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Aim of Study: The use of weighed food diaries in nutritional studies provides a powerful

method to quantify food and nutrient intakes. Yet, mapping these records onto food

composition tables (FCTs) is a challenging, time-consuming and error-prone process.

Experts make this effort manually and no automation has been previously proposed. Our

study aimed to assess automated approaches to map food items onto FCTs.

Methods: We used food diaries (∼170,000 records pertaining to 4,200 unique food

items) from the DiOGenes randomized clinical trial. We attempted to map these items

onto six FCTs available from the EuroFIR resource. Two approaches were tested: the first

was based solely on food name similarity (fuzzy matching). The second used a machine

learning approach (C5.0 classifier) combining both fuzzy matching and food energy. We

tested mapping food items using their original names and also an English-translation.

Top matching pairs were reviewed manually to derive performance metrics: precision

(the percentage of correctly mapped items) and recall (percentage of mapped items).

Results: The simpler approach: fuzzy matching, provided very good performance.

Under a relaxed threshold (score > 50%), this approach enabled to remap 99.49% of the

items with a precision of 88.75%. With a slightly more stringent threshold (score > 63%),

the precision could be significantly improved to 96.81%while keeping a recall rate> 95%

(i.e., only 5% of the queried items would not be mapped). The machine learning approach

did not lead to any improvements compared to the fuzzy matching. However, it could

increase substantially the recall rate for food itemswithout any clear equivalent in the FCTs

(+7 and +20% when mapping items using their original or English-translated names).

Our approaches have been implemented as R packages and are freely available from

GitHub.

Conclusion: This study is the first to provide automated approaches for large-scale

food itemmapping onto FCTs. We demonstrate that both high precision and recall can be

achieved. Our solutions can be used with any FCT and do not require any programming

background. These methodologies and findings are useful to any small or large nutritional

study (observational as well as interventional).
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INTRODUCTION

Food composition tables (FCTs) document the nutritional
content and properties of food items. These tables are used in
conjunction with dietary records, e.g., food diaries, to match
consumed food items, and quantify the dietary intake from
an individual. The availability of complete and good quality
FCTs is required to enable quantitative research in nutritional
studies, as well as epidemiological research and public health
monitoring. These data are also playing a critical role in studies
that aim tomonitor an individual’s diet and propose personalized
recommendations.

Traditionally, FCTs were compiled at a national level with
limitations in the data format, depth of annotation and data
completeness across different countries. Noticeable efforts have
put in placed over the past few years to collect, standardize, and
curate FCTs (1–5). In particular, the European Food Information
Resource (EuroFIR) has been pivotal in harmonizing data from
more 28 national FCTs (including European countries and the
USA) (2). Electronically linking these data with food diaries
data from observational or interventional studies, provides
opportunities to better study the link between Health and
Nutrition (6). Yet, dietary consumption is often collected through
paper-based food diaries, which requires substantial effort for
digitalization (converting records to electronic format) and for
food itemmapping (for each record, identify its corresponding or
closest food item in FCTs and collect the nutritional composition
of the matched item). As of today, this effort still remains a
manual, expertise-driven exercise. As a direct consequence, such
manual mapping is limited to the available study’s resources
and the retrieved information is limited to a few composition
variables (e.g., macronutrients and energy content, and rarely
extended to detailed information about micronutrients).

Numerous efforts are being spent in methods for food image
recognition using deep learning (7–10) and there is an explosion
of mobile applications for food recording. They might prove
helpful with future studies by enabling the individual to directly
link the consumed food items to a reference database. However
these solutions are not intended to solve the mapping issue in
studies with existing food records. In addition, their interface,
quality of their underlying FCT, and performance still remain
to be carefully validated for use in clinical nutrition studies.
Hitherto, food item mapping remains a largely un-addressed
issue.

Another problem relies in estimating the variability
introduced with the mapping. The ideal mapping aims to
match the queried food record onto an item from the FCT. In
practice, the one-to-one match rarely exists: local FCT may not
be extensive enough to enable food matching. Also in multi-
centric studies, food items from a specific country would be
frequently matched onto a larger FCT from another country that
may not have a close equivalent for a specific item from another
country. In the absence of a clear on-to-one mapping between a
food record and a FCT’s food item, several strategies are possible:
ignore the food record (thereby introducing missing data), use
the closest match, or to create an average profile from several
close matches. All three options would introduce variability
(or missing data) that needs to be appropriately handled in

subsequent statistical analyses. To our knowledge, the variability
induced from uncertain food mapping, remains un-addressed
in nutritional studies and dietary intakes are analyzed based on
the assumption that a perfect match has been found between
the food record and one food item from the FCT. This mapping
uncertainty is magnified in multi-center studies, where food
records from a specific country often need to be translated in
English and then mapped onto a English-based FCT [such as the
USDA (11) or MW7 (1)]. In this scenario, the English translation
may add further to the uncertainty or simply the queried food
item may not exist in the English-based FCT.

