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All multicellular organisms benefit from their own microbiota, which play important

roles in maintaining the host nutritional health and immunity. Recently, the number of

studies on the microbiota of animals, fish, and plants of economic importance is rapidly

expanding and there are increasing expectations that productivity and sustainability

in agricultural management can be improved by microbiota manipulation. However,

optimizing microbiota is still a challenging task because of the lack of knowledge on

the dominant microorganisms or significant variations between microbiota, reflecting

sampling biases, different agricultural management as well as breeding backgrounds.

To offer a more generalized view on microbiota in agriculture, which can be used for

defining criteria of “optimal microbiota” as the goal of manipulation, we summarize here

current knowledge on microbiota on animals, fish, and plants with emphasis on bacterial

community structure and metabolic functions, and how microbiota can be affected

by domestication, conventional agricultural practices, and use of antimicrobial agents.

Finally, we discuss future tasks for defining “optimal microbiota,” which can improve host

growth, nutrition, and immunity and reduce the use of antimicrobial agents in agriculture.

Keywords: microbiota, agriculture, animal husbandry, aquaculture, rhizosphere, phyllosphere, agricultural

immunology

INTRODUCTION

Today, biologists in agricultural science, regardless of the organism of their interest, focus
significant attention on the microbiota, i.e., the complex communities of microorganisms
colonizing host animals, fish, and plants (1). Meta-analyses of 16S rRNA genes from different
body parts of animals, fish, and plants are frequently performed expecting that some changes of
microbiota will explain the effectiveness of treatments such as feed changes, fertilizer amendment,
or gene knockouts on host organisms, which have been conducted with aims to improve
productivity and sustainability in agriculture (2). However, it is often the case that no apparent
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changes are observed in the microbial structure corresponding
to the specific treatment, or if present, the functions of the
responding microorganisms are not well-known [e.g., (3–5)].
Besides, it is often difficult for researchers in agricultural sciences
to exploit the microbial data to improve the host factors because
of the lack of definition and criteria of “optimal microbiota” in
animals, fish, and plants.

Compared to a large body of studies on microbiota of
human subjects (6) or experimental models using rodents(7),
zebrafish (8), or Arabidopsis (9), there are a very limited
number of studies on economically important animals, fish,
and plants. Microbiota datasets obtained from livestock animals,
aquaculture fish, and crop plants grown may significantly be
affected by complex environmental factors such as climates,
cultivation scales, and uses of antibiotics and fertilizers, which
can vary between different countries and regions. Besides, the
microbiota of agricultural organisms may also reflect the great
variability of host species and genotypes, biological functions at
different developmental stages, and macro- and microstructures
of the colonizing sites, which are not thoroughly studied as the
laboratory models. Due to the overall limited understanding of
the microbiota in agricultural ecosystems at this point, it is not an
easy task to define “optimal microbiota,” which can optimize the
growth, host nutrition, and immunity of agricultural organisms.

The importance of understanding the structure and functions
of microbiota in agriculture is also widely discussed in the
context of the spread of antimicrobial resistance (AMR) from
agricultural sites to human society (10). While manipulation
of microbiota is a promising strategy to tackle the AMR (11),
it is prerequisite for researchers to interpret and exploit the
rapidly expanding datasets of the microbiota in animals, fish, and
plants in agriculture with a more generalized view. By sharing
knowledge on the ecophysiology of microbiota in different host
organisms with respect to their structure and metabolites and
understanding how the host factors and ambient conditions
can alter them, we would be able to refine targets of microbial
manipulation and reduce uses of chemicals and antimicrobial
agents in agricultural fields.

The aim of this review is to summarize and generalize the
current knowledge on the microbiota on animals, fish, and
plants in agriculture with emphasis on structure and functions
of bacterial communities, which may contribute to the health of
the host organisms and can strongly be impacted by agricultural
practices such as uses of antimicrobial agents. We finally provide
important yet overlooked aspects of microbiota in animals, fish,
and plants in agriculture, which should be considered in future
studies to reach the goal of defining the “optimal microbiota.”

STRUCTURE AND FUNCTION OF
MICROBIOTA OF ANIMALS, FISH, AND
PLANTS

General Overview of Microbiota of
Animals, Fish, and Plants
The body of organisms provides a wide variety of ecological
niche, in which the environmental conditions such as

temperature, pH, and oxygen level as well as nutrition availability
affect the composition of microbiota residing there. While
archaea and eukaryotic microorganisms such as fungi and
protozoa account for a significant proportion of microbiota
in the plant rhizosphere (12) and cow rumen (13), bacterial
communities have been primarily focused on in many studies in
agricultural science in terms of their functional contribution to
host nutrition and health. The 16S rRNA gene-based approach
with a next-generation sequencing platform has revealed
diversity and dynamics of bacterial communities colonizing
animals, fish, and plants in agriculture, which have enabled us
to grasp a general overview of compositional similarities and
differences of microbiota among these organisms (Figure 1).
Microbiota of animal, fish, and plants are highly diverse and
can harbor up to 20 bacterial phyla, but it is a common trait
that three phyla: Proteobacteria, Firmicutes, and Bacteroidetes,
dominate the bacterial community (Figure 1). Less abundant
phyla include Actinobacteria, which are commonly found but
variable at lower taxonomic levels (e.g., Streptomycetaceae,
Microbacteriaceae, and Corynebacteriaceae), while Fusobacteria
and Acidobacteria are more specified to animal/fish and
plants, respectively (Figure 1). Fusobacteria can represent
a major bacterial group of “core gut microbiome” of some
marine and freshwater fish (8, 27). Chloroflexi, Cyanobacteria,
Planctomycetes, Spirochaetes, and Verrucomicrobia sporadically
occur as subdominant phyla (Figure 1).

The high abundance of Proteobacteria in animals, fish, and
plants (Figure 1) reflects the advantages of facultative anaerobes
in the host proximity, where strict anaerobes are exposed to
the risk of oxygen toxicity but strict aerobes may face a severe
competition over oxygen as an electron acceptor. Such oxic-
anoxic interface is ubiquitous as microenvironments in and
around the host organism and is an important determinant
of the composition of microbiota (28). Facultative anaerobic
bacteria have highly flexible metabolic properties; they are able
to generate energy by fermentation or use inorganic nitrogen
compounds such as nitrate as an alternative electron acceptor
when oxygen is depleted from the environment. Under oxic
conditions, they grow rapidly using oxygen and break down
and build up a wide variety of organic compounds, which
essentially change the surrounding organochemical conditions
(29). Such exceptional adaptability to multiple environmental
conditions, which have been characterized by their high genetic
and phenotypic plasticity, enable Proteobacteria to be specialists
of host association, as represented by major target symbionts and
pathogens in agriculture (30–32).

