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The mucosal immune system is a compartmentalized part of the immune system that

provides local immunity in the mucosa of the respiratory, gastrointestinal, and digestive

tracts. It possesses secondary lymphoid tissues, which contain immune cells, such as T,

B, and dendritic cells. Once the cells of the mucosal immune system are stimulated by

luminal antigens, including microorganisms, they infiltrate into diffuse areas of mucosal

tissues (e.g., respiratory mucosa and lamina propria of intestinal villi) and exhibit immune

effector functions. Inducing the antigen-specific immune responses in mucosal tissues by

mucosal vaccination would be an ideal strategy for not only humans, but also mammals

and birds, to protect against infectious diseases occurring in mucosal tissues (e.g.,

pneumonia and diarrhea). Infectious diseases cause huge economic losses in agriculture,

such as livestock and poultry industries. Since most infectious diseases occur in mucosal

tissues, vaccines that are capable of inducing immune responses in mucosal tissues are

in high need. In this review, we discuss the current understanding of mucosal immunity

in mammals and birds, and recent progress in the development of mucosal vaccines.

Keywords: mucosal immune system, mucosal vaccine, nutritional supplementation, mammals, birds

THE MUCOSAL IMMUNE SYSTEM IN MAMMALS AND BIRDS

The mucosa-associated lymphoid tissues, which are lymphoid structures in the mucosal tissues,
form the first line of defense against pathogens that enter the body through the mucosal surfaces
lining the respiratory, digestive, and reproduction tracts (Figure 1). Fundamentally, the mucosal
immune system has evolved to tolerate commensal microbes, while responding quickly and
effectively to pathogenic challenges. Although the mucosal immune systems of mammals and birds
share many features, which are fundamental to the functioning of mucosa-associated lymphoid
tissues, the avianmucosal immune response has unique features. A fundamental difference between
mammals and birds is the absence of encapsulated lymph nodes but the presence of diffuse
lymphoid tissue in birds.
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FIGURE 1 | Unique structure of mucosa-associated lymphoid (MALTs). MALTs contain mature B cells that differentiate into antibody-producing plasma cells present in

diffuse areas of mucosal tissues, such as lamia propria.

The mucosal tissue of the nose is the first to come into contact
with particles and pathogens upon inhalation. In chickens,
a major characteristic of the nasal-associated lymphoid tissue
(NALT) is the formation of defined areas of B cells with
caps composed of CD4+ T cells. Immunoglobulin-producing
(Ig+) B cells are found both within the NALT structures and
distributed throughout the epithelium, and are mostly IgY+ in
chickens (1). Inmammals, immunoglobulin class-switching from
IgM to IgA occurs in the NALT and IgA-producing plasma
cells are abundantly present in the nasal cavity. In chickens,
closely related to the mucosal tissue of the nose are the head-
associated lymphoid tissues, which include the Harderian gland
and the conjunctiva-associated lymphoid tissue (CALT). The
Harderian gland is located in the orbit of the eye and has the
structure of a typical secondary lymphoid organ, with many B
cells and plasma cells, germinal centers, and T cell-dependent
interfollicular regions with scattered T cells and macrophages
(2, 3). It plays an important role in the adaptive mucosal immune
response upon ocular exposure to avian pathogens (4, 5). CALT
is located on the inner surfaces of the eyelids and is observable
in 1-week-old chickens (6). Based on the composition of CALT
lymphocytes, the induction of antigen-specific IgA antibody-
secreting cells after ocular exposure, the expansion of polymeric
immunoglobulin receptors, and the production of IFNγ by
lacrimal fluids suggests that CALT plays important roles in the
avianmucosal immune response (7). It should be noted that most
mammals (e.g., cats, dogs, and humans) also develop CALT. A

recent study found that mice possess a similar lymphoid structure
in the lacrimal sac, the so-called tear duct-associated lymphoid
tissue, which plays an important role in the induction of an
immune response by the ocular immunosurveillance system (8).