Finally, variability may also come from the FCTs themselves
when they contain different versions of the same food item or
when the nutritional content of an item is incorrect [e.g.,when
the record was saved using an incorrect unit such as kJ instead
of kcal, such erroneous record would stand as an aberrant value
(i.e., as an outlier) compared to other similar food items]. Various
statistical methods exist to detect outliers. However, outlier
detection can only be attempted within a group of coherent,
similar items. Also the clustering needs to be made with a
granularity that goes beyond the simple food group category.
Whilst significant efforts have been spent on data integration
and unit harmonization across FCTs, significant efforts remain
needed for quality control and data curation. In particular, there
is a strong need for metrics to perform food item clustering and
subsequently to detect and correct errors in FCTs.

In this study, we attempt automated remapping of a large
number of food records (∼170,000 individual food records,
corresponding to 4,200 distinct food items). The food diary
data stemmed from one of the largest weight maintenance
dietary intervention of its kind: the Diet, Obesity and Genes
study [DiOGenes (12–15)]. Food items were matched to those
referenced in the EuroFIR. We define and evaluate an automated
approach, based on food name similarity. We also propose
an additional approach based on machine learning, to refine
mapping of difficult items. Finally, we compared the performance
of our approaches, when using the original food name or English-
translation.

MATERIALS AND METHODS

Ethics
The DiOGenes study (12–15) was performed according to the
latest version of the Declaration of Helsinki. Local ethical
committees approved of all procedures that involved human
participants and written informed consent was obtained from
all participants. The present study did not use any clinical data
or any individual-level data; only unique food elements (food
items defined by their name and macronutrient composition)
from food diaries were used.

Study Design and Participants
The DiOGenes study is a pan-European, multi-center,
randomized controlled dietary intervention program
(NCT00390637). The study was conducted in eight
European countries: the Netherlands (NL), Denmark (DK),
United Kingdom (UK), Greece (GR), Bulgaria (BG), Germany
(D), Spain (SP), and Czech Republic (CR). The study has
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been described in detail previously (12–15). Family eligible
for inclusion consisted of at least one overweight (body mass
index > 27 kg/m2) but otherwise healthy parent aged less than
65 years with at least one healthy child between 5 and 18 years.
All eligible adults (n = 932) followed a low-caloric diet (LCD)
for 8 weeks. The LCD provided 800 kcal per day with the use
of a meal-replacement product (Modifast, Nutrition et Santé
France). Participants could also eat up to 400 g of vegetables
(corresponding to a maximal addition of 200 kcal/day). Families
with at least one of the parent achieving at least 8% of weight
loss were then included in a 6-month weight maintenance diet
(WMD) phase, following either a low/high protein, and glycemic
index diet or a control diet.

Food Diary Data
Adults completed a 3-day weighed food record for three
consecutive days, including two-week days and one weekend
day. Records were validated during interview with qualified
nutritionists. Food diaries were completed at screening, 2–4
weeks after the randomization in the WMD and 2–4 weeks
before completion of theWMD. The participants were instructed
to weigh all their foods and to supply information on brand
names, cooking and processing.Whenweighing was not possible,
participants were instructed to record the quantity in household
measures (cups, glasses, tablespoons). All foods noted in these
diaries were coded to foods listed in country-specific FCTs (15).
Based on such coding and recorded weight, the macronutrient
and energy intake was computed for each record. Additional
nutrient information such sugar, starch, fiber, mono- and poly-
unsaturated fat was retrieved. In total, 202,000 food records
were collected during the study. Yet the retrieved information
remained very partial and a high number of missing values were
observed (about 7% missing values for the energy content, 17–
31% missing values for macronutrient variables; and more than
50% missing values for other variables). In this study, we used
data from six centers (NL, DK, UK, GR, BG, and SP) for which
an FCT from the same country was available in the EuroFIR.
FCT data from Germany and Czech Republic, as provided by
EuroFIR, requires additional licenses (to be purchased directly
from their respective data source). Thus, in our proof-of-concept
study, we focused the mapping onto data available from the
standard EuroFIR membership (providing access to FCTs from
the same six remaining DiOGenes countries). In total, the food
diary records (∼170,000) pertained to a unique list of 4,179
food items. For each food item, both original (local-language),
and English-translated names were available. At the time of data
retrieval (April 2016), the EuroFIR resource provided access
to the following databases versions: NL data from the NEVO
database version 2014, DK data from the 2009 release, UK from
2008, GR from 2013, BG from 2009, and SP from 2010.