While Proteobacteria are ubiquitous and their association
is often described to be opportunistic, they show apparent
host specificities in some microbiota. In fish intestinal
microbiota, Aeromonadaceae (Gammaproteobacteria)
represents the most abundant symbionts in freshwater fish,
while Vibrionaceae (Gammaproteobacteria) replace the
occupation in marine fish (27, 33). In microbiota of livestock
animals, the proteobacterial community is predominated by
Enterobacteriaceae, followed by Campylobacteriaceae and
Helicobacteraceae, which are a major source of foodborne
diseases of human (3, 34, 35).
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FIGURE 1 | Microbiota in agriculture. The figure provides an overview of the bacterial composition of the microbiota of different parts of livestock animals, gill and

intestines of fish, and phyllosphere and rhizosphere of plants at the phylum-level (pie-charts) and lower taxonomic levels. The data sources are 16S rRNA or

metagenomic analyses of intestinal samples from pigs (14, 15), cattle (3, 16), chicken (17), Atlantic salmon (18), grass carp (19), gill and mucosal samples from

rainbow trout (20), leaf samples from lettuce (21), leaf and rhizosphere samples from soybean (22, 23), root and rhizosphere samples from maize (24), rice (25, 26).

Plant phyllosphere has been found to be dominated
by strict aerobes, represented by Methylobacteriaceae and
Sphingomonadaceae (Alphaproteobacteria), but their abundance
is low in the plant root, being replaced by a large diversity of
facultative anaerobes (36). Interestingly, microbiota of plants and
fish have several groups of facultative anaerobes in common.
Multiple apertures of fish, i.e., skin, gills, and gut, are constantly
in contact with ambient water, each of which is covered with thick
mucus biofilm, which bears resemblance to the plant root system.
Comamonadaceae and Oxalobacteraceae (Betaproteobacteria) as
well as Flavobacteriaceae (Bacteroidetes), which dominate the
leaf-to-rootmicrobiota of plants, are also abundant in fishmucus,
especially in gill microbiota [Figure 1; (36, 37)]. Also, bacteria
known as plant growth-promoting microbes (PGPM) such
as Pseudomonadaceae (Gammaproteobacteria) and Rhizobiales
(Alphaproteobacteria) are also frequent colonizers in fish
intestinal microbiota (33, 38). In contrast, these bacterial groups
are not commonly found in animal intestinal microbiota.

Firmicutes population in animals, fish, and plants can be
roughly classified into two groups: Lactic acid bacteria from the
orders Bacillales and Lactobacillales, and anaerobic fermentative
bacteria affiliated with Clostridiales such as Clostridiaceae and
Ruminococcaceae. The former represents microbiota in oxic-
to microoxic regions like plant phyllosphere, fish mucosa, and
small intestines of animals, while the latter represents anoxic
fermentative digestive tracts like rumen and large intestine
(Figure 1). Lactobacillales is one of the most frequently found
and most studied bacterial groups in animal and fish microbiota
with some family-level variations, as Lactobacillaceae is a stable
and important colonizer in the small intestine of pigs (39,
40) and chickens (17), Carnobacteriaceae [rainbow trout; (20)],
and Leuconostocaceae [Atlantic salmon; (18)] are characteristic
in fish microbiota, and Enterococcaceae and Streptococcaceae
are generally found both in animals and fish microbiota
(41). Clostridiaceae is phylogenetically and functionally diverse
and widely distributed in anaerobic environments from plant
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rhizosphere to animal and fish intestines (42). Studies on
Clostridium spp. from various origins have shown their metabolic
versatility and dexterous switching of their fermentation pathway
in response to environmental changes (43, 44).

Bacteroidetes colonizing animals, fish, and plants can also
be affiliated with two types: aerobic Flavobacteriaceae, which
is adapted to the oxic interface of plants and fish as
mentioned above, and anaerobic fermentative bacteria such as
Bacteroidaceae and Prevotellaceae (Figure 1). Flavobacteriaceae
is often recognized as threatening pathogens of animals and fish
(45), but it also represents PGPM and has been introduced to
industrial applications (46). Bacteroidaceae and Prevotellaceae
are important primary fermenters in animal and fish intestinal
tracts, throughwhich complex carbohydrates derived from plants
and undigested proteins enter the microbial metabolic network
and provide soluble sugars and amino acids available for all type
of cells (47). They dominate the rumen and colonal microbiota
of animals (48, 49) but are rarely found in fish and plants, which
suggests their speciation to animal digestive tracts.

Relationship Between Intestinal Microbiota
Composition and Host Nutrition of Animals
and Fish
Microbiota of animals and fish associated with different
host physiological conditions have been widely studied to
elucidate the relationship between the structure and functions
of microbiota and host nutritional health. Although results
are variable across studies, which may be attributed to
different experimental designs, analytical methods, or individual
variations, a few general aspects can be inferred from recent
studies.

In animal husbandry, feed efficiency and growth performance
are often focused on as the most important physiological
factors. Recent studies on pig microbiota have reported the
enrichment of Clostridiales, as well as microbial functional genes
involved in fermenting dietary polysaccharides and amino acid
metabolism, are positively associated with porcine feed efficiency
(50, 51). Similarly, positive correlations of Clostridiales (family
Lachnospiraceae) to good feed efficiency have also been found in
the cattle rumen (49) and chicken caeca (52). In fish, the intestinal
microbiota of prebiotics-treated fish with improved growth
performance also showed an increased number of Clostridium
spp. (53). All of these studies have attributed the positive effects of
Clostridiales on the host feed efficiency and growth performance
to the high energy yields by the production of short-chain fatty
acids (SCFA) such as butyrate, which has also been suggested in
human gut microbiota studies (54).

Lactobacillales are thought to improve feed efficiency of
animals and multiple Lactobacillus strains are widely used as
feed additives especially in pig farming (55). While studies have
suggested a positive correlation of Lactobacillus to a better feed
efficiency of cattle, chickens, and fish (17, 49, 53), contrasting
effects of Lactobacillus spp. on growth performance have been
also reported on chicken (17, 52, 56). Therefore, species- and
strain-level variation should be considered when the abundance

of Lactobacillus strains is used as a criterion for evaluating the
health and growth performance of animals and fish.

