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To avoid the pitfalls of self-reported dietary intake, wearable sensors can be used. Many 
food ingestion sensors offer the ability to automatically detect food intake using time 
resolutions that range from 23 ms to 8 min. There is no defined standard time resolution 
to accurately measure ingestive behavior or a meal microstructure. This paper aims to 
estimate the time resolution needed to accurately represent the microstructure of meals 
such as duration of eating episode, the duration of actual ingestion, and number of 
eating events. Twelve participants wore the automatic ingestion monitor (AIM) and kept 
a standard diet diary to report their food intake in free-living conditions for 24 h. As a 
reference, participants were also asked to mark food intake with a push button sampled 
every 0.1 s. The duration of eating episodes, duration of ingestion, and number of eating 
events were computed from the food diary, AIM, and the push button resampled at 
different time resolutions (0.1–30s). ANOVA and multiple comparison tests showed that 
the duration of eating episodes estimated from the diary differed significantly from that 
estimated by the AIM and the push button (p-value <0.001). There were no significant 
differences in the number of eating events for push button resolutions of 0.1, 1, and 
5 s, but there were significant differences in resolutions of 10–30s (p-value <0.05). The 
results suggest that the desired time resolution of sensor-based food intake detection 
should be ≤5 s to accurately detect meal microstructure. Furthermore, the AIM provides 
more accurate measurement of the eating episode duration than the diet diary.

Keywords: food intake detection, food diary, swallowing, chewing, wearable sensors, meal microstructure

inTrODUcTiOn

An accurate understanding of dietary habits necessitates tracking of the dynamic process of each 
eating episode, known as meal microstructure (1–3). Meal microstructure includes factors such 
as eating episode duration (the duration from the start of the meal to the end including pauses), 
duration of actual ingestion (time spent eating in a given eating episode), the number of eating 
events (a bite, potentially followed by a sequence of chews and swallows), rate of ingestion, chewing 
frequency, chewing efficiency, and bite size (4). The meal microstructure is directly related to the 
ingestive behavior of individuals. Therefore, the study of meal microstructure may potentially yield 
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TaBle 1 | Overview of food intake detection-related literature with sensor time 
resolution.

reference sensor/device signal Time 
resolution

Päßler et al. (23) Miniature microphone Body sound 23 ms
Amft et al. (22) Acoustic sensor Chewing sound 125 ms
Yatani and Truong 
(24)

Acoustic sensor Body sound 186 ms

Dong et al. (26) Inertial sensor Arm movement 1 s
Rahman et al. (29) Piezoelectric sensor Chewing, 

swallowing
1–5 s

Sazonov et al. (31) Acoustic sensor Swallowing sounds 1.5 s
Farooq and 
Sazonov (35)

Piezoelectric 
strain sensor and 
accelerometer

Chewing and 
physical activity

3 s

Bedri et al. (25) 3D gyroscope, 
proximity

Ear canal 
deformations

5 s

Stellar and Shrager 
(21)

Oral strain gauge Tongue pressure 
and flexing during 
chewing

Chart speed 
5 s/in.

Thomaz et al. (28) Inertial sensor Arm movement 6 s
Sazonov and 
Fontana (32)

Piezoelectric strain 
gauge

Chewing 15, 30, and 
60 s

Sazonov et al. (30) Sensor Chewing and 
swallowing 
frequency

30 s

Fontana et al. (33) Piezoelectric strain 
gauge

Jaw motion 30 s

Farooq et al. (34) Electroglottograph Swallow 30 s
Cheng et al. (27) Textile capacitive 

sensor
Swallow, swallow 
frequency, and 
physical activity

1.5–8 min
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new insights in the treatment of obesity and comorbid conditions. 
An accurate method of monitoring food intake is necessary to 
capture meal microstructure and provide a better understand-
ing of eating behaviors. Further, such methods could potentially 
facilitate novel methods to reduce caloric intake and/or provide 
more effective self-assessment and feedback tools for those on a 
calorie restricted diet (5).

A wealth of preclinical data exists illustrating the importance 
of meal microstructure to caloric intake and weight control in 
animal models (6–8), but detailed human studies are rare. Among 
the few human studies that do exist, there are demonstrated dif-
ferences in meal microstructure in obese versus lean people, men 
versus women, and among individuals in various states of health 
(9–11). Furthermore, larger food portion sizes have been shown 
to increase bite size and eating rate, leading to higher caloric 
intake in overweight women (12). In another study, eating the 
same meal slowly versus quickly increased energy expenditure 
via the thermic effect of food, and improved metabolic param-
eters (13). However, there are currently no free-living data from 
clinical studies which inform how these changes might affect 
caloric intake and weight control.