Statistical Analyses
Food Name Comparison Using Fuzzy Matching
In information theory, comparing two names (strings of
characters) is referred to as fuzzy matching and searches a
sequence of letters (a string) that matches approximately a
pattern. A frequently similarity metric is the Levenstein distance
(16) that computes the minimal number of single-characters

edits (insertion, deletion, substitution) needed to change one
word into another. We used the partial token sort ratio from
the FuzzyWuzzyR package (17). This approach is based on the
Levenstein distance and computes the ratio of the most similar
substring (pattern) between two food names, where each names
is split by words (token), and sorted prior the comparison. The
resulting score ranges from 0: the two food names are distinct
(no common substring is found); up to 100 the two elements
are identical (or one of the element is fully included in the
second element). Prior computing the fuzzy matching metric,
all punctuationmarks (commas, semi-columns, points, question-
marks, etc.) were removed and all letters set to upper case.
Figure 1A summarizes the fuzzy matching concept and provides
examples of similarity between food names.

Annotation Process to Review Food Item Matches
To evaluate whether the matches were plausible, the food names
(English and original language), the energy and macronutrient
content was also investigated. Decision on whether a match
DiOGenes-EuroFIR was plausible was defined from a holistic
consideration from the food names, the type of process applied
to the food (e.g., “boiling” or “frying”), differences in several
composition variables (e.g., energy content, fat, sugar content,
etc.). In specific case, e.g., when no English translation was
available or seemed inaccurate, the two matching elements were
reviewed with a Google image search. In case of ambiguity, a
conservative approach was used and the match was assigned to
as being “non-plausible.”

Upon manual annotation of matches, the overall performance
(relevance of mapping; and amount of items that can be
mapped) was assessed using the so-called precision-recall curves
(18). Specifically, each pair of items (the queried item and
its match) has two important attributes: the outcome of the
manual review (“plausible match” or “not plausible”) and a single
metric that aims to quantify the mapping confidence (e.g., the
fuzzy matching score). The assumption is that items with high
confidence scores are more likely to be “plausible matches”
than items with lower scores. The challenge is to define a
threshold on such score and enable automated classification into
either plausible or non-plausible match. A precision-recall curve
assesses the quality of mapping by investigating a large range of
possible thresholds. For each threshold, automated classification
can be made for each pair of items and can be contrasted with
information from the manual review. This allows deriving the
following table:

Status frommanual review

Plausible

match

Non-plausible

match

Predicted

status

Predicted plausible
match
(If score ≥
threshold)

True positives
(TP)

False positives
(FP)

Predicted
non-plausible
match
(Score < threshold)

False negatives
(FN)

True negatives
(TN)
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From such table two important metrics can be defined:

• Precision: the number of items correctly classified as plausible
matches, divided by the total number of all predicted plausible
matches. From the above table, precision =

TP
TP+FP

• Recall: the number of items correctly classified as plausible
matches, divided by the total number of all existing plausible
matches. recall = TP

TP+FN

In a precision-recall curve, each point corresponds to a single
threshold and reflects the precision and recall metrics as
obtained when using such threshold for automated classification.
These curves are useful for two aspects: (1) identify a
classification threshold that provides satisfactory precision and
recall performance; (2) compares the overall performance
from different classification models (with one curve per
model).