Both in animals and fish, intestinal microbial colonization
has been shown to promote epithelial cell turnover and regulate
transcription of genes involved in nutrient metabolism and
immunity, and the corresponding gene modules are universally
conserved between mammals and fish (57–59).

Rhizosphere vs. Phyllosphere: Difference
of Microbiota Composition
Plant microbiota significantly differed from those of animals and
fish, in that in addition to the complex bacterial community,
a large variety of archaea as well as eukaryotic macro- and
microorganisms can directly and constantly affect the health of
the host plant (12, 60). In response to this challenge, plants
have a finely regulated immunological capacity, which recognizes
different exogenous molecules and responds by activating
specific defense mechanisms (61). The plant rhizosphere is
home of a high density [1010-1012 cells per gram soil; (62)]
of microorganisms and a large pool of microbial metabolites
influence the nutritional conditions of the host plant as well
as the composition of microbial populations (63). In contrast,
microbiota in the plant phyllosphere, i.e., leaf and root, are
enriched with restricted groups of bacteria. As mentioned
already, Proteobacteria and Flavobacteria have been found as
endophytes or epiphytes of the host plant, while any other
bacterial phyla dominating the rhizosphere, such as the phylum
Acidobacteria and Firmicutes, or prominent rhizobacteria such
as Streptomycetaceae (Actinobacteria) and Burkholderiaceae
(Betaproteobacteria) are segregated at different levels of the
phyllosphere (64). This suggests the existence of a “selecting
gate” between the rhizosphere and the phyllosphere, or different
compartments of the plant root (65).

Studies across different plant species including theArabidopsis
model indicate that the enrichment of Proteobacteria is a
common trait in the plant phyllosphere (Figure 1). However,
the enriched bacterial species, i.e., members selected by
the host plant, seem to differ significantly between plant
species. Pseudomonadaceae (Gammaproteobacteria) and
Streptomycetaceae (Actinobacteria), which are frequent
colonizers in the root of Arabidopsis, are not found in grass
plants such as barley, maize, and wheat (24, 66). Also, leaf
microbiota between plant species can be very different, as
exemplified that Enterobacteriaceae, Bacillaceae, and Pantoea
spp. dominating spinach and lettuce leaves are not abundant
in Arabidopsis (21, 67). While the bacterial composition of
microbiota of the phyllosphere of economically important plants
is very limited compared to that of the rhizosphere (36, 68), the
composition of microbiota in different plant compartment may
provide useful insights into site-specific selection mechanisms of
the host plant.

Acquisition of Microbiota in the Early Life
of Animals, Fish, and Plants
In animals, the intestinal immunity is known to be developed
in the course of frequent interaction with microbiota, which are

Frontiers in Nutrition | www.frontiersin.org 4 October 2018 | Volume 5 | Article 90

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Ikeda-Ohtsubo et al. Optimal Microbiota of Animals, Fish, and Plants

formed and fluctuated in response to the host dynamics (69). It
has been shown that the early-life transfer of microbiota from
the mother to the child via the birth channel and colostrum
milk can impact on subsequent intestinal microbial diversity
and immune processes in piglets (70). The transition from
nursing, weaning to conventional diets can dramatically affect
intestinal microbiota. Milk provides immunological factors such
as Immunoglobulin A (IgA), leukocytes, and peptides, which
suppress inflammatory cytokine expression, and lactose and
oligosaccharides contained in milk can stimulate the growth
of early-colonizing microorganisms such as lactic acid bacteria.
(71). Comparative analyses of the intestinalmicrobiota of nursing
and weaning piglets have shown that the dietary change from
sow milk to a starter diet composed of plant and animal-
based components has a significant impact on the microbial
structure as well as its functional capacities (34). In their
study, Enterobacteriaceae, Bacteroidaceae, and Clostridiaceae
dominating the nursing piglets almost disappeared as the piglet
diet shifted to a starter diet, which has been characterized by the
dominance of Prevotellaceae and Ruminococcaceae associated
with plant polysaccharide degradation. The early colonization
and subsequent disappearance of Enterobacteriaceae as well as
the maturation of microbiota associated with the domination of
plant-polysaccharide degraders in the early life have also been
commonly found in other mammals including human (72) and
also in chickens (73). Proliferation of pathogenic members of
Enterobacteriaceae can be regulated by selective binding activities
of host-derived IgA, which seems to be one of themost important
mechanisms affecting early development of intestinal microbiota
in animals (74).

Fish develop from eggs that are directly exposed to
microorganisms in their surroundings. The eggs are quickly
coated with microorganisms present in the surrounding water,
of which some have been shown to protect the eggs from
infection with oomycete Saprolegnia, a deleterious pathogen
causing economic loss in the salmon industry (75). Since fish
represents the largest number of vertebrates (>28,000 species),
a lot of interspecies variation may exist based on the receptors or
binding moieties on the egg surface. Although microbiota of fish
larvae is poorly understood (76, 77), some studies have suggested
that the microbiota composition of fish larva greatly depend on
the microorganisms present on the eggs, in the live feed and
rearing water (78, 79). Since microorganisms are able to enter the
fish larvae before it starts feeding (3–4 days after fertilization),
initial microbial infection in the larval intestine probably occurs
before the feed specific species grow to abundance [(76, 80)
Lopez Nadal, unpublished observations)]. In early life stages of
Coho salmon, Pseudomonas sp. present on the eggs has been
predominantly found in the juvenile gastrointestinal tract, but
not in the culture water or food, which suggests that a maternal
transfer may occur in the early developmental stages of the
salmon (81).

The development of seedlings from largely sterile plant seeds
is one of the most critical stages of a plant’s life cycle. Yet, very
little is known about the role of microbiota in the early life
of plants (82). Starting inoculum on the ripening seed may be
important for the establishment of microbiota and preliminary
enrichment of the soil microbiota by the parental plant will form

ideal environments for germination of seeds in the same soil.
Interestingly, it has recently been shown that diseased plants
can recruit themselves a consortium of beneficial, immune-
stimulatory microbes from the soil environment and let them
colonize germinating seedlings, which suggests that plants are
capable of selecting soil microbiota for protecting a successive
generation of plants against the causal agent of the disease
(83, 84).