The scarcity of human data with regard to meal microstructure 
may be related to the difficulty of obtaining accurate data, espe-
cially in a community-dwelling situation, in which dietary intake 
and meal microstructure fluctuate more than in a controlled 
laboratory setting. Traditional methods of assessing dietary 
intake such as food frequency questionnaires, diet records, and 
24-h dietary recall rely on self-report by participants (14–16). 
The self-reporting errors may be up to 50% of estimated intake, 
resulting in inaccurate assessment that may impact medical 
diagnosis or dietary interventions (17). The primary causes for 
inaccuracy in self-report include under or over reporting of all 
food items consumed and poor estimation of portion consumed. 
In addition, there is a possibility of a change in the eating behavior 
of individuals when they know they are being observed (18). 
Furthermore, traditional self-report methods do not provide 
important information about meal pattern/microstructure such 
as the number of bites or eating rate (19).

In an effort to monitor food intake behaviors, wearable sensor 
systems that integrate different sensor modalities have been pro-
posed. Most of these methods use sensors that measure behavioral 
manifestations of eating, such as hand-to-mouth gestures, bites, 
chews, and swallows (20). Various approaches have been used, 
including an oral strain gauge sensor to measure tongue pressure 
and flexing during chewing (21), an ear-pad sound sensor to 
capture air-conducted vibrations while chewing (22), miniature 
microphones in the outer ear canal to capture chewing (23), an 
acoustic sensor worn around the neck to detect sounds made by 
the user’s mouth and throat while eating (24), a combination of 
a 3D gyroscope and 3 proximity sensors worn in an earpiece to 
measure ear canal deformations (25), a watch-like sensor (Bite 
Counter) to track wrist motion during hand-to-mouth gestures 
(26), a textile capacitive sensor worn as a neckband which 
detected swallowing and physical activity (27), a 3-axis acceler-
ometer worn as a smartwatch to detect hand-to-mouth gestures 
(28), a piezoelectric sensor-based microphone to assess chewing 
and swallowing sounds (29) and others. Signal processing and 

pattern-recognition algorithms interpret the sensor signals to 
recognize food intake, often after segmenting the sensor signals 
into time intervals, or epochs, of fixed duration. The food intake 
recognition algorithm processes the fragment of the sensor signal 
within a given time interval and assigns it a label “food intake” 
or “not food intake.” Thus, the duration with which the sensor 
signal is segmented in turn determines the time resolution of 
food intake detection. Table 1 lists the studies mentioned earlier 
with respective time resolutions.

Our group has been developing systems to characterize food 
intake behavior by non-invasive monitoring of swallowing and 
chewing (30–33). In an earlier study (30), we proposed detection 
of food intake based on chewing and swallowing frequency. The 
instantaneous swallowing frequency was averaged over a slid-
ing window of 30  s. In another study, the automatic detection 
of food intake was based on swallowing sounds using a high 
fidelity microphone placed over the laryngopharynx (31). The 
sound data were segmented into a series of overlapping epochs 
(375 ms, 750 ms, 1.5 s, and 3 s) with the 1.5 s epoch demonstrating 
the highest recognition accuracy. We then explored swallowing 
detection with an electroglottograph using epochs 30 s in duration 
(34). We have also proposed non-invasive monitoring of chew-
ing using a piezoelectric strain gauge sensor (32). Three different 
time resolutions (15, 30, and 60 s) were evaluated to determine an 
appropriate window size for the detection of food intake with the 
30 s resolution being most accurate. Recently, we presented and 
validated a novel wearable sensor system [automatic ingestion 
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monitor (AIM)] for detecting food intake in community-dwelling 
conditions (33) by monitoring jaw motion. In that study, we 
used 30 s windows to recognize food intake. More recently, we 
modified the AIM to monitor the deformation of the temporalis 
muscle during food intake (35). In that study, the food intake was 
recognized with 99.85% accuracy and a time resolution of 3  s. 
Thus, we have established that the AIM detects food intake with 
a high degree of accuracy, but we have not yet determined which 
time resolution will provide the greatest accuracy in estimating 
the meal microstructure.

The purpose of this study was twofold: (1) to characterize 
meal microstructure, including duration of eating episodes, 
duration of actual ingestion, and number of eating events in 
community-dwelling healthy young adults using the AIM, and 
(2) to determine the optimal time resolution for doing so. The 
recommendations on time resolution may be used in future stud-
ies to accurately evaluate the practical capabilities of existing and 
emerging methods of food intake detection.