Food Item Comparison Using Machine Learning
To extend on the fuzzy matching comparison, we defined
a machine learning classifier to better distinguish between
plausible and non-plausible matches. A machine learning
classifier attempts to learn from the data and define a model
that can achieve good performance at predicting two classes (e.g.,
plausible/non-plausible match). Numerous approaches exist in
the field of machine learning. Here, we used a C5.0 classification
tree. C5.0 models are one type of classification trees and
are extremely popular (19, 20). A classification tree defines a
decision process, where each node in the tree is a test on
an input variable and results in a binary decision forming
two sub-nodes (sub-groups). Each sub-group is then tested
with another test until a final decision can be made. In our
analyses, the final decision corresponds to whether a given
pair of items corresponds to a plausible match. Classification
trees have the advantage to be easily interpretable compared
to other more complex models (e.g., neural networks). A
C5.0 model aims to test the most informative variables first
and to define a binary split that optimize the similarity of
the resulting sub-groups. In more details, a C5.0 model is
based on the concept of information entropy (a measure of
the homogeneity within a group) and extracts informative
patterns from the data to achieve a binary classification. Each
node of the tree is built by defining a binary rule based on
the variable that provides the maximal information gain (by
defining the most homogeneous sub-groups). Each resulting
node is then split again until no more splits are possible.
This type of models is robust in the presence of missing data
and the resulting classification rules are easily interpretable. In
addition, the performance of classification can be significantly
improved by using a boosting strategy (21). Boosting enables
to define several models (some that may only have a moderate
performance) and to combine them into a better, consensus
meta-model.

Our C5.0 classification trees used as input variables the fuzzy
matching score and the percentage of difference in energy content
between the two food items. To avoid biases when comparing
energy content, the nutritional content from all food items (incl.
DiOGenes and EuroFIR items) were scaled to 100 g portions.

The percentage of difference in energy content was computed as
follows:

Ediff = 100 ∗ abs
(

Diogenes_item_energy_content − EuroFIR_item_energy_content

Diogenes_item_energy_content

)

We built the C5.0 model using the following approach. First,
we used a 20% random subset of the EuroFIR resource and
computed all pairwise comparison with the DiOGenes food
items. Next, we restricted the list of all pairs (n > 3,300,000) to
those with either:

• fuzzy matching score > 75% and absolute difference in energy
content < 25%

• fuzzy matching score > 90%

This smaller list (n= 2,625 pairs) was then manually reviewed to
indicate in a new column whether the match was plausible (see
above section on annotation process). From the list of annotated
matches, we then built a boosted C5.0 classification tree using
the C50 R package (22). Two models were trained, one based
on a comparison between original food names and another one
based on a comparison using the English-translated food names.
The resulting trees are shown in Supplementary Figure 1. These
models allowed for a new pair of item to derive the probability
that the match is correct, given their similarity in term of fuzzy
matching and energy content (see illustration in Figure 1B). For
simplicity in the manuscript, we refer to these outputs as the C5.0
probabilities. These probabilities were obtained using the predict
function from C50 R package.

Code Availability
Our code is available from R packages released under General
Public Licenses (GPL licenses). These packages enable to
perform fuzzy matching comparisons, irrespectively of any
FCT [FoodMapping package released under GPL version
2 (GPL-2); available from https://github.com/armandvalsesia/
Foodmapping]; and also to compute the probability that a
match is correct based on pre-trained C5.0 models [FoodC5
package released under GPL-3, available from https://github.
com/armandvalsesia/FoodC5]. The code is optimized for a large
number of comparisons and does not require access to high
performance computers or clusters. Documentation and quick-
start tutorial are also available.

RESULTS

Fuzzy Matching Concept
Nutritionists encoding food diaries initiate their searches by
searching the food name in a FCT interface. Then, from a
list of elements containing the queried name or keywords, the
nutritionist would decide which element is the closest match.
When the returned elements have identical or near-identical
names compared to the queried element, the decision could be
automated thereby reducing the number of items that requires
an expert decision. We thus sought to investigate possible
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FIGURE 1 | Automated approaches for food item mapping. (A) Concept using fuzzy matching, (B) Extension of the fuzzy matching using a machine learning classifier

(C5.0 trees).

approaches to map food items from the DiOGenes study onto
the EuroFIR FCTs.

