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Cachexia is a complex metabolic syndrome that promotes great weight loss, with 
marked muscle mass wasting. In the last years, many efforts have been directed to 
improve the understanding of the mechanisms involved in the disease. This syndrome 
is present in up to 80% of cancer patients and, despite its clinical relevance, is underdi-
agnosed. The orchestration of the molecular and biochemical disruptions observed 
in cachexia is paralleled by inflammation and the communication among the different 
body compartments, including the tumor and the skeletal muscle, is still not completely 
described. One of the mechanisms that may be involved in the transduction of the 
inflammatory signals and the activation of catabolic status in muscle is the participation 
of exosomes containing microRNAs (miRNAs) and muscle-specific miRNAs (myomiRs). 
Exosomes are nanovesicles, measuring from 30 to 100 µm, and able to carry miRNAs 
in the circulation, promoting cell–cell and tissue–tissue communication in an autocrine, 
paracrine, and endocrine manner. miRNAs transported in exosomes are preserved from 
degradation, while these nanoparticles deliver the cargo to specific cell targets, making 
communication more efficient. Several miRNAs are known to modulate inflammatory 
pathways, to induce metastasis, to mediate cancer aggressiveness and even to par-
ticipate in the regulation of protein synthesis and degradation pathways in the skeletal 
muscle. The aim of this mini-review is to describe the present knowledge about the role 
of exosomal miRNAs and myomiRs in the induction of muscle mass wasting in cancer 
cachexia state and to explain which transcription factors, proteins, and pathways are 
regulated by these molecules.

Keywords: exosomes, microRnAs, cachexia, cancer cachexia, inflammation, muscle wasting

inTRODUCTiOn

In the last decade, many efforts were directed to improve understanding of the mechanisms involved 
in the complex metabolic syndrome of cachexia. This disease is related with marked decrease of body 
weight and diminished muscle mass, in the presence or absence of fat loss (1, 2). The syndrome is 
associated with cancer or other chronic inflammatory diseases, affecting quality of life (3–5) and 
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decreasing survival (6, 7). Cancer cachexia affects approximately 
half of all cancer patients (8); whereas in the more advanced stages 
of the disease, this estimate may reach 80% (9, 10). In addition, 
cachexia is considered the immediate cause of death of 20–50% 
of all cancer patients (5, 6).

Cachectic cancer patients suffer several challenges dealing 
with the alterations and limitations imposed by both cachexia and 
chemotherapeutic treatment, which induce fast and pronounced 
weight loss. Furthermore, cachexia reduces the efficacy and 
increases the toxicity of chemotherapy (2, 11). Low muscle mass 
is a predictor for mortality and reflects poor prognosis (2). The 
cachectic patient may lose up to 75% of his/her skeletal muscle 
mass (6). Weight loss in cachectic patient is attributable to sys-
temic inflammation, rather than insufficient caloric intake (12).

Despite its clinical relevance, cancer cachexia is underdiag-
nosed and seldom treated (1, 4). This is probably a reflex of its 
complexity and of the interaction of factors causing the plethora 
of symptoms that have been described in the cachectic patient 
(1, 4, 13). The most prevalent alterations, beyond body mass 
wasting, are anorexia, fatigue, and impairment of hypothalamic 
circuits regulating appetite; as well as endocrine disorders and 
“metabolic chaos,” characterized by marked deregulation of lipid, 
protein, and carbohydrate metabolism (4, 14).

Despite the complexity of the pathophysiology of cancer 
cachexia, it has been widely accepted that most alterations are 
associated with the presence of systemic inflammation. Tan and 
Fearon (15) proposed five main clusters of symptoms in which 
inflammation acts as a protagonist in cancer-associated cachexia: 
(1) systemic inflammation; (2) control of energy balance;  
(3) function and metabolism of muscles; (4) function and 
metabolism of the adipose tissue; and (5) modulation of appetite.