MaTerials anD MeThODs

Data collection
Experimental data were collected from a total of 12 participants 
(6 males and 6 females) with mean age 26.7 years (SD ± 3.7) and 
mean body mass index 24.4  kg/m2 (SD ±3.8). No individuals 
reported any medical condition that would affect normal food 
intake. All participants read and signed an informed consent doc-
ument before the start of the experiment. The study was approved 
by the Internal Review Board at The University of Alabama. Each 
participant was asked to wear the sensor system (AIM) for a 24-h 
period where food intake was ad libitum. During the experiment, 
participants were able to perform daily living activities without 
restrictions.

The AIM consisted of data collection module, worn on a 
lanyard around the neck, and had interface for three different 
sensors:

(a) Jaw motion sensor—to detect characteristic motion of the jaw 
during chewing (32, 36). This sensor was attached directly 
below the ear using medical adhesive.

 (b) Hand gesture sensor—to detect hand-to-mouth gestures asso-
ciated with bites. It consisted of a radio-frequency transmitter 
worn on the inner side of the dominant arm and an RF receiver 
on the data collection module operating in radio-frequency 
identification band of 125 kHz.

 (c) Tri-axial accelerometer—to detect body acceleration. This 
sensor was located in the data collection module.

 (d) Push button—as the reference method for reporting food 
intake. The accuracy of push button report was tested in 
a controlled lab study (37) against video observation. The 
participants were asked to hold the push button in the non-
dominant hand.

Sensor signals were acquired by the data collection module at a 
1 kHz sampling frequency. All sensor signals were quantized with 
12-bit resolution and transmitted via onboard Bluetooth to an 

Android smart phone. Apart from wearing the AIM, participants 
were also asked to keep a paper food diary noting the start and 
end times of each eating episode, what foods and beverages were 
consumed.

Participants were instructed to press the push button at the 
start of every bite of solid or semi-solid food or start of a chewing 
episode. The button was held down for the duration of chewing 
and released at the end of the chewing episode. The button was 
also used to report beverage intake by pressing and holding the 
button for the duration of the beverage ingestion episode.

Food intake Detection
Three different methods were used in this study to monitor food 
intake and meal microstructure: the food diaries, AIM, and push 
button. In the diary-based method, the food intake information 
was directly obtained from the completed food diaries. To detect 
the food intake using the AIM, a feature extraction algorithm and 
classification model developed in Ref. (33) was used. The model 
automatically recognized food intake with 30 s of resolution from 
AIM sensor signals.

Meal Microstructure analysis
The microstructure parameters of each eating episode were 
assessed from the food intake indicated by the methods described 
in Section “Food Intake Detection.” An example of a single eating 
episode assessed by each of these methods is shown in Figure 1.

The microstructure parameters extracted from the diary, AIM, 
and push button were:

Number of eating events (N), defined as the number of active 
ingestion segments in an eating episode (meal). The number 
of eating events for food diary (ND) was always 1. The number 
of eating events for button and AIM were represented as NB 
and NA, respectively.

Eating episode duration (DEE), the duration between the start 
and stop times of eating episode, including segments with-
out food intake. In the case of the food diary, the difference 
between the reported start and stop times was defined as the 
eating episode duration (DEED). The computation of duration 
from the AIM and the push button (DEEA and DEEB) used the 
algorithm described below.

Duration of actual ingestion (DI), the duration of actual eating 
(subtracting any non-eating segments) within an eating epi-
sode. In the case of the food diary, the duration of actual 
ingestion (DID) was the same as eating episode duration (DEED). 
The duration of each i-th atomic eating event for push  
button and AIM were expressed as αi and βi as shown in 
Figure  1 and durations of actual ingestion were computed  
as, DIB i

B= Σ =1α
N

i  and D i
N

i
A

IA = =Σ 1β .