Post-translational Host Modulation by
Microbiota
Host epigenomics has recently been shown to be one of the
most important factors significantly affected bymicrobiota. Anti-
inflammatory effects of some intestinal microorganisms such
as Clostridium spp. have been attributed to their metabolite
butyrate, an epigenetic substance known to inhibit activities of
histone deacetylases and modulate gene expression patterns of
host animals (85). Also in fish, promotion of resistance to viral
infection of conventionally reared zebrafish has been shown to
be associated with microbe-induced epigenetic changes in the
host (86). In plants, not only bacterial pathogens but also fungal
and other eukaryotic organisms have been known to manipulate
their host epigenetically to favor themselves (87). While low-
molecular-weight microbial metabolites such as SCFAs and
polyamines from mammalian intestinal microbiota have been
shown to be involved in various epigenomic mechanisms in the
mammalian host (88), modulatory effects of microbial structural
components such as LPS, peptidoglycan, and exopolysaccharides
from microbiota in most agricultural organisms have not yet
been well-studied except for those from some pathogens and
probiotics (see below). Molecular mechanisms how microbiota
modulates host epigenomics have recently been attracting major
attention, which may also contribute to understanding functions
of microbiota in animals, fish, and plants in agriculture (89).

MICROBIAL METABOLITES: BENEFICIAL
AND DELETERIOUS EFFECTS OF
METABOLITES PRODUCED BY
MICROBIOTA OF ANIMALS, FISH,
AND PLANTS

“Optimal microbiota” of agricultural organisms are expected to
provide beneficial effects on their host nutritional health and
immunological resistance. Microorganisms influence the host
health by producing a large variety of metabolites, which can
have both beneficial effects and detrimental effects on the host
physiology (Table 1).

Short Chain Fatty Acid (SCFA)
Fermentative microorganisms break down carbohydrates and
proteins into SCFA. In the gut of animals and fish, major
SCFAs produced by fermentative microorganisms are acetate,
propionate, and butyrate, while relatively low amounts of
formate, valerate, caproate, and branched-chain SCFAs, i.e.,
isobutyrate, 2-methyl-butyrate, and isovalerate, which are used
as a marker of undesired intestinal protein fermentation (90),
are also present (91, 92). SCFAs can modulate the gene
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TABLE 1 | Important microbial metabolites and their effects on host animals, fish, and plants.

Microbial metabolites Examples Hostsa Beneficial effects Detrimental effects

Short-chain fatty acids (SCFAs) Butyrate A, F Energy homeostasis anti-inflammatory

effect, improve intestinal barrier

Mucosal disruption

Propionate Neurotoxicity

Organic acids Lactate A, F, Increase butyrate production Acidosis, inflammation, neurotoxicity,

Succinate A, F, P Glycemic control, feed PGPM, mineral

solubilization

Feed pathogens

Ammonia and amino acid derivatives Ammonia, ammonium A, F, P Nitrogen nutritional source, pH

neutralization

Inflammation, mucosal damages,

increase oxidative stress

Biogenic amines A, F Synthesis of neurotransmitter

(serotonin)

Production of uremic toxins,

carcinogenesis

Signaling molecules acting on the host IAA, 2,4-DAPG, GABA A, F, P Growth promotion, anti-inflammation

Signaling molecules acting on other

microbes

AHL, AI-2 Maintenance of microbial structure (e.g., biofilm formation),

cell-to-cell communication between microbes

Antimicrobial compounds Bacteriocins, RiPPs A, F, P Defense against pathogens,

immunomodulatory effects

Cytotoxicity

Vitamins Vitamin B12, vitamin K, D A, F Provisioning of host nutrition,

immunomodulation

Microbial cellular components LPS, Polysaccharide A A, F, P Immunomodulation, maintenance of

intestinal homeostasis

Inflammation

aA, animals; F, fish; P, plants.

expression of the host epithelial cells in multiple ways and
their physiological concentrations may significantly affect the
host nutritional health and immunity (93, 94). SCFAs produced
by gut microbiota are known to serve as a major energy
source for ruminant animals, which consume cellulose fibers
and complex carbohydrates as the main diet, but also play a
crucial role for young monogastric animals for maintaining the
body weight after weaning (95, 96). Additional roles of SCFA
include defense mechanisms, mineral solubilization, and the
anti-inflammatory effects (97, 98). SCFA produced by intestinal
microbiota improve intestinal barrier functions and suppress
inflammation through signaling pathways such as activating
G-protein coupled receptors, inhibiting histone deacetylase,
stimulation of histone acetyltransferase activity, and stabilizing
hypoxia-inducible factor (HIF), which have been extensively
studied with rodent models (99, 100).

While SCFAs produced by intestinal microbiota are generally
considered to be beneficial to the host, excessive SCFAs
can cause intestinal injuries in animals with premature or
weakening mucosal conditions (101, 102). Formate, which
concentration increases along with dysbiosis, can enhance the
growth of unwanted enterobacterial pathogens (103). High levels
of propionate are often found in human and animals with
psychological and behavioral disorders and thought to have a
neurotoxic potential (104, 105).

Lactate and Other Organic Acids
Lactate is an important intermediate in anaerobic fermentation
of carbohydrates. While host-derived lactate has been known

for regulatory functions on the energy homeostasis and brain
metabolism (106, 107), lactate produced by microbiota may also
play important roles in the intestinal ecosystem, such as turnover
of host epithelial cells (108), in addition to their role as a major
food source for other SCFA producing bacteria (109). In the
small intestine of animals and fish, lactic acid bacteria such
as Lactobacillales (Figure 1) are known to produce lactate as
a primary metabolite, while Turicibacter (Erysipelotrichaceae)
represent the major lactate producers in the large intestine.
Residuous oxygen may increase relative abundance of intestinal
lactic acid bacteria, which generally show high tolerance against
oxygen (110, 111), and lactate productions and consumption
profiles may differ significantly between upper and lower
intestines (112).

Succinate is another major organic acid released from
microbiota during carbohydrate fermentation. Prevotellaceae
and Veillonellaceae, which are predominant bacterial
groups in the rumen and in the colon of pigs, are major
succinate producers. A large variety of bacteria including
Enterobacteriaceae and Clostridiaceae can grow on succinate,
and succinate accumulation would increase a risk of infection
by pathogenic bacteria (113). Recent studies have reported
succinate production by gut microbiota is strongly correlated to
the metabolic fluctuation of host animals (114, 115).