The most relevant pro-inflammatory cytokines contributing 
to the development of cancer cachexia and related with the meta-
bolic alterations leading to muscle mass and adipose tissue wast-
ing are interleukin-1, interleukin-6 (IL-6), tumor necrosis factor 
alpha (TNF-α), and interferon gamma (5, 7, 16, 17). Peripheral 
tissues are largely affected by cachexia, even before the detection 
of anorexia in the patient (18). Hence, loss of muscle mass and 
fat begins to occur before the patient exhibits a decrease in food 
intake (18, 19). Increased circulation of the abovementioned 
cytokines activates lipolysis in the adipose tissue and induces a 
reduction of protein synthesis, all the while upregulating prote-
olysis in the muscle (8).

There have been many attempts to describe the mechanisms 
involved in the onset of inflammation in cancer cachexia; 
 however, such mechanisms are still not fully understood. We 
have  previously shown that the white adipose tissue (WAT) 
contributes in a robust manner for the increase of circulat-
ing inflammatory factors (20–22). More recently, it has been 
shown (23–26) that WAT actively secretes exosomes containing 
 microRNA (miRNA), which may regulate the inflammatory 
process in tissues and immune cells. In addition, exosomes from 
the adipose tissue are able to stimulate and regulate the growth, 
development, and the aggressiveness of tumors (23, 24).

Many studies demonstrate that tumors are likewise able 
to secrete exosomes containing miRNAs, which play a role in 
the activation of the inflammatory process in cancer (27–29). 

These tumor-derived exosomes interact with mesenchymal 
stem cells (MSCs) and increase the synthesis and release of 
pro-inflammatory cytokines, favoring tumor cell survival (27).  
In addition, exosomes released by the tumor induce the progres-
sion of the tumor itself, by modifying tumor microenvironment, 
and promoting metastasis (27–31).

myomiRs AnD CAnCeR CACHeXiA

The miRNAs are a family of small, non-coding RNA molecules, 
composed of 19–24 nucleotides, that regulate gene expression 
through the degradation of messenger RNA (mRNA) or by 
inhibiting protein translation (8, 32). The miRNAs were first 
described in the 1990s, but only in 2002 their involvement in the 
development of cancer was reported (12). Since the first cancer-
related data were obtained, many studies have addressed miRNA 
participation in important steps of malignant disease, such as in 
tumor proliferation, apoptosis, migration, and invasion (33–35). 
In addition, paracrine and/or endocrine actions of miRNA are 
related with the propagation of systemic inflammation, in the 
development of metastasis, and in the activation of pathways that 
promote muscle loss (8).

miRNAs are synthesized from DNA gene transcription by 
RNA polymerase II, forming primary miRNA (pri-miRNA) 
transcripts. Subsequently, these pri-miRNAs undergo a process of 
maturation, when they are cleaved by the Drosha–DGCR8 RNase 
enzyme complex, generating a double-stranded pre-miRNA (36–
38). Drosha is localized in the nucleus and contains two tandem 
RNase-III domains. After cleavage by Dorsha, the pre-miRNA 
exhibits an imperfect stem-loop structure with ~70-nucleotides 
(38). This pre-miRNA is transported from the nucleus to the cyto-
plasm by exportin5 (XPO5), a Ran-GTP-dependent transporter. 
In the cytoplasm, miRNAs undergo another maturation step in 
which the double strand is cleaved by the action of the Dicer 
enzyme. Dicer cleaves theses hairpin precursors, generating the 
mature miRNA strand and its complementary strand (miRNA′), 
these two strands range about 21–25 nucleotides. In sequence, 
the mature miRNA is bound by Argonaute proteins (Ago) and 
incorporated into an miRISC effector complex (miRNA induced 
silencing complex), while the other miRNA strand may be 
degraded, or still, form another miRISC complex. Alternatively, it 
may be exported into exosomes to act in a paracrine or endocrine 
way (37–41).