The computation of DEEA and DEEB required determination 
of the boundaries of the eating episode. As shown in Figure 1, 
eating episodes may have had pauses and/or breaks within the 
meal that needed to be “smoothed” for the estimation of duration. 
To smooth the signal, a function called “kernel” is employed to 
compute the average of the neighboring data points. In this work, 
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FigUre 1 | An eating episode reported by (a) the food diary, (B) automatic ingestion monitor (AIM), and (c) push button. The αi and βi represent the duration of 
individual eating event for push button and AIM, respectively. The DEED, DEEA, and DEEB represent the eating episode duration from food diary, AIM, and push button, 
respectively.
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a smoothing kernel with the shape of a Gaussian (normal distri-
bution, σ = SD) curve was used on the AIM and push button. The 
food intake detection by AIM was performed on 30 s intervals. To 
determine the suitable width of the kernel, the σ values from 1 to 
6 (detection intervals) were tested. The optimal width was found 
to be at σ = 5 (150 s). Then, the start and end points of each eating 
episode were determined by the intersection of the original and 
Gaussian-smoothed signals as shown in Figure 2. The duration 
between A and B was defined as the eating episode duration. A 
script was written in MATLAB (Mathworks Inc., Natick, MA, 
USA) to compute all durations.

analysis of the Time resolution
The signal from the push button reported food intake with 
the best time resolution (0.1 s) was used for the analysis of the 
optimal resolution to capture meal microstructure parameters. 
Different time resolutions can be used to best characterize differ-
ent aspects of meal microstructure. For example, chewing events 
can be captured in short time resolution of 3 s. On the other hand, 
the detection of swallowing may need a window of as long as 
30 s. We investigated a range of time resolutions in capturing the 
microstructure parameters. To test a range of time resolutions 

representative of methods in Table  1, the push button signal 
was resampled with progressively longer window sizes (1–30 s, 
representing the range of detection intervals reported in recent 
literature) using a resampling algorithm (38). The microstructure 
parameters were then computed from the resampled signal and 
tested for equality using the statistical analysis described below.

statistical analysis
Statistical analysis was performed with SAS 9.0 (SAS Institute, 
Cary, NC, USA) and Matlab 2015 (Mathworks Inc., Natick, MA, 
USA). Differences in DEE and DI computed from the AIM, diary, 
and push button at time resolutions 0.1–30 s were analyzed with 
a linear mixed model with participant as a random factor. If the 
mixed model showed a significant difference among methods, 
Tukey–Kramer post hoc multiple comparisons analysis was per-
formed to determine which methods differed from each other. 
Data for the NB at different time resolutions were analyzed by 
one-way repeated ANOVA to determine whether different time 
resolution yielded differing results. Since the parametric method 
did not pass the residual diagnostic criteria, a non-parametric 
Friedman test method was adopted for repeated ANOVA. If the 
ANOVA results were significant, Tukey–Kramer post hoc multiple 
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FigUre 2 | Determination of the duration of eating episode by using a Gaussian kernel function. The intersection of the original and smoothed signals provides the 
start time (point A) and end time (point B) of the eating episode. The duration of the eating episode is computed as the difference between time at points B and A.
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comparisons test was performed to determine which time resolu-
tions differed from each other. To assess the relative bias (mean 
difference) and random error (1.96 SD of the difference) between 
methods, the Bland and Altman plots (39) were investigated. 
Statistical significance was assumed at p-value <0.05.

resUlTs

In the study, out of the 12 participants, 4 participants did not 
provide time information for the start and end of the eating 
episodes in the food dairies. For the remaining 8 participants, 
23 eating episodes had complete time information (based on the 
dairies), whereas 6 eating episodes had partial time informa-
tion (e.g., only start time and no end time) and therefore only 
23 eating episodes were included in the analysis. The mixed 
model showed that there were statistically significant differences 
in meal microstructure between the food diary, the AIM, and 
the push button. Multiple comparison analysis showed that the 
DEE and DI from the food diary differed significantly from the 
AIM (p < 0.001) and the push button (p-value <0.001), but the 
AIM and push button results did not differ from each other 
(Figure 3A). Participants’ self-reported meal durations from the 
food diary were significantly over-reported in comparison to 
the AIM and the push button (Figure 3B). The Bland–Altman 
analysis in Figure  4 shows good agreement between the AIM 
and push button methods but poor agreement between the diary 
and other methods. With regard to eating episode durations in 
Figures 4A–C, the limits of agreement between the AIM and the 
push button were narrower compared to the limits of agreement 
between the diary and the push button and the diary with the 
AIM. A similar narrow range of limit agreement was found for 
actual ingestion durations shown in Figure 4F.

The narrow degree of dispersions in the distribution of DIB and 
DIA compared to DEEB and DEEA, respectively, indicate that the DI 
is significantly smaller than the measured DEE from boundaries 
(Figure 5).