Accumulation of lactate and succinate has been reported in
the intestine of pigs with gastric problems (116, 117), which has
been shown to be inversely related to the SCFA concentrations
(118). Increased concentrations of lactate and succinate can cause
a decline in pH and drastic changes in metabolic patterns in
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animal and fish intestines, which can lead to deleterious outcomes
such as acidosis and inflammation (119). To avoid this, a rapid
turnover of lactate by gut microbiota seems to be crucial for
intestinal homeostasis in animals and fish (28).

Plant root exudates contain a high amount of organic
acids, such as citrate, succinate, and malate, which can
significantly affect the composition of the microbial community
in the rhizosphere (120, 121). The high amount of organic
acids exudated from the host plant feed and control
proximal microbiota consisting of plant growth-promoting
microorganisms (PGPM) as well as pathogens, and the
microbiota in rhizosphere may also affect the concentration
of organic acids excreted from the plant host by modulating
their regulatory genes (122, 123). As organic acids can affect
the growth and plant-promoting activities of PGPM, e.g.,
suppressing phosphate stabilization (124), the concentration
of organic acids should be well fine-tuned by the host-microbe
regulatory network (125).

Ammonia and Amino Acid Derivatives
Ammonia (NH3) and ammonium (NH+

4 ) play an important
physiological role in the body of animals, fish, and plants as
it provides usable forms of nitrogen required for the synthesis
of DNA, RNA, and proteins. Ammonia not only serves as a
major nitrogen source but also are responsible for buffering
the ecosystem such as rumen by neutralizing excess acids.
Many bacteria are able to generate ammonia via protein or
peptide degradation and N2 fixation. Fixed atmospheric N2

in the NH+

4 form is an important source of nitrogen in the
soil ecosystem, which concentration in agricultural soils is
approximately between 20 and 200µM (126), and many plants
are highly dependent on endophytic or rhizospheric nitrogen-
fixing bacteria for their nitrogen demands. Ammonia is also
an important metabolite in the microbiota of animals and fish
and millimolar level concentration of ammonia can be generally
found in the intestinal ecosystem [e.g., 10–70mM in colonic
lumen; (127)]. Many bacteria such as E. coli and Bacteroides spp.
are known to require ammonia or ammonium for their growth
in the intestinal system, while they are able to provide amino
acids and their derivatives to other intestinal bacteria and the host
(29, 128).

Toxicity of ammonia (NH3) and ammonium (NH+

4 ) from
microbiota poses a risk to the host as well. When excess
protein is present in the intestine, ammonia production
by microbial deamination will exceed microbial ammonia
assimilation (129). Urea produced by the host animals is also
converted to ammonia and further to ammonium hydroxide
by microbiota, which can elevate luminal pH at the level of
causing mucosal damage and irritation (130). Accumulated
ammonia has multiple adverse effects on host epithelial cells
(129). Ammonium toxicity is also documented in plants, but the
cause for this phenomenon and involvement of microbiota is still
unknown (131).

Increased protein and peptide concentrations in a microbial
ecosystem may facilitate active amino acid conversion to
various nitrogenous derivatives. Many facultative and obligate
anaerobic bacteria ferment amino acids into a wide variety of

intermediate metabolites such as indoles, phenols, cresols, and
their derivatives as well as biogenic amines (132). Biogenic
amines such as tyramine, putrescine, histamine, methylamine,
and tryptamine, are produced by decarboxylation of amino
acids, which have significant physiological and toxicological
functions in eukaryotic cells (132, 133). Biogenic amines serve
as precursors of various bioactive compounds, which can
directly regulate physiology and behavior of the host. For
example, tryptamine, a β-arylamine neurotransmitter derived
from tryptophan metabolism, influences modes of serotonin
production in enterochromaffin (EC) cells and therefore affect
host behavior (134, 135).

Secondary Metabolites
Secondary metabolites from microbiota such as tryptamine,
which can serve as hormones or signaling molecules (136)
to “control” the host physiology and behavior, are also
known for plants. Indole-3-acetic acid (IAA), one of the most
important plant growth regulators, is also derived from the
tryptophan metabolism of PGPM such as Pseudomonadaceae
(137). Pseudomonadaceae are also known to produce a wide
variety of secondary metabolites including antibiotic compounds
and siderophores, which can protect the host plant from
invasive pathogens not only in the rhizosphere but also
in phyllosphere (138, 139). Specific secondary metabolites
of Pseudomonadaceae such as 2,4-diacetylphloroglucinol (2,4-
DAPG) are of special interests for controlling specific plant–
microbe interaction (140). In animals and fish, secondary
metabolites produced by gut microbiota such as gamma-
aminobutyric acid (GABA) are likely to have more general
but significant influence on physiological and psychological
properties of the host (141).

Antimicrobial compounds such as bacteriocins, siderophores,
and lipidopeptide biosurfactants enable some microorganisms
to outcompete and eliminate pathogens and shape the structure
of microbiota by also affecting the host immunity (139, 142,
143). Although bacteriocins and siderophores have been well-
documented in some beneficial or pathogenic strains, genes
encoding these compounds could be commonly found in a
wide range of microorganisms (144). In human microbiota,
ribosomally synthesized post-translationally modified peptides
(RiPPs), which include lantibiotics, thiazole/oxazole-modified
microcins (TOMMs) as well as thiopeptides antibiotics, are one
of the most widely distributed and variable microbial metabolites
(145).

Signaling molecules known as autoinducers play important
roles in cell-to-cell communication between microorganisms
and shape the synchronized behavior of microbial community
such as biofilm formation (146). In contrast to the well-
known quorum-sensing molecule AHL (N-acyl homoserine
lactone), which are produced as virulence factors by many
gram-negative pathogenic bacteria and probably uncommon
in healthy intestinal microbiota in animals and fish (147,
148), AI-2 (autoinducer 2) are present in many intestinal
bacteria such as Firmicutes and Bacteroidetes and known to
modify the structure and behavior of intestinal microbiota (149,
150).
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Vitamins
Animals depend on their gut microbiota for various vitamins,
which are often deficient in their normal diet. Deficiencies
in vitamin B12 and other B-complex vitamins, as well as
vitamin K and D in animals and fish has been correlated
to the absence of intestinal microorganisms producing those
vitamins (151, 152). In addition to the crucial role for the host
nutritional health (153–155), vitamins formed by microbiota
are also provisioned to other microorganisms in proximity
thereby supporting the cross-feeding metabolic network in
gut microbiota (152). Some vitamins are also known to
participate in host epigenomic mechanisms by altering the
transcriptional machinery of the host cells (88). While most
plants can synthesize vitamins and do not depend on their
microbiota for their vitamin requirements, some algae have
been known to benefit from the microbial provision of vitamin
B12 (156).