Changes in the expression profile of miRNAs may indicate 
the presence and/or the progression of diseases that affect 
the muscle (7, 37, 42). Alterations such as the upregulation 
or downregulation of miRNAs have hence been investigated, 
having provided clear evidence that they can regulate pathways 
implicated with myogenesis, and skeletal muscle hypertrophy 
and atrophy (7, 37, 42–44). One of the miRNAs whose concen-
tration is increased, as identified in cancer patients, is miR-21. 
Several studies have shown an increase of miR-21 in the serum 
of patients with the most varied types of cancer, such as colorec-
tal cancer (45–47), gastric cancer (48, 49), prostate cancer (50), 
and hepatocellular carcinoma (51, 52).

Muscle mass loss during cachexia is related with an increase 
in protein degradation and metabolic changes in the muscle, in 
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response to the presence of the tumor in the organism (42). Soares 
et  al. (43) observed different profiles of alterations in miRNA 
expression with in vitro and in vivo approaches in four different 
animal models of skeletal muscle wasting: starvation, denerva-
tion, diabetes, and cancer cachexia. The authors identified that, 
following the denervation protocol, miR-206 and miR-21 are 
upregulated and promote muscle atrophy. These two miRNAs are 
capable of binding to the transcription factor YY1, as well as the 
translational initiation factor eIF4E3, and regulate muscle mass 
wasting, thus interfering in myogenesis (43).

In addition, other pathways involving miRNAs and the regula-
tion of myogenesis, hypertrophy, or atrophy have been described 
both in vitro and in vivo. Koutalianos et al. (53) showed that over-
expression of MyoD, a myogenic transcription factor, induces 
the expression of miR-206. In addition, the increase of miR-206 
downregulates Twist-1, decreasing the activity of Twist-1, and 
allowing increased differentiation of muscle cells. The authors 
reported that muscle cells from patients with myotonic dystrophy 
type 1 exhibited inhibition of MyoD protein expression and an 
increase of Twist-1 expression, following a reduction in miR-206 
levels. The co-transfection of MyoD and miR-206 regulated the 
protein content of Twist-1, allowing the differentiation of muscle 
cells to occur (53).

Moreover, Kukreti et al. (54) showed that dexamethasone or 
myostatin induces atrophy of skeletal muscle through miR-1 
expression modulation. The authors demonstrated that miR-1 
can bind to and reduce heat shock protein 70 (HSP70) action, 
thus participating in the induction of atrophy. Decreased levels of 
HSP70 are associated with the downregulation of Akt phospho-
rylation (p-Akt), since HSP70 binds to and protects the integrity 
of p-Akt. The decrease in p-Akt promotes a reduction of Foxo3 
phosphorylation, allowing for enhanced nuclear activity of Foxo3, 
and promoting upregulation of muscle finger protein (MuRF1) 
and atrogin-1; both of which induce the atrophy program in the 
skeletal muscle (54).

Remarkably, Narasimhan et  al. (7), when analyzing rectus 
abdominis biopsies from cancer and cachectic cancer patients, 
employing next-generation sequencing, discovered eight miRNAs 
that are upregulated in cancer-associated cachexia and associated 
with muscle metabolism, myogenesis, and inflammation. The 
upregulated miRNAs are as follows: hsa-let-7d-3p; hsa-miR-
345-5p; hsa-miR-423-5p; hsa-miR-532-5p; hsa-miR-1296-5p; 
hsa-miR-3184-3p; hsa-miR-423-3p; and hsa-miR-199a-3p (7).

