochemicals can bind to
miRs or their genes, as well as mechanistic insights into feed-
back loops or pathways leading to the phytochemical-induced
miR level alteration, remain. First findings reveal that p53 status
may be a key factor for some compounds. In this connection,
patients with certain tumor characteristics, such as a p53 negative
status, may not benefit from a compound that is only effective in
patients with p53 wild-type positive cancers (145). Hence, estab-
lishing pathways leading to phytochemical-dependent miR level
changes along with further research on comparatively novel sub-
stances such as brusatol or artemisinin is necessary. Knowledge on
whether these substances can act synergistic or antagonistic could
enhance treatment as well as cancer prevention tremendously.

As indicated before, a future perspective is the co-
administration of chemotherapy with a single or a combination
of phytochemicals. Chemotherapy is administered depending
on the patients’ tumor characteristics; however, there is a lack of
knowledge about which cancer genotype as well as phenotype
will benefit from additional phytochemical treatment. Moreover,
little is known about the interaction between phytochemical
and chemotherapy agents. As emphasized before, DIM and
Herceptin; ACA and Cisplatin may be efficient combinations
for therapy of female cancers. Sulforaphane has been reported
to enhance drug cytotoxicity of various chemotherapeutics in
prostate and pancreatic CSC, if this may apply to female cancers
and the according CSCs as well will need further investigations
(207). On the other hand, curcumin as well as vitamins have
been reported to interfere with chemotherapy, thus answering
the question in which manner phytochemicals affect treatment is
crucial (170, 207). In the future, elucidating clinical significances
of the co-administration of phytochemicals is an important field
of study and ought to focus on further in vivo studies as well as
clinical trials with an according trial design. In this respect, not
only the established biomarkers but the individual miR levels may
play a significant role in the outcome of the patient and the trial.

Yet, when it comes to dealing with miR profiling studies,
there are currently limitations in terms of the outcome. Nair
et al. showed in their analysis of 43 miR profiling studies that
significant interstudy irregularities concerning the amount of
cohorts/samples and external validations existed among the stud-
ies. This suggests to remit guidelines in order to bring different
studies down to a common denominator and to facilitate assess-
ment of varying inter-study results achieved in the future (8).
A further important aspect is the extension of studies dedicated
toward the impact of phytochemicals on miR levels in female can-
cer, asmiR-directed therapiesmay be an important approach. First
promising results ofmiR-directed therapies are evident in the field
of hepatitis c virus research. In this connection, finding antimiRs
with the ability to scale down tumor aggressiveness, for instance, is
of great interest (8). Because the delivery of non-coding RNA tar-
geting therapeutics is not yet at an appropriate standard, supple-
mentary studies addressing possible strategies such as nanoparti-
cles, liposomes, or viral carriers ought to be conducted.
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Excitingly, there has been a mechanism leading to transcrip-
tional activation known as RNA activation (RNAa) described.
Through targeting promoter sequences by double-stranded
saRNA (small activating RNA), gene expression was activated.
Further investigations on how saRNA or rather miRs can manip-
ulate cell fate as well as screening for endogenous activating
RNAs in humans is necessary. Huang et al. demonstrated that in
mouse cells an endogenous system exists, activating gene expres-
sion through miRs (208, 209). Hence, finding putative RNAas
induced by natural agents may open splendid new avenues for
cancer treatment. These may comprise the activation of silenced
or down-regulated tumorsuppressor genes coding for miRs or
other anti-tumor entities.

In conclusion, phytochemicals exert their anti-inflammatory,
anti-oxidant, and anti-cancer effects along with a variety of other
functions not only through targeting epigenetic modulators such
as HATs, HDACs, and DNMTs but also through targeting miRs,
which are feasible for influencing these aforementioned mod-
ulators as well as further cellular signaling cascades. Not only
phytochemicals such as curcumin, genistein, or resveratrol but
vitamin C, D3, and polyunsaturated fatty acid from fish oil have
been shown to impact miR patterns in female cancers. Hence,
including phytochemicals in treatment is likely to enhance the
outcome of diseases such as female cancers at minimum risk.
As more data become available, knowledge about miR profiles

and their implication converges with medicine and personalized
treatment (156–158, 210). The fact that Western countries tend to
a higher incidence in cancers, such as female cancer, highlights
the importance of molecular research on dietary components
and health-conscious nutrition. Understanding the comprehen-
sive picture of cellular pathways, including miRs and how these
pathways can be utilized to prevent and treat female cancer, is an
important goal. Because phytochemicals have a low risk of severe
side effects, employing these in addition to chemotherapeutic
agents high in side effects can be extremely valuable once admin-
istered correctly. Using the nutraceuticals tool in the correct way
may significantly prevent cancer or enhance therapy outcomes for
patients tremendously.

Considering the presented aspects and approaches, the knowl-
edge on how nutrition significantly changes or interferes in
cross-talk among pathways of miRs is a matter of great promi-
nence, especially for developing new treatments targeted at low
treatment-responsive female cancers.
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