Microbial Cellular Components
Microbial metabolites affecting host health also include
structural compounds of microorganisms themselves. Exo-
and lipopolysaccharides (LPS), peptidoglycan, flagellin, and
some unique peptides and nucleic acids released from the
microbial community, which are often collectively called
as microorganism-associated molecular patterns (MAMPs),
are specifically detected as “non-self ” and distinguished by
pattern recognition receptors (PRRs) of the host cells and
trigger immune responses in animals, fish (86), and plants
(157, 158). It has long been recognized that MAMPs from
pathogens play a crucial role for host immunity in animals
and plant (96, 159–161), but recent studies have revealed that
MAMPs from commensal microbiota may also control the
host immune system to maintain intestinal homeostasis (162).
Common intestinal residential bacteria such as Clostridium
and Bacteroides have been shown to stimulate the production
of cytokines such as IL-6 and TNFα that protect intestinal
tissues from injury (163), and also to induce the proliferation of
immune cells such as FOXP3+ regulatory T (Treg) cells (164).
Although MAMPs required for induction of each host factor
are not well-understood, species-specific polysaccharides such
as Polysaccharide A found on the capsule of Bacteroides fragilis
may play important roles for initial binding and recognition to
the host cells (165).

In the model plant Arabidopsis thaliana it was recently shown
that MAMPs from beneficial root microbiota members are
similarly recognized by the plant immune system as MAMPs
from pathogens, but the downstream immune response was
suppressed by so far unknown mechanisms (89).

INFLUENCE OF AGRICULTURAL
MANAGEMENT PRACTICES ON
MICROBIOTA IN ANIMALS, FISH,
AND PLANTS

Recent comparative studies on gut microbiota between
urban and hunter-gatherer human population have suggested

continuous decreases in microbial diversity over generations
during worldwide industrialization (166–168). Similar changes,
i.e., loss of diversity in domestic vs. wild counterparts, have been
documented in primates and Przewalski’s horses (169, 170),
but the diversity level of gut microbiota has been found to be
consistent in mice (171) and a vice versa situation has also been
observed in cloacal microbiota in parrots (172). Nevertheless,
many studies have shown that the reduced diversity of gut
microbiota is characteristic to many diseases and disorders
in human [e.g., (173, 174)], therefore the loss of diversity in
gut microbiota over generations may have negatively affected
the health of not only human but also other animals and fish.
Although reduced microbial diversity is not often discussed for
plants, the long-term agricultural practices may have served as
strong selective pressures on the microbiota of the phyllosphere
and rhizosphere (175, 176). Supplementation of the “lost”
population could improve host fitness, as has been shown in
mice (177), but the cause of the loss of certain microbial groups
and its consequences are not fully understood. For optimizing
microbiota in agricultural organisms, it is important to evaluate
how domestication and agricultural management practices can
affect the microbiota and host nutritional health and immunity.

Domestication
While some livestock animals and farmed fish have evolved
into domestic species distinct from wild relatives, studies on
the microbiota of wild representatives of agricultural organisms
provide insights into how domestication may have affected the
microbial composition of agricultural organisms. For example, a
comparative study of domestic pig microbiota with that of wild
boars has revealed that Lactobacillus spp. and Enterobacteriaceae,
which are considered to be dominant bacterial groups in pig
intestinal microbiota (178), are not common in wild boars
(179). Interestingly, recently domesticated wild boars have been
found to harbor Enterobacteriaceae as a major group, which
collectively suggests that gut microbiota of domestic pigs may
reflect the recent agricultural management practices (179). Since
the increased abundance of Enterobacteriaceae has been reported
to be correlated to post-weaning diarrhea (180), agricultural
management is likely to have a significant impact on the health
of domestic pigs via the fluctuation of gut microbiota. In cattle,
inoculation with bison rumen contents has been shown to
increase protein digestibility and nitrogen retention but not
fiber digestibility, which suggests that microbiota of ancestors
of livestock animals may have had higher capacities to extract
nitrogen nutrition from crude materials (181).

While a study on gut microbiota of laboratory-reared
and recently-caught zebrafish has shown little influence from
domestication on intestinal microbiota of fish and shrimps (8,
182), some bacterial groups in wild fish have been found to
disappear upon captivity (183) and therefore careful investigation
should be needed in future studies.

Plant microbiota can also be affected by domestication, i.e.,
plant breeding in combination with yield-increasing agricultural
practices and the use of chemical fertilizers and pesticides,
which has resulted in the selection of specific plant traits
maximizing profitable functions from the rootmicrobiome (184).
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Studies have shown distinct features of the microbial community
associated with wild and domesticated crop species such as
rhizosphere microbiota from sugar beets (185) and endophytic
population from grapevines (186). Nevertheless, plant hosts
respond to variousmicrobial factors by changing their physiology
and thereby can modulate their microbial composition (187),
it is important to obtain more insights into the physiological
and structural differences between wild and domesticated plant
species.

Agricultural Management Practices
Agricultural management practices include multiple and long-
term stress factors such as selective breeding, confinement,
nutritional changes, close contact with people, and antimicrobial
usage, all of which can affect the composition of microbiota to a
greater extent.

Selective breeding produces a new type of organism with
a phenotype different from its parental organisms, which can
affect the composition of the host-specific microbiota. Gut
microbiota in livestock animals including cattle and pigs have
been reported to show a host-specificity and habitability over
generations (188, 189), which suggests that the host genetics are
correlated to microbial structure and functions (190). Although
fish gut microbiota are largely affected by ecological factors,
several studies have shown host selection plays an important role
in shaping intestinal and gill microbiota (191, 192). In plants,
rhizosphere microbiota has been shown to have specific profiles
unique to its host plant species, genotype, and cultivar (193, 194).

Confinement such as indoor breeding and aquaculture has
been reported to affect microbiota of animals and fish to various
extents. There is no clear evidence on how housing systems
(indoor vs. outdoor) can affect microbiota of animals, since
previously reported changes in gut microbiota in response to
different housing methods can be better explained by dietary
changes (195, 196). As intestinal tracts of fish are constantly
exposed to water and a large number of microorganisms in
their surroundings, it is not surprising that the conditions of
aquaculture such as water quality (e.g., salinity) and external
microbial community significantly affect gut microbiota of fish
(197–199).