Results of the non-parametric Friedman test shows that at 
least two N computed from different resolutions of the push 

button method were significantly different (p-value <0.05).  
Post hoc Tukey–Kramer test demonstrates that the NB showed no 
significant differences for the high resolutions (0.1, 1, and 5 s) and 
exhibited differences for low resolutions (10–30  s; Figure  6A). 
The results also indicate that the low resolutions (e.g., 15  s) 
exhibit no significant differences for low resolutions (10–30  s) 
but significant differences for high resolutions (0.1, 1, and 5 s). 
Figure 6B demonstrates the box-plot distributions of NB at dif-
ferent resolutions. For low resolutions, the NB begins to exhibit 
small mean with compact distributions indicating the loss of meal 
microstructure information.

DiscUssiOn

In this study, we compared the assessment of meal microstructure 
parameters between food diary, a wearable sensor (AIM) method, 
and a reference push button. In an effort to find a standard time 
resolution of food intake detection, we also provided an analysis 
of time resolution that may be used to accurately evaluate meal 
microstructure parameters. The major findings suggested that 
compared with the push button (reference method), the AIM 
sensor provided more accurate meal microstructure informa-
tion relative to food diary. Furthermore, we found a sensor time 
resolution of 5 s was adequate to evaluate the meal microstructure 
parameters. These findings imply that to characterize meal micro-
structure, the AIM sensor-based dietary assessment method 
would be preferred over traditional food diary. Moreover, a sen-
sor time resolution of <5 s should be used in future studies to best 
characterize meal microstructure using the sensor technologies.

Meal duration has significant effects on the total energy con-
sumed (40), thus, accurate estimation of the meal/eating episode 
duration and duration of actual ingestion are very important 
for understanding eating behavior. We observed that the food 
diary over-estimated the eating occasion duration for most of the 
eating episodes compared with the AIM and reference method. 
One potential reason for the difference is the inherent reporting 
error of self-reported food diaries. On the other hand, the AIM 
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does not depend on self-report; therefore, one would expect 
the AIM to be more accurate compared to the food diary. 
Bland–Altman analysis showed that the estimated durations 
from AIM had the lowest relative bias and the narrowest limit 
of agreement with the push button compared to food diary. 
These findings demonstrate that the AIM could provide more 
accurate information about the eating episode duration and 
actual ingestion duration in comparison to food diary. In 
addition, AIM could potentially offer information about the 
within meal behavior by examining meal microstructure. 
Therefore, the results suggest that unlike the food diary, the 
AIM can potentially detect the process of food ingestion 
and measure microstructure parameters without creating a 
reporting burden for the user. The AIM can potentially offer 
further characterization of the ingested foods analyzing the 
microstructure parameter that is not possible from food diary. 
An illustrative example is duration of actual ingestion versus 
duration of the eating episode. Even the best modern electronic 
diary is not capable of assessing the actual time spent eating 
and time spent in other activities during a meal. Use of sensor 
technology allows to measure these microstructure parameters 
and potentially use them as a metric in comparing food intake 
in different individuals.

Our findings suggest that the duration of actual ingestion was 
significantly lower than the eating episode duration because an 
eating episode typically consisted of several eating events and 
intra-meal pauses. These pauses can be short or long depend-
ing on individual eating habits or surroundings and could lead 
to substantial differences between eating episode duration and 
actual ingestion duration. The distributions of DIB, and DIA were 
significantly compact and lower than the distributions of DEEB and 
DEEA (Figure 5). It is also evident that there was no significant 
difference between the median lines among respective time 
resolutions which implied that AIM could accurately estimate 
the duration of ingestion even with longer, 30  s resolution. To 
provide comparison with same resolution, push button signals 
was resampled, and durations were computed (Figure 5B). The 
DEEB at 30 s resolution exhibited compact quartile ranges com-
pared to DEEB at 0.1 s. The median lines of both DEEB and DIA at 
30 s started indicating small difference with the median lines of 
DEEA and DIA at 30 s. A potential reason could be the resampling 
of push button to 30 s that reduced the number of eating events 
with each eating episode.

The use of a range of time resolutions of sensor (1–30 s) was 
important because it represents the state of the art in sensor 
detection of food intake reported in recent literature. A part of 
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reason is that the selection of time resolution for a given sensor 
is dependent on the physical phenomena being captured. For 
instance, the short duration may better capture the microstructure 
properties of food intake, but the time resolution may be limited 
by the nature of the physiological process used for detection 
of food intake. When using swallows to detect food intake, the 

ingestion is manifested as an increase in swallowing frequency 
from approximately 2 swallows per minute to >4 swallows per 
minute, thus limiting the time resolution to approximately 30 s 
(30). Chewing has a frequency of 0.94–2 Hz and therefore may 
employ a time resolution (otherwise known as detection window) 
as short as 3 s (35). Chewing sounds occur mostly in the range 
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FigUre 6 | (a) Post hoc Tukey–Kramer test for the number of eating events from push button at different resolutions. The mean of NB for each time resolution is 
represented by the symbol “o.” The letter “a” at the line indicates that the NB is not significantly different whereas the letter “b” indicates the NB is significantly 
different. (B) Distribution of NB at different resolutions. Data points outside of the box are labeled as “outliers” and shown with a red cross.