We first assessed mapping items from one single country
and for which the reference FCT is still available. During the
DiOGenes study, food diaries from the Netherlands (NL) were
mapped onto a release of Dutch Food Composition Database
[the NEVO database (23)]. NEVO has evolved and is still
maintained. It is available from the Dutch national institute
for public health and environment and has been integrated
in the EuroFIR. EuroFIR keeps a unique food identifier code
for each food item per country and keeps reference to the
original (FCT) food identifier code. In the DiOGenes food
data, food identifier codes were also recorded and we were
able to cross-match all 898 DiOGenes NEVO items onto the
current NEVO release. Manual investigation showed that all
these matches were correct. This mapping constitutes a very
valuable resource to assess the performance of an automated
approach, notably by assessing how many of these known
matches could be retrieved. We thus applied the fuzzy matching
approach described in Figure 2A. Out of 898 food items, 780
(87%) of the mapped items (using the fuzzy matching) shared
the same food identifier codes, indicating that the reference item
was found. The remaining fraction (117 items) was investigated
manually. We found that 72 of those (61%) were plausible
matches. Thus, our automated approach was able to correctly

remap 852/898 (95%) of the queried DiOGenes NL food
items.

Next, we applied a similar strategy to 4,179 DiOGenes food
items from six countries (NL, DK, UK, GR, BG, and SP) that have
an FCT from the same country in EuroFIR. Among those items,
3,308 (80%) could be cross-matched using their food identifier
codes; indicating that they had a clear equivalent. Using the
fuzzy matching approach, we were able to remap all 3,308 items,
with a global precision equals to 97% (Figure 2B). These results
demonstrate that when a queried food item is already present in
the FCT, our approach would find it.

Real-World, Large-Scale Example:
Application to All Food Items
The proof of concept focused on items that could be matched by
food identifier code, and thus are assumed to have an equivalent
in EuroFIR. However, in a real-world problem, the fraction of
items that is already present in the FCT is unknown. Also for
items without a direct equivalent, it is unknown whether those
could be mapped onto a similar item.

We thus sought to apply the fuzzy matching approach to
the items that could not be cross-matched based on their food
identifier codes. This corresponded to 871/4179 (20%) of the
DiOGenes food items. By applying the same process (i.e., find
the best match) and upon manual review of the hits, we obtained
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FIGURE 2 | Proof of concept: performance at mapping existing items onto FCTs. (A) Example with DiOGenes NL items mapped onto NEVO; (B) Example with all

DiOGenes items mapped onto EuroFIR.

annotated results: each pair of matching items was annotated as
being a plausible match or an incorrect one. This annotation
enabled to derive specific performance metrics, for different
thresholds on the fuzzy matching score. For example, the
precision (percentage of correctly mapped items) can potentially
be improved by considering pair of items for which the fuzzy
score is greater than a given threshold (e.g., 90% instead of 50%).
However, increasing such stringency would de facto limits the
number of queried items that can be mapped. Estimating the
recall rate (percentage of mapped items) is another important
indicator of performance.

Figure 3 presents the performance (precision and recall) as a
function of increasing fuzzy score thresholds. Two approaches
were tested: a mapping using the original country food names
(e.g., Danish name) and using the English-translated names. For
each approach, Figure 3 presents the performance for items that
were previously cross-matched based on their food identifier
codes (“directly mappable”); items that could not be cross-
matched (“other items”); and both type of items (“all items”).

As expected, the directly mappable items (green curves)
achieves very good performance, already with a permissive
fuzzy score filter (with a 50% fuzzy score threshold) all items
could be mapped (recall = 100%) and the precision is 97%.
By contrast, the precision for the more difficult items (“other
items”) was not good and only achieved 43.6% (when using
the original food name). Similar precision was achieved when
using the English-translated name. Therefore, for such difficult
items, more stringent thresholds are required. Using thresholds
at 70% increased the precision to 92.2 and 73%, respectively
for the mapping with Original and English-translated names.
However, the recall rates were reduced to 32.5% and 51.8%.
The “all items” group is representative of a real-world mapping
and 20% of these items are the difficult ones. Here, the global
performance was found acceptable with permissive fuzzy score
thresholds. At 50% threshold, the precisions were 88.7 and
79.1%, respectively for the Original and English-translated name

mapping. For both mapping, the recall rates were> 99%. Using a
threshold at 70%, the performance can be significantly improved
with precision > 94% and recall > 91%.

From Figure 3, specific fuzzy score thresholds can be derived
to achieve high precision (e.g., 75%). Table 1 illustrates how a
desired precision (e.g., 75 or 80%) would influence the fuzzy score
thresholds. For e.g., when mapping items using their original
name, a threshold at fuzzy score > 50% would enable more
than 75% precision when mapping easy (“directly mappable”)
items while a threshold > 63% would be required for difficult
items (those without direct equivalent). Therefore, to enable good
precision for all items, the stringent threshold > 63% should be
used. With such threshold, the precision for all items would be
close 97% with a recall rate > 95% (Table 2).