The chicken respiratory tract is very different from that of
mammalians. For example, the avian lung has a unidirectional
airflow (9) in contrast to the bidirectional airflow in the human
lung. Furthermore, the bird lung is ventilated via air sacs,
since birds do not have a diaphragm. A consequence of a
unidirectional airflow is that particles are primarily deposited
at the caudal regions of the lung (10), which is the part
of the lung containing bronchus-associated lymphoid tissue
(BALT). These highly organized lymphoid structures together
with diffusely distributed cells were described for the first time
in 1973 (11). Avian BALT structures are observed around 3–4
weeks post hatching and are fully developed in some birds at
the age of 6 weeks (12). Both age and environmental stimuli
influence BALT development (13). Furthermore, the number
of BALT nodules increases significantly upon infection with
pathogenic microorganisms (14). Another difference between the
mammalian and chicken lung is the lack of alveolar macrophages
at the surface of the air capillaries in chickens (14). Interestingly,
a large network of macrophages and dendritic cells (DCs) is
present in the mucosa of the larger airways, the linings of the
parabronchi (15), and the connective tissue (9). Thus, phagocytic
cells are strategically localized at the start of the gas-exchange
areas to clear the air of inhaled particles before it reaches the thin
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and vulnerable air capillaries. Since chickens lack draining lymph
nodes, the location where phagocytic cells present the particles
to the immune system remains unclear. Presentation of particles
may occur locally in the BALT, in the interstitial follicles between
parabronchi, and/or in the spleen.

Gut-associated lymphoid tissues (GALTs) are well developed
in birds (16). It consists of lymphoid cells located in the epithelial
lining and the lamina propria as well as specialized lymphoid
structures such as Peyer’s patches and cecal tonsils. Peyer’s
patches in chicken are clearly visible at 2 weeks of age, and
they increase in number with age. Like in mammals, they seem
to consist of specialized epithelium with M cells that overlay
structured follicles with defined T and B cell areas (17). Cecal
tonsils, which are located in the neck region of each ceca, are
structurally similar to Peyer’s patches (18). Together, the GALT
structures play an important role in the induction of immune
responses (19).

MUCOSAL VACCINATION IN BIRDS

Vaccination through the mucosa itself is frequently used in the
poultry industry, as an economical, efficient, and reliable method
to vaccinate large numbers of birds. However, a successful
mucosal vaccine must elicit both local and systemic immune
responses (20, 21). Poultry vaccines against viral infections
consist of either live attenuated viruses or inactivated viruses
formulated with a suitable adjuvant. Most live vaccines are
applied mucosally via the oculo-nasal route or with a spray, so
that the vaccine enters the respiratory tract or is taken up by
the head-associated lymphoid tissues where it is recognized and
taken up by antigen-presenting cells. The use of a spray is the
preferred method for vaccination of birds against respiratory
viruses, such as infectious bronchitis virus (22), Newcastle
Disease virus, and avian metapneumovirus. However, although
deposition patterns after aerosol or spray vaccination are
conventionally studied using beads, the deposition pattern of
beads is dependent on the bead size, the droplet size of the bead
solution, and the age of the chickens. Larger beads (>3.7µM)
are mainly deposited in the upper respiratory tract, while smaller
beads are distributed throughout the entire respiratory tract (23–
25). The highest accumulation of beads occurs at the bifurcations
primary to secondary bronchi (24), similar to that observed
upon spray vaccination with avian influenza virus (AIV) (10),
suggesting that particulate antigens are also taken up in the
respiratory tract at these junctions. After entering the respiratory
tract, particles are taken up by antigen-presenting cells (26) and
are then presented to the immune system.

In addition to spray vaccination, vaccines can be delivered
via drinking water. Vaccines dispensed through drinking water
end up in the oral cavity with rapid transit to the esophagus
and digestive tract. In this case, antigens will be taken up by
cells in GALTs and presented to the immune system. Although
oral vaccination has been reported to result in protection against
Salmonella and reduction in necrotic enteritis lesions (27), other
reports show less positive results (28). This may be related to the
pathogen, type of vaccine, or age of the birds.

Inactivated vaccines are often poorly immunogenic and
require additional components (adjuvants) for the induction
of a protective immune response (29). These vaccines are
formulated with a high antigenic mass of bacterial or viral origin
conveyed in a suitable adjuvant, which renders these substances
unsuitable for spray vaccination. Therefore, alternative strategies
are needed for mucosal application of inactivated vaccines, such
as specialized delivery systems or adjuvants with mucoadhesive
properties. Several mucosal adjuvants have been employed in
chickens and can be divided in two classes based on the
mode of action: stimulation of the immune system and/or
efficient delivery of vaccine materials. An important group of
potential immune stimulators are the toll-like receptor (TLR)-
based adjuvants (30). TLRs are pattern recognition receptors,
a group of receptors present on immune cells that recognize
the conserved molecular structures of pathogens, the so-
called microbe-associated molecular patterns. The recognition of
pathogens by TLRs results in the immediate activation of the
immune system (31). CpG oligodeoxynucleotides (CpG ODNs),
the ligand of chicken TLR21, have been reported as potential
vaccine adjuvants in chickens. For example, vaccination with
NDV and CpG resulted in the induction of specific immune
responses and protection (32), and in vivo administration of
CpG ODNs by itself suppressed the replication of IBV in the
chicken embryo (33). Enhanced protection upon CpG ODN
administration has also been reported for Marek’s disease virus
(34), as well as infection with Salmonella enterica (35) and
Escherichia coli (36). Other potential immune stimulators include
oligopeptides complexed with an agonistic anti-chicken CD40
monoclonal antibody (37) and the immune potentiator CVCVA5,
which induces enhanced immune responses and protection
against AIV upon vaccination (38, 39).