FigUre 5 | Box plots for measured durations of eating episodes [measured by push button—DEEB and automatic ingestion monitor (AIM)—DEEA] and ingestion 
(button—DIB, AIM—DIA) at various time resolutions. (a) Push button at 0.1 s resolution and AIM at 30 s resolution. (B) Push button at 30 s and AIM at 30 s 
resolution. The red line indicates the median. Upper and lower whiskers show the minimum and maximum changes within 25th and 75th percentile, respectively. 
Lower and upper horizontal blue lines (on the box) indicate first and third quartile. Data points outside of the box are labeled as “outliers” and shown with a red 
cross.
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1–2 kHz (41) and therefore, detection windows as short as 23 ms 
(23) were reported for the sounds. The study by Bellisle et al. (42) 
reported that consecutive bites are separated by 5–15 s for foods 
with different levels of palatability. In general, longer detection 
windows include more physiological events of interest (chews, 
swallows, etc.) and, therefore, may provide a higher accuracy 
compared to shorter detection windows. Thus, there is a potential 
tradeoff between optimal time resolution and the accuracy of food 
intake detection, which in turn has an impact on the accuracy of 
representing the meal microstructure. Results demonstrate that 
the time resolutions of 10–30 s indicated small NB with compact 
distributions and resolutions of 0.1–5 s indicated comparatively 
spread distributions with large NB. Therefore, it can be inferred 
that the time resolutions of 0.1–5 s describe the meal microstruc-
ture accurately.

In the AIM sensor module, the jaw motion sensor signals were 
analyzed by means of chew detection to monitor food intake. The 

signals were divided into non-overlapping segments of 30 s due to 
the historical reasons of the technology development. However, 
the analysis of NB suggested that the desired time resolution of 
sensor-based food intake detection should be ≤5 s to preserve the 
meal microstructure. Such window duration is potentially sup-
ported the frequency range of chewing (1.25–2.5 Hz) and use of 
shorter detection windows for detection of chewing by the AIM 
will be explored in the future.

The major strengths of this study were the performance com-
parison between food diary and AIM, and finding out a potential 
time resolution to capture meal microstructure by sensor-based 
methods. A limitation of this study was utilizing the push button 
as the reference method for assessing the microstructure of a meal. 
There is a possibility that using handheld push button might change 
the eating behavior of the participants as one hand is occupied by the 
button. While the button may have imposed some changes in hand 
use, many food are consumed with one hand only. This is especially 
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true for quick ingestive events, such as grabbing and consuming 
a small food item. Therefore, we believe that the microstructure 
captured in this experiment is representative of real-world eating. 
The participants may also press or release the button accidentally 
and misreported the intake. While such errors are possible, 
hand button is arguably is one of the best ways to assess eating 
microstructure in free living. As our experience shows, the quality 
of video annotation of eating microstructure degrades greatly in 
conditions close to free living due to the difficulties in interpreta-
tion of complex ingestive behaviors (e.g., eating while talking). 
Great hand dexterity of humans (for example, demonstrated in 
complex button press combination in computer work and gaming) 
combined with self-perception (“feeling”) of the ingestion process 
allows for accurate representation even of transient events such as 
swallowing (37). As a potential alternative to handheld button, a 
foot pedal may potentially be utilized to record the ground truth so 
that the participant can use both hands while consuming the food. 
Further studies will need to involve more participants and a larger 
number of eating episodes. The future work should also investigate 
more complex microstructure parameters such as eating rate.

cOnclUsiOn

Precise characterization of microstructural properties of a meal 
is a key to capturing of accurate eating patterns using sensor-
based methods. Results suggested that the duration of the eating 
episodes estimated from food diaries was significantly different 
from the duration estimated by the AIM and push button and 
furthermore, that the AIM is more accurate that food diaries. 
Based on this work, the desired time resolution of sensor-based 
food intake detection should be ≤5 s to adequately document the 
meal microstructure parameters.
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