Whenmapping items using their English translation, different
threshold should be used. For precision > 75%, the fuzzy score
threshold should be> 75% (Table 1). This will enable a precision
close to 96.5% for all items, with a recall rate equal to 86.5%
(Table 2).

A Machine Learning Approach to Refine
Food Item Matching
As expected, using stringent thresholds to increase the precision
leads to smaller recall rates. In particular, at precision > 75%,
the recall rate for difficult items is less than 50% (Table 1). Since
difficult items only represent 20% of all queried food items, it
means that only 10% of those cannot be mapped automatically
and would require an expert-driven matching. This constitutes
an improvement over the current situation (where all items
are matched manually). Still, we sought to explore additional
approaches to improve such matching.

Previous results showed that mapping food names using
their English translation would not improve the recall compared
to a mapping using the original name (recall rates were 34.8
vs. 50%, respectively). Therefore, additional data would be
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FIGURE 3 | Precision and recall curves, as a function of fuzzy matching scores. Left plots correspond to a mapping using the original food names; right plots

correspond to mapping food names using their English translation.

TABLE 1 | Thresholds required to achieve 75 or 80% precision, with the fuzzy matching approach.

Matching with original name Matching with English-translated name

Target Item type Threshold Precision (%) Recall (%) Threshold Precision (%) Recall (%)

precision >= 75% Any 50 88.75 99.49 50 79.11 100.00

precision >= 75% directly mappable 50 97.34 100.00 50 95.53 100.00

precision >= 75% Others 63 76.84 50.00 75 78.49 34.81

precision >= 80% Any 50 88.75 99.49 50 79.11 100.00

precision >= 80% directly mappable 50 97.34 100.00 50 95.53 100.00

precision >= 80% Others 65 80.25 44.52 80 89.78 21.73

needed to improve the matching. We rationalized that such
information should be easy to acquire. Inherently, if extensive
information were already known about the macro- and micro-
nutrient composition from a queried food item, it would
mean that the mapping was already done once. Instead, we
sought to use a priori information about the food content
that could be easy to acquire. We made the assumption that
some rough estimates about the total energy content could
be obtained during the digitalization phase (i.e., converting
paper-based food diaries to electronic diaries). Such estimates
would be used to compute the difference in energy content

between the queried and retrieved food items; which could
potentially be useful to discriminate whether the match is
plausible or not.

To assess this approach, we trained C5.0 classification trees
(see section Materials and Methods). We observed that this
approach had some potential to map items that could not be
mapped with the fuzzy matching alone. For e.g., when searching
for “beefsteak raw,” the top matching item would be “beef rump
steak raw.” However the corresponding fuzzy score would only
be 56% and may not pass stringent fuzzy score filters. Yet, the
difference in energy content is relatively low between these two
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TABLE 2 | Threshold required to achieved 75% precision for all three-item classes (“Any,” “Mappable,” “Other”), with the fuzzy matching approach.

Threshold Food name comparison Any items Directly mappable items Other items

63 Original name PR = 96.81, Rec=95.19 PR = 97.98, Rec=99.29 PR = 76.84, Rec = 50

75 English-translated name PR = 96.49, Rec=86.55 PR = 98, Rec = 96.14 PR = 78.49, Rec = 34.81

items (<2%) and thus the probability that the match is correct
is very high (99.98%). Conversely, this approach could help
discriminate between highly similar food names but that pertain
to very different food products. “hake raw” and “hare raw” differ
only by one letter and thus the resulting fuzzy score would be
high (88%). Yet, those two items differ by 25% in term of energy
content. With our C5.0 approach, the resulting probability that
the match is correct would be relatively low (52%, i.e., close to a
random guess).

Large-Scale Performance of the Machine
Learning Approach and Comparison With
the Fuzzy Matching Approach
We next evaluated the performance from our machine learning
approach and compared it to previous results using only the
fuzzy scores. Table 3 shows the required thresholds to achieve
75 or 85% precision and Table 4 provides the performance
when using a single threshold that achieves at least 75%
precision for all item categories. The performance (precision
vs. recall) for all our approaches (fuzzy scores/C5.0 combined
with either original- or English-translated food name mapping)
is shown in Figure 4. When mapping the “Any items” list,
all approaches had very good performance (strong precision
and recall). With relaxed thresholds (fuzzy score > 50% or
C5.0 probability > 50%), all four approaches led to comparable
performance with precision > 78% and recall > 97%.