Nutritional changes including grazing, feeding, and weaning
in animals or fertilizer amendment for plants, are one
of the most important factors shaping the structure and
functions of microbiota in agriculture. Availability of microbiota-
accessible organic compounds is a crucial determinant for
the survivability of individual microorganisms in the host
systems (200). In livestock animals, starch grains, plant
fibers and crude proteins in feed are digested by rumen or
colonic microbiota to different degrees, which can essentially
change the structure and functions of gut microbiota and
the host nutritional health as already mentioned above (51,
201, 202). Weaning can cause serious fluctuation of rumen
and intestinal microbiota of young animals (34, 203), which
can occasionally lead to dysbiosis and post-weaning diarrhea
(204). Also similar to animals, dietary changes such as feeding
high-cellulose diet has been shown to increase cellulolytic
bacteria in the fish intestine (205, 206), and relationships

between the dietary components and gut microbiota are
extensively studied (207). Continuous cropping and fertilizer
amendment can modulate nutritional status in the agricultural
soil and affect plant microbiota (208). The growth inhibition
caused by the continuous cropping, such as the imbalance of
inorganic nutrients and prevalence of pathogenic fungi, could
be mitigated by native microbiota (209), which suggests the
resilience of agricultural soils highly depend on their microbial
activities.

Continuous close contact with human and animals seems to
allow inter-species transmission of certain bacterial groups even
between the intestinal microbiota. As the microbial composition
in human gut has been found to be affected by adjacent livestock
animals or companion animals (210, 211), the microbiota of
animals, fish, and plants could be affected by the human
microbial assemblage. The predominance of Bifidobacterium spp.
in the modern human gut microbiota reflecting the dietary
transition from fiber-rich plant-based diet to western diet (212),
has also been observed in animals, which have experienced close
contact with humans (213).

Influence of Usage of Antimicrobial Agents
on Microbiota in Agriculture
Antimicrobial agents have been used as a common agricultural
practice over the decades, which aims not only to treat infectious
diseases of animals and fish but also to promote growth
and improve productivity (214). The worldwide overuse of
antimicrobial agents has already brought major concerns: the
spread of AMR in microorganisms through the global ecosystem.
Microbiota of animals, fish, and plants, which have been treated
with antimicrobial agents, can serve as a reservoir of resistance
genes where commensal microorganisms may confer AMR to
pathogenic microorganisms by horizontal transfer events (215).
Use of low-dose antibiotics as antimicrobial growth promoters
(AGPs) in livestock farming is still a common practice in many
countries, which poses a great risk to accelerate emergence and
spread of antibiotic-resistant bacteria (216).

It has been shown that antimicrobial agents can alter intestinal
microbiota of animals in location-specific ways, (i) structural
and functional disruption of foregut microbiota, and (ii) increase
of AMR in hindgut microbiota (217). The major risk of
disruption of foregut microbiota in piglet is characterized by the
increased number of Streptococcus suis and Enterobacteriaceae,
which are known to cause infectious diseases like pneumonia
and post-weaning diarrhea (218). Such effects by the early-life
exposure to antimicrobial agents can be retained throughout
the life of animals (70, 219). Reduced diversity of intestinal
microbiota by antimicrobial treatments, which can increase the
host susceptibility to pathogens, has also been documented in fish
(220).

The risk of AMR in agriculture is not restricted to livestock
farms. Livestock manure is frequently used for composting and
eventually amended to agricultural soils as fertilizers and the high
frequency of AMR in manure can be transferred to the microbial
community in the soil, which can also affect the plant microbiota
(221, 222). Aquaculture ponds are considered to be a significant
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reservoir of AMR (223), especially in countries where livestock
manure is used for feeding fish in farming ponds (224). Once
entering to the agricultural food chain, AMR is transmitted and
exchanged between microbiota associated with animals, fish, and
plants and spread over agricultural food products, which can be
eventually introduced to human microbiota (225–227).

FUTURE TASKS FOR DEFINING “OPTIMAL
MICROBIOTA” OF ANIMALS, FISH, AND
PLANTS

The cross-sectional view of the microbiota of animals, fish,
and plants reviewed here may provide an idea of what aspects
should be particularly considered in the future investigation
for elucidating structure and functions of “optimal microbiota”
and applying the knowledge for improving host nutrition and
immunology to maximize productivity and sustainability in
agriculture.

Quantitative Understanding of Microbiota
Many past studies employ 16S rRNA gene sequencing approach
to study microbiota of animals, fish, and plants. While the
composition of microbiota, which can be estimated by the
number of sequencing reads, allows understanding of the
diversity and distribution of specific microbial groups, the
density of microorganisms is often overlooked. Microbial
density is especially important when studying a specific host
region where microbial activities play crucial roles or the host
immunological factors respond to a certain density threshold.
The microbiota of animal rumen, hindguts or rhizosphere with
the extremely high density of microorganisms [1011-1012 cells
per mL or gram; (62, 228)] and animal foreguts or the plant
phyllosphere with a smaller number of microbial cells in several
orders of magnitude (104-107 cells) should be considered as
a separate ecosystem themselves, i.e., habitats with different
types and levels of microbial structure and functions, which
could be differently recognized by the host immunity (162).
Therefore, using fecal samples for studying gutmicrobiota should
be done with a special caution, since the foregut microbiota are
highly underrepresented in the feces and its compositional and
functional changes can be completely masked by the hindgut
microbiota (229).

While no direct counts of the number of microbial
metabolites produced are available for any host organism, as their
composition constantly changes depending on environmental,
host and microbial factors, attempts have been made to use
sequencing information to estimate the number of compounds
that may be produced from human microbiota. Donia et al. have
identified 14,000 predicted small-molecule biosynthetic gene
clusters (BGCs) by shotgun sequencing human gut metagenome
where they have shown that 3,118 BCGs have been found in
the healthy human microbiota, among which 599 clusters can be
affiliated with typical human gut microbiota while 1,061 clusters
with the typical oral cavity (90). They reported that gene cluster
classes in the human microbiota differed from those in non-
human microbiota, which suggests that species-specific analyses

of BCGs will also be useful for agricultural organisms. To make
the best use of such useful approach, it is worth summarizing
what kind of microbial metabolites can occur and how they affect
physiology and growth properties of the host animals, fish, and
plants.