Mucoadhesive adjuvants, such as chitosan, have been
suggested to increase the mucosal residence time, which
results in increased antigen uptake and presentation (40).
Rauw and colleagues investigated the effect of chitosan on
the mucosal delivery of NDV vaccines in 1-day-old birds and
found an enhanced cell mediated immunity in the spleen
(41). Also, particulate deliverable systems, such as poly lactic-
co-glycolic acid (PLGA) nanoparticles, invoke mechanisms
that influence vaccine immunogenicity via enhanced antigen
processing (42). Interestingly, vaccinating chickens with PLGA
particles encapsulated with inactivated AIV vaccine adjuvanted
with CpG ODNs resulted in enhanced antibody responses and
a reduction in virus shedding (43). Furthermore, intranasal
administration of NDVDNAvaccine-encapsulated nanoparticles
in specific-pathogen-free chickens resulted in enhanced humoral
and cellular immune responses and protection against challenge
with a highly virulent NDV strain (44).

ASPECTS OF ANTIGEN DELIVERY FOR
MUCOSAL VACCINES

Approaches of mucosal vaccination, with delivery systems as
developed for mammals, may turn out to be similarly effective in
birds. In the case of mammals, it is well known that the function
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of Peyer’s patches in the gut immune system is totally distinct
from that of the lamina propria lymphoid tissues of intestinal
villi (45). Fundamentally, antigen-specific intestinal immune
responses to luminal substances are initiated in Peyer’s patches,
whereas the actual immune reactions (e.g., IgA production) take
place in the intestinal villi (45). Therefore, DCs that primemature
naïve T cells by antigen presentation are frequently found in
Peyer’s patches; however, DCs are also abundantly distributed in
the lamina propria (LP) of the gut intestinal villi, in mammals,
despite the absence of lymphoid follicular structures, such as
Peyer’s patches (46). In birds, the presence of tissue DCs has not
been well demonstrated due to the lack of specific antibodies.
A first step was made by showing the presence of cells that
express the C type lectin receptor DEC205+ in tissues, including
bursa and spleen (47). Expression of chicken DEC205 reflects
the unique structure and function of the avian immune system
(47). In mammals, a subset of the LP DCs, which are monocyte-
derived and express CX3CR1 (a receptor for CX3CL1), can access
the intestinal lumen to directly sample luminal microorganisms
by extending their dendrites to regulate immunological tolerance
and inflammation (48). A recent study demonstrated that goblet
cells, whose primary function is to produce mucus that covers
intestinal epithelial surface, have an additional function to
deliver luminal antigens to another subset of LP DCs that have
differentiated from conventional myeloid DC precursors and
express αE integrin, known as CD103 (49). Among the two DC
populations (i.e., CX3CR1

+ DCs and CD103+ DCs) found in
the LP of the gut, CD103+ DCs migrate into the mesenteric
lymph nodes that drain the gastrointestinal tract to prime
mature T cells for initiation of antigen-specific mucosal immune
responses (50). Thus, a strategy that is capable of delivering the
vaccine antigen to CD103+ DCs in the LP should be considered
as a potential approach to increase the efficacy of mucosal
vaccines (50). It should be noted, however, that chickens do not
have mesenteric lymph nodes. Therefore, other routes for the
delivery of antigens are present in chickens. Interestingly, it was
demonstrated that a 12-mer peptide, which was discovered with
the use of phage display technology, possesses broad targeting
specificity for DCs of humans and mice (51). Moreover, the
efficacy of orally administered lactic acid bacteria (LAB) that
express the vaccine antigen together with the DC-specific peptide
has been confirmed (52). Specifically, oral administration of DC-
specific peptide-expressing LAB was shown to effectively induce
antigen-specific immune responses in the gastrointestinal tract
upon delivery to intestinal DCs (52). However, it is important
to note that the mucosal tissues are lined by a tight epithelial
barrier and also covered by a thick mucus layer (53). Moreover,
CD103+ DCs present in the LP, which is located within intestinal
tissues, are still far from the mucosal lumen in which the vaccine
antigens are administered (46). Therefore, mucosal vaccines need
to cross the physiological barrier (e.g., mucus layer and epithelial
layer) to reach CD103+ DCs for initiation of intestinal immune
responses. Although markers such as CD103+ are still lacking in
birds, it seems reasonable to assume the presence of similar gut
antigen-presenting cells in these species.