The performance can be further decomposed to distinguish
between “easy cases” (those that exists in the FCTs; i.e., “directly
mappable”) and “difficult cases” (without an equivalent). For easy
cases, there was no improvement with the machine learning
approach compared to the fuzzy matching approach. In fact,
the fuzzy matching approach had better precision rate. However,
for difficult cases, the machine learning approach improved
significantly the recall rate, while keeping a comparable precision.
With thresholds to ensure > 75% precision, the recall rate
increases from 50 to 57%whenmapping items with their Original
name. When mapping items using their English-translated
names, the recall rate improves from 34.8 to 55.1%.

DISCUSSION

In this study, we explored computational approaches to automate
food item mapping onto FCTs. Up to date, noticeable emphasis
had been placed to collect FCT data; to enable some level of
harmonization across FCT and facilitate data access through
databases and user-interfaces (1–5). Yet, this did not address the
problem to automatically map food records.

We found that the simpler approach: fuzzy matching,
provided very good performance. Under a relaxed threshold
(fuzzy score > 50%), this approach enabled to remap 99.49% of
the queried items with a precision equal to 88.75%.With a slightly
more stringent threshold (fuzzy score > 63%), the precision
could be significantly improved to 96.81% while keeping a recall
rate > 95% (i.e., only 5% of the queried items would not
be mapped). The more complex approach (based on a C5.0
classifier) enabled to increase the recall rate of difficult items and
could potentially be used for items that cannot be mapped with
fuzzy matching.

In this study, we mapped the DiOGenes food items using
six FCTs available from the EuroFIR resource. However, our
approach and code implementation is FCT-agnostic and can be
used with any other data source. This provides flexibility to use
many different FCTs together and to use any customized/private
FCT. Also the starting point is only food names, which makes
the approach easily applicable to any other nutritional study and
other type of dietary assessment methods.

All the code required to perform fuzzy matching and compute
the C5.0 probabilities is freely available as open source R packages
(available from GitHub). Our implementation is optimized to
enable large number of comparisons: on a standard laptop
(with a 2.3 GHz Intel Core i7 processor), 100,000 pair-wise
comparisons take < 20 s and 1,000,000 comparisons take 205
sec (∼3.5min). Significant speed improvements can be made
using parallel computing (either with multi-threading or using
distributed computing on a grid). Quick-start tutorials and
documentation are available; and the code can be used with a very
basic knowledge of the R language.

Traditionally, food mapping was performed manually with
each single item to be queried against a reference FCT. Then
the expert would need to sift through the list of retrieved
items, identify the most relevant match and somehow export the
required information (e.g., either a food id code or directly the
available nutrient composition). Such process is time-consuming;
in our experience with the DiOGenes study and other dietary
interventions, it takes on average 5min per item (with a range
between 3 and 8min, depending on the item complexity and
the nutritionist’s familiarity with the food item). By contrast,
our approach enables to fully automate the mapping and can be
completed within a few minutes for over a million comparisons
without the need for a human intervention.

Such fast and deterministic process enables to rerun the
mapping with newest releases of FCTs and to acquire additional
information on the nutrient composition. For e.g., upon
the initial manual DiOGenes food item mapping, nutrient
composition was retrieved for macronutrients and 13 nutrient
variables. Using our automated approach enabled to retrieve all
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TABLE 3 | Thresholds required to achieve 75 or 80% precision, with the machine learning approach.

Matching with original name Matching with English-translated name

Target Item type Threshold Precision (%) Recall (%) Threshold Precision (%) Recall (%)

precision >= 75% Any 50 84.55 97.98 50 78.86 99.34

precision >= 75% directly mappable 50 97.41 98.23 50 95.60 99.64

precision >= 75% Others 85 77.31 57.19 84 76.85 55.12

precision >= 80% Any 50 84.55 97.98 64 79.53 97.87

precision >= 80% directly mappable 50 97.41 98.23 50 95.60 99.64

precision >= 80% Others 92 79.90 54.45 92 100.00 6.54

TABLE 4 | Threshold required to achieved 75% precision for all three-item classes (“Any,” “Mappable,” “Other”), with the machine learning approach.