The authors (7) described that: (1) let-7d-3p is related with 
transferrin receptor, promoting downregulation of this pathway, 
affecting muscle cell proliferation and myogenic differentiation; 
(2) miR-345-5p has NOV and COL1A1 genes as targets, down-
regulating these and upregulating CYR61. NOV and CYR61 are 
involved in insulin-like growth factor 1, Akt and mTOR path-
ways, reducing the capacity to protein synthesis; (3) miR-423-5p 
and miR-3184-3p downregulate two genes, SQLE and FADS2. 
These genes are related with lipid biosynthesis; miR-423-5p also 
regulates leptin and other genes associated with energy balance; 
in addition, miR-423-5p downregulates DLK1, which is involved 
with muscle hypertrophy; while (4) miR-423-3p promotes a 
reduction of calcium signaling, affecting CAMK2A gene; (5) 
miR-3184-3p is involved with Wnt/β-catenin signaling, impairing 

myogenic differentiation. In addition, miR-3184-3p regulates 
BMPR1B and GREM1, and this way, transforming growth factor 
β and BMP signaling are affected; (6) miR-532-5p interferes with 
SULF1, RPS6KA6, and NPY1R genes. SULF1 is related with BMP 
signaling, influencing somite development; NPY1R is involved 
with appetite regulation, and RPSKA6 participates in ciliary 
neurotrophic factor (CNTF) actions; (7) miR-1296-5p regulates 
HTR2A and RPS6KA6 genes. HTR2A participates in serotonin 
signaling (serotonin is involving in myogenesis), while RPS6KA6 
is involved with CNTF signaling; and (8) miR-199a-3p affects the 
EIF4EBP1 gene. This gene regulates the mTOR pathway, interfer-
ing in protein synthesis (7).

Taken together, these recently published findings demonstrate 
the role of myomiRs in the modulation of atrophic pathways, 
providing insight on the possible relevant role of these molecules 
in cancer cachexia. Figure  1 summarizes the mechanisms by 
which myomiRs modulate atrophy and muscle mass wasting.

eXOSOMAL miRnAs AnD MUSCLe 
wASTinG in CAnCeR CACHeXiA

Exosomes are small membrane-derived particles, ranging from 
about 30 to 100 µm (42). The biogenesis of exosomes is linked 
to the synthesis of miRNAs (8, 55). Due to high stability and 
specificity for delivering the cargo to the target cells, exosomes are 
involved in tissue-tissue communication in an autocrine, parac-
rine, and endocrine way (55, 56). These particles have been shown 
to represent an efficient way to transport other molecules, such as 
proteins, some types of RNAs (intact mRNA; mRNA fragments; 
long non-coding RNA; miRNA; ribosomal RNA; fragments of 
tRNA), and cytokines, reducing degradation due to transport in 
bloodstream (28, 55, 57).

The initiation and maintenance of cachexia-related inflam-
mation may present a major contribution of miRNAs (7, 8, 12, 
32). These actions are associated with the presence of miRNA-
enriched circulating exosomes (8, 42). He et  al. (32) demon-
strated a mechanism underlying the participation of exosomal 
miRNAs in muscle mass wasting. The authors reported that lung 
and pancreatic cancer cells secrete exosomes containing miR-21. 
These are transported in the bloodstream and induce apoptosis of 
muscle cells. This phenomenon happens because miR-21 is able 
to bind and activate toll-like receptor 7 (TLR-7) in rat cells and 
toll-like receptor 8 (TLR-8) in human myoblasts, thereby promot-
ing apoptosis, through the activation of the c-Jun N-terminal 
kinase pathway (JNK) (32).