Another possible vaccine delivery system is with liposomes.
More than 50 years ago, the British biophysicist Alec Bangham

discovered spherical lipid bilayer structures, so-called liposomes,
when testing a new electron microscope introduced in his
research institution using dry phospholipid samples that were
negatively stained (54). Liposomes are basically formed by
phospholipids, which are composed of a hydrophilic head group
linked to a hydrophobic tail by a glycerol backbone (55).
The size of liposomes varies from small (nanoscale) to large
(micro-scale) (55). A well-known biological characteristic of
liposomes in vaccine development is the capability of enclosing
several different biomaterials, such as protein antigens and
nucleic adjuvants, regardless of solubility since liposomes possess
amphiphilic features (55). The activity of liposomes can be
freely modulated by chemical modification of the surface of the
structure. For example, coating of liposomes with polyethylene
glycol increases the retention effect in blood, compared with
bare liposomes, because the coating allows the liposome to
escape from capture by the reticuloendothelial system in the
liver and spleen, etc. Another potential modification is to
endow liposomes with tropism by conjugating cell-specific
antibodies or potential ligand molecules that bind to specific
receptors expressed by the target tissues or cells (56). Moreover,
recent studies have succeeded in the development of heat-,
pH-, enzyme-, and light-dependent liposomes as delivery
vehicles that respond to certain stimuli in vivo (57). These
liposomes have been also used for mucosal vaccine development
(55). For example, cationic liposomes that are generated
from cationic lipids, such as dimethyldioctadecylammonium
bromide (58), 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl],
and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
methylsulfate (59), can be retained in the mucosal epithelium
when administered via the mucosal route. To this end, the
vaccine antigens and/or adjuvants enclosed in cationic liposomes
are successfully released in the mucosal tissues, which results
in immediate processing by DCs and subsequent induction of
effective immune responses. Amphiphilic nanometer-sized gels,
so-called nanogels, are effective biomaterials that can be used
for not only drug delivery but also vaccine development (60).
Pullulan, which is a polymer composed of regularly repeating
glucose units, described as α(1-4)Glu-α(1-4)Glu-α(1-6)Glu, was
first utilized to generate self-assembled nanogels by the addition
of multihydrophobic domains consisting of 1.6 cholesteryl
groups per 100 glucose units (61). One of the most attractive
features of cholesterol-bearing pullulan (CHP) nanogels is the
trapping of proteins in the nanoscale matrix, which contains
a large amount of water (62, 63). So far, several bioactive
proteins, including insulin (64), bovine serum albumin (62), α-
chymotrypsin (65), and myoglobin (63), have been successfully
encapsulated in CHPnanogels whilemaintaining activity. Similar
to liposomes, the characteristics of CHP nanogels, such as
electrical charge, can be freely altered by chemical modification
(66). Recent studies of cationic CHP nanogels with encapsulation
of several prototypes of vaccine antigens demonstrated that
the antigen was effectively sampled by DCs present in the
nasal mucosa and subsequent antigen-specific mucosal immune
responses were effectively induced in not only mice, but also
non-human primates, when administered intranasally (67–69).
Because of the high potency of cationic CHP nanogel-based nasal
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vaccine, co-administration of a mucosal adjuvant is not required
(67–69). Moreover, it should be noted that nasally administered
cationic CHP nanogels and encapsulated vaccine antigens do not
accumulate in the brain or olfactory bulb (67), suggesting that
a strategy for nasal vaccine development using cationic CHP
nanogels would be safe without the risk of undesired side effects,
such as Bell’s palsy (67).