Threshold Food name comparison Any items Directly mappable items Other items

85 Original name PR = 97.89%, Rec = 80.5% PR = 99.55%, Rec = 82.61% PR = 77.31%, Rec = 57.19%

84 English-translated name PR = 96.46%, Rec = 87.32% PR = 99.23%, Rec = 93.29% PR = 76.85%, Rec = 55.12%

FIGURE 4 | Precision-recall curves for the two approaches (fuzzy matching, machine learning) and using either original or English-translated food names.

nutrient composition variables as available from the queried FCT
(for e.g., an automated mapping onto NEVO would retrieve
more than 128 composition variables). On average over the six
DiOGenes centers, an additional list of 20 nutrients was added

to the food records information. Significant improvement was
also reached for the amount of missing values. The initial records
had 17–31%missing values for macronutrient variables andmore
than 50% missing values for other variables. Upon automated
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remapping, these percentages were reduced below 2.3% for
macronutrients and below 10% for other variables (except for
alcohol content whose percentage of missing values and strictly
zero values was reduced from 98 to 91%).

An additional benefit of the automated approach is the ability
to quantify mapping uncertainty. With a manual mapping, the
uncertainty cannot easily be quantified by objective means (if
at all) and is typically not captured. By contrast, the automated
approach computes a mapping confidence metric (similarity
or probability), which can be used for ad-hoc post-filtering
and could also be taken into account in subsequent statistical
analyses.

Throughout our food item review, we observed variability
between different versions of the same food item. For e.g.,
100 gr portion of raw garlic would be recorded with an
energy content varying between 305 and 670 kcal. We did not
observe food items recorded with incorrect units for energy
composition (kJ instead of kcal). Yet with such volume of
information, data curation (including detection and correction
of errors) remains a challenge and a thorough review of each
composition variables cannot be performed without automated
approaches. Specifically, automated outlier detection (in food
nutrient values) would help curation and provide new tools
for quality control. However, outlier detection can only be
performed when similar items are grouped together. While
FCTs provide a food group label that could help pre-cluster
food items, this information remains very incomplete. In our
EuroFIR subset, about 25% of the food items have no food
group information. Our fuzzy matching approach could be
of help with such issue. It can be used as similarity metric
and would enable to cluster similar items together. Then
from such clusters, the individual composition variables can
be assessed to identify potential outliers. Such approach would
help improving further the quality and completeness from
FCTs.

Current efforts in data integration and harmonization across
FCTs (1–5) focus on renaming nutrient composition variables
using a unified nomenclature and deriving the composition
values using consistent units. While this is necessary for
combining FCTs in a consistent manner, it does not solve the
missing value issue. This situation exists within a same FCT
where the different food items would inherently have missing
values for one or more composition variables (nutrients). This
problem is magnified when combining data across different FCTs
that have different number of nutrients. For e.g., NEVO is by far
the richest database (with information for 128 different nutrients)
whilst other FCTs provide information for macronutrients and
a few micronutrients. While there is some guidance on how to
estimate missing nutrient values (24), it is a manual, expertise-
driven, decision and the literature remains scarce for imputation
of missing values in FCTs using computational approaches.
There is some guidance for recipe calculation however that
would not solve the issue at the ingredient-level (25). Our fuzzy
matching approach could be used to cluster together similar food
items (independently whether they are cooked food or single
ingredients) and could potentially prove useful to impute the

missing values (using a strategy similar to traditional k-nearest
neighbors). Such imputation process could also be improved
by using a composite measure of similarity based on both
fuzzy scores and similarity in term of the available nutrient
composition. Food item clustering based on fuzzy matching also
opens new possibilities with respect to FCT data integration. It
would enable to keep track of possible modifications between
different versions of the same FCT. Finally, with the availability
of FCTs from different countries, such clustering would enable to
reduce redundancy across different FCTs and to derive a single,
more comprehensive meta-FCT.

In summary, we propose strategies to perform food item
mapping at large-scale. Our extensive benchmark demonstrates
that both high precision and recall can be achieved. Previously
food mapping was a manual, time-consuming and expertise-
driven process. These new tools provide a powerful alternative to
clinicians and nutritionists, who were performing manually these
tasks. In addition to reducing significantly the burden and saving
time, it makes the process fully reproducible allowing going back
to specific matches in a deterministic manner.

To the best of our knowledge, this is the first time that
automated solutions are proposed. These methodologies and
findings are useful to any nutritional study (observational as well
as interventional) and can be applied in both small and large data
collections.
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