In another study, Hudson and colleagues (58) demonstrated 
that miR-182 present in isolated exosomes could attenuate the 
role of Foxo3 in inducing atrophy in the skeletal muscle. Foxo3 is 
a transcript factor that promotes the increase of atrophy-related 
genes such as atrogin-1, autophagy-related protein 12 (ATG12), 
and microtubule-associated protein light chain 3. The authors 
demonstrated that treatment of C2C12 myotubes with dexa-
methasone promotes a reduction of the expression of miR-182 
and an increase in autophagy, via enhanced activity of Foxo3. The 
same atrophy program was observed in the gastrocnemius mus-
cle of diabetic (induced by streptozotocin) rats, with diminished 
expression of miR-182, and enhanced Foxo3 mRNA (58).
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FiGURe 1 | myomiRs and muscle mass wasting and atrophy pathways. MyoD is able to activate miR-206, promoting an inhibiting effect on Twist-1 protein, 
diminishing muscle cell differentiation (53). miR-206 and miR-21 regulate the action of YY1 and eIF4E3, promoting muscle mass wasting (43). Myostatin increases 
miR-1 expression, promoting a reduction in heat shock protein 70 (HSP70) action, decreasing Akt phosphorylation, and its regulation of Foxo3. When Foxo3 is not 
phosphorylated, the expression of several proteins that induce atrophy, including Atrogin-1 and MuRF1, are enhanced (54). The let-7d-3p downregulates transferrin 
receptor (TFRC), affecting muscle cell proliferation and myogenic differentiation (7). miR-3184-3p inhibits Wnt/β-catenin pathway, impairing myogenic differentiation 
(7). mir-345-5p downregulates genes and proteins involved in IGF1 pathway, decreasing anabolic signaling. miR-1296-5p regulates HTR2A gene, reducing the 
participation of serotonin in the induction of myogenesis (7). miR-199a-3p affects the EIF4EBP1 gene, reducing mTOR pathway activity, interfering in protein 
synthesis (7). miR-423-3p promotes reduction of calcium signaling, affecting CAMK2A gene (7). miR-423-5p downregulates DLK1, what is involved with muscle 
hypertrophy; thus, reducing this capacity (7).
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Recently, an elegant study performed by Zhang et  al. (11) 
demonstrated that cancer cells release exosomes and that HSP70 
and HSP90 proteins in the membrane of exosomes induce muscle 
mass wasting in cancer cachexia models. Extracellular HSP70 
and HSP90 function as danger-associated molecular patterns 
(11). These two proteins can interact with TLR-4 and promote 
its activation, and thus, activate p38β MAPK-C/EBPβ catabolic 
signaling pathway in the muscle (11). Figure 2A illustrates the 
mechanisms by which exosomal miRNAs and proteins induce 
muscle mass wasting in cancer cachexia.

eXOSOMAL miRnAs AnD SYSTeMiC 
inFLAMMATiOn

In parallel to the involvement of miRNAs in the regulation of 
muscle wasting and atrophy pathways, recent studies have shown 
that exosomes contain miRNAs and are also able to promote and 
perpetuate systemic inflammation present in cachectic cancer 
state (8, 59–62). Fabbri and colleagues demonstrated that miR-
NAs 21 and 29 are able to associate and activate TLR-7 and TLR-8, 
triggering an inflammatory signal. When activated, toll-like 
receptors promote the recruitment of MyD88 and the formation 
of the complex IRAK1, IRAK4, and TRAF6, which then activates 
nuclear factor kappa B (NFκB). In the nucleus, NFκB induces 
pro-inflammatory cytokines expression, including TNF-α and 
IL-6 (59, 60).

Furthermore, Li et  al. (61) reported that when MSCs were 
incubated with exosomes derived from lung tumor cell lineage 
A549, the presence of those vesicles induces a pro-inflammatory 
phenotype in MSCs. These cells enhance the synthesis and secre-
tion of IL-6, IL-8, and MCP-1. The authors further demonstrated 
that HSP70 present in the membrane of exosomes is able to 
bind to TLR-2 and then activate the NFκB pathway, leading to 
increased expression and secretion of the inflammatory cytokines 
IL-6, IL-8, and MCP-1 (61).

In addition, Zhang et al. (11) showed that HSP70 and HSP90 
proteins, existing in exosomes membrane, interact and activate 
TLR-2 and TLR-4 on immune cells, triggering innate immune 
response. The activation of these receptors promotes an increase 
in the synthesis and release of pro-inflammatory cytokines (TNF-
α and IL-6), collaborating to the development of systemic inflam-
mation existing in cancer cachexia (11). Figure 2B illustrates the 
role of exosomal miRNAs and proteins in the perpetuation of 
systemic inflammation.