THE POSSIBLE NEGATIVELY
INTERFERING EFFECTS OF NUTRIENTS
ON MUCOSAL VACCINATION

The mucosal immune system has exquisite qualities for
maintaining immunological tolerance and the control of
undesirable and counterproductive responses to nutrients.
Therefore, successful mucosal vaccination would require
overcoming mechanisms of mucosal tolerance. The vaccination
effects of LAB illustrate the versatile characteristics of mucosal
immune systems. However, intranasal administration of LAB,
both live and killed, has been shown to produce an effective
vaccination effect leading to protection against infection, oral
administration was not effective. To reach any effect, frequent
dosing for several weeks or novel delivery or adjuvant strategies
was needed. Moreover, tolerization to antigens secreted by orally
administered LAB has been reported (70).

Nutrients, such as the dietary antioxidant vitamin A, impact
the tolerance of the mucosal immune system to a great
extent. CD103+ DCs in the LP can convert vitamin A into
retinoic acid, which, in combination with TGFβ, is one of the
driving forces in the production of regulatory T cells (Tregs)
in the mesenteric lymph nodes (71). Interestingly, vitamin A
supplementation during lactation was shown to reduce allergic
sensitization in the offspring of mice. Furthermore, through
different mechanisms, dietary supplementation with probiotics,
prebiotics, and n-3 polyunsaturated fatty acids, is suggested
to support oral tolerance and to prevent allergy in early
childhood (72). Also, in combination with certain members of
the gut microbiota, nutrients are known to promote tolerance.
Fermentation of non-digestible dietary carbohydrates (fibers) by
the gut microbiota leads to production of short-chain fatty acids,
such as acetate, propionate, and butyrate, which also have the
capacity to stimulate the expansion and immuno-suppressive
capacity of Tregs in the gut (73). L-arginine promotes lymphocyte
proliferation, balances pro-inflammatory (IFN-γ and IL-2) and
anti-inflammatory (IL-4 and IL-10) cytokines, and increases
the secretory IgA (sIgA) level in burn-injured mice (74). In
this regard, L-arginine supplementation inhibits Clostridium
perfringens overgrowth and alleviates intestinal mucosal injury by
modulating innate immune responses in chickens by enhancing
barrier function and producing NO (75). Another study also
suggests that L-arginine supplementation attenuates intestinal
mucosal disruption in coccidiosis-challenged chickens probably
through suppressing TLR4 and activating mTOR complex
1 pathways (76). Probiotic feeding is also appropriate to
manipulate mucosal immunity. After 21 days of treatment with
Lactobacillus acidophilus as a probiotic on T cells in chicken,
the percentages of blood CD4+, CD8+, and TCR1+ cells were

significantly higher in the probiotic-fed group than in the
control group. After 14 days of the probiotic, a significantly
greater number of CD4+ T cells were found in the ileum of
probiotic-fed chickens, and this difference was even greater
after 21 days. The findings indicated that probiotics may alter
the distribution of T cells in the blood and lymphoid tissues
in young chickens; however, transient changes in lymphoid
tissues, indicating that probiotics likely do not permanently
affect mucosal immunity (77). The effects of Saccharomyces
boulardii and Bacillus subtilis on cytokine expression responses
via Toll-like receptors (TLRs) by intestinal epithelial cells were
to decrease the expression levels of INF-γ and IL-8 and to
increase the levels of serum IgA and sIgA in mucosa (78).
These results indicated that Saccharomyces boulardii and Bacillus
subtilis have a role in inducing mucosal innate immunity in
chickens (78).

Some dietary products have the capacity to co-induce stress
proteins in gut-associated cells. Oral administration of carvacrol,
essential oil of oregano, was found to inhibit experimental
autoimmune arthritis in mice. Upon further analysis, this
compound actually co-induced the expression of heat shock
protein 70 (HSP70) in cells in Peyer’s patches. Subsequently,
the enhanced HSP70 expression in PPs led to the activation
and expansion of HSP70-specific T cells with regulatory, IL-10-
producing capacities (79). Taken together, these findings suggest
that dietary components may promote tolerance by various
underlying mechanisms. However, the identity of such dietary
factors that impact the efficacy of mucosal vaccination remains
to be further elucidated.

CONCLUSION

Immune protection against infection is considered to be the
most efficient when localized at the sites of entry of the
infectious agent. Since most infections occur at mucosal surfaces,
mucosal vaccination is an actively sought research goal in many
species, including mammals and birds. Despite successes, such
as with polio and rotavirus vaccination in humans, the scientific
challenges in this area are still manifold. And this is, partly, due
to the fact that oral administration of proteins induces tolerance,
and not immune activation. Given the existing similarities
between the mucosal immune systems of mammals and birds,
it is possible to effectively use in birds some of the successful
mucosal vaccination strategies as developed for mammals.
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