Collectively, these findings demonstrate an important involve-
ment of exosomal miRNAs and proteins for the activation and 
perpetuation of systemic inflammation in cancer and in the 
induction of cancer-associated cachexia. One such systemic 
inflammation scenario exerts a negative influence on muscle 
metabolism, regulating signaling pathways involved in the 
synthesis and breakdown of proteins in muscle, collaborating 
with the development of muscle mass wasting in cancer cachexia  
(8, 11, 17, 59, 60, 63).
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FiGURe 2 | (A) Exosomal microRNAs (miRNAs), proteins, and muscle mass wasting. miR-21 interacts with and activates toll-like receptor 7 (TLR-7). TLR-7, through 
the c-Jun N-terminal kinase pathway (JNK) pathway, induces apoptosis of muscle cells, leading to atrophy (32). Heat shock protein 70 (HSP70) and HSP90 that 
compose the membrane of exosomes can bind to TLR-4, activating this receptor on muscle cells and induce the muscle mass wasting (11). Exosomal miR-182 is 
able to block transcript factor Foxo3’s action, inhibiting its action, reducing the expression of several atrophy genes, as light chain 3 (LC3), Atrogin-1, and ATG12 
(58). (B) Exosomal miRNAs, proteins, and systemic inflammation. miR-21 and miR-29 are able to interact and activate TLR-7/8–MyD88–nuclear factor kappa B 
(NFκB) pathway, inducing an increased expression and release of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-8, and 
MCP-1 (59, 60). This pro-inflammatory state enhances protein degradation and inhibits protein synthesis. HSP70 and HSP90 present in exosomes membranes can 
bind to, and activate TLR-2 and TLR-4. When activated, these receptors promote the activation of the NFκB pathway, inducing a pro-inflammatory status (11).
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Despite the great potential in the study about exosomes, 
miRNAs and exosomal miRNAs, further studies are needed 
to enhance understanding of details in regard to some pro-
cesses: steps of exosome biogenesis are not yet fully known; 
the mechanisms underlying sorting of each miRNA into 
exosome particles are likewise, not totally elucidated. In addi-
tion, it remains to be established what pathways are regulated 
by each miRNA; what and which functions do the proteins 
present in the exosomes membrane exert (28). Moreover, the 
development of more precise and refined methods for exosome 
isolation are needed, as well as improvements in protein detec-
tion techniques, allowing improved characterization of each 
exosome and particular functions in the pathophysiology of 
cachexia (55, 56, 64).

COnCLUSiOn

The study of exosomal miRNAs and myomiRs is a promising field 
of research for improving the understanding of cancer cachexia 
mechanisms. Both, exosomal miRNAs and myomiRs participate 
directly and/or indirectly in muscle mass wasting, accentuating 
protein degradation pathways and inhibiting myogenesis. Of 
particular interest, are exosomal-transported miRNAs as they 
seem to be markedly involved in the development and perpetu-
ation of inflammatory status in cancer cachexia.

The role of exosomes in cancer cachexia is thus of great 
interest, as these nanovesicles have the capacity to facilitate 
communication among several tissues in a paracrine and 
endocrine manner, by carrying proteins and miRNAs. As 
cachexia is a syndrome with systemic effects in which tissue 
cross talk is prominent, these particles pose as likely candidates 
to intermediate the changes, and therefore, improved charac-
terization and knowledge about the biogenesis and functions 
of exosomes and exosomal miRNAs, may promote the use of 
these extracellular vesicles as follows: (1) biomarkers, in the 
quest for faster and more accurate diagnosis, or for monitoring 
the evolution of the disease and (2) in the development of more 
specific antitumor drugs, which could diminish the release of 
inflammatory factors and/or factors associated with muscle 
mass wasting in cachexia.
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