Cultivation of the Uncultured Majority
The limitation of our current knowledge on microbiota
of animals, fish, and plants can be largely attributed to
the predominance of uncultured microorganisms in each
microbiota. For example, a study by Stanley et al. has been
able to identify several bacterial phylotypes in chicken caeca,
which are negatively correlated with growth performance of the
host chicken, but all of these phylotypes have been affiliated
with unknown and uncultured bacterial groups of the phylum
Firmicutes (35). In cattle, 44.6% of all microbial sequences
obtained from gastrointestinal tracts have failed to be identified at
the genus level (3). Similarly, eggs at the fertilization stage of grass
carp have been reported to be colonized by a large proportion
(>50%) of uncultured bacteria (230). In maize rhizosphere,
important functional genes for microbial nitrogen metabolism
such as nitrogen-fixation and denitrification have been mainly
affiliated with uncultured bacteria (231).

These findings underscore the importance of cultivation
of the uncultured members of microbiota colonizing animals,
fish, and plants. The difficulties of conventional cultivation
techniques are now able to be addressed by modern technologies
featured by single-cell (meta)genomics (232) and culturomics
(233), which combine the analytical methods such as the
index fluorescence-activated cell sorting (FACS) or the matrix-
assisted laser desorption/ionization–time of flight (MALDI–
TOF) with multiple culture conditions and high-throughput
16S rRNA gene sequencing (233, 234). Isotope probing (SIP)
(235) has also been used as a powerful method to identify
uncultured microorganisms with specific activities such as
host-protein utilization in animal gut microbiota (236) or
the pesticide degradation in the rhizosphere microbiota (237).
Individual profiles of microbial metabolites (Table 1) are also
an important aspect to understand the role of uncultured
microorganisms, which can be extensively assessed by recently
advancing metabolomic approach integrated with genomic and
proteomic datasets (238).

Systematic Investigation of Microbial
Functions
Many well-described Proteobacteria species, which are widely
distributed in healthy animals, fish and plants, also behave
as opportunistic pathogens (239, 240). Campylobacter spp.
and Salmonella spp., two major food-borne pathobionts have
been found to be stable colonizers of livestock animals and
human, which are usually unharmful but occasionally cause
diseases of the hosts (241). Plant-associated bacteria of the class
Gammaproteobacteria such as Pseudomonadaceae, Erwiniaceae,
Xanthomonadaceae show species- and strain-level differences
in their traits as pathogens, antagonists of the pathogens, or
PGPM (240). Most microorganisms consisting the microbiota
of animals, fish, and plants seem to be opportunistic symbionts,
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which colonization can result in beneficial and detrimental, or
no effects on the host, which might be determined not only by
genetic properties of each microorganism but also by various
environmental conditions and host factors (242, 243). The
question whether the identified bacterial groups are beneficial
or detrimental cannot be answered only by 16S rRNA gene-
based analyses, and the microbial metabolites (244), host-specific
selective marker genes including virulence or symbiotic factors
in the microbial genomes (145, 245), and metabolites involved
in modulations of the host cell immunity (246) should be
systematically investigated for elucidating the roles ofmicrobiota.
A study on the fruit flyDrosophila has shown that occurrence of a
single protein of plant pathogenic bacterium Erwinia carotovora,
i.e., evf factor determines the successfulness of persistence in
the gut of the host (247). Similar unknown mechanisms may
present in microorganisms associated with animals, fish, and
plants, which are responsible for the host-specific selection of
individual microorganisms.

As the majority is still uncultured, microbial physiology is not
fully resolved andmany important microbial processes in natural
ecosystems have still not well-discussed inmicrobiota research on
animals, fish, and plants.

Nitrogen fixation, as well as ammonia oxidation and
denitrification (reduction of nitrate, nitrite, and N2O), are
globally important processes conducted by microorganisms
fueling the nitrogen cycle of most ecological systems (248) but
have been poorly investigated for animal and fish microbiota.
Nitrogen fixation and other inorganic nitrogen conversion
have been known to maintain nutritional status of termite
gut microbiota, where nitrogen-poor wood polysaccharides
(cellulose and hemicellulose) serve as major sources of nutrition
(249, 250). Recent findings of a genetic diversity of the nitrogen
fixation gene nifH in human microbiota indicate that inorganic
nitrogen metabolism may play an important role in animal
microbiota (251), but it is still unknown which microorganisms
are responsible for the processes.

Microbial removal of hydrogen (H2) generated in the course
of fermentation of fiber-rich carbohydrates is a critical process
in every anaerobic system, including gut microbiota of animals
and fish (252). H2-consuming intestinal microorganisms such as
methanogenic archaea, sulfate-reducing bacteria, and reductive
acetogens are therefore as important as primary fermenters
such as Bacteroidetes for maintaining the redox balance and
conserving energy (253), and are crucial for the stable SCFA
production in the ecosystem (254, 255). In contrast to the well-
studied rumen microbiota, little is known about H2-consuming
microorganisms for monogastric animal guts, but a study by Rey
et al. have shown that genes encoding Wood-Ljundahl pathway,
which are key components for reductive acetogenesis, have been
shown to be highly represented among expressed RNAs in human
gut microbiota than marker genes for methanogenesis or sulfate
reduction (256).

Clarification of Optimization Purposes
Recently, Lloyd-Price et al. has suggested “healthy human
microbiome” can be defined in terms of microbial composition,
function, dynamics, and ecology (6). Although this definition can

be applied for defining “optimal microbiota” of animals, fish, and
plants in agriculture, the dataset from each target organism may
be highly limited compared with that of human gut microbiome
(257) and additional criteria should be considered in the context
of productivity and sustainability.

In plant science, improving growth speeds, conferring
resistance against environmental stresses, or improving
nutritional values have been successfully accomplished by
inoculating PGPM consisting of specific bacterial groups or
amending materials promoting the growth of PGPM (258).
In contrast, the impact of inoculation of putatively beneficial
microorganisms i.e., probiotics to animals and fish seems to
be less pronounced (259). Striking similarities between gut
microbiota in antibiotic-treated pigs, which gain weight and
have high-feed efficiency, and gut microbiota linked to human
obesity (218, 260) indicate that the “optimal microbiota” are not
necessarily identical to the “healthy microbiota” in agricultural
contexts. Therefore, clarifying purposes of the microbiota
optimization, i.e., prevention of specific diseases or addition
of nutritional values in the products, is prerequisite for the
employment of microbiota manipulation techniques, which have
been reviewed by Brugman et al., in this issue (11). As discussed
above, the worldwide threat of AMR should be combated by
reducing the amount of unnecessary use of antimicrobial agents
in agricultural practice and by manipulation of microbiota,
which can minimize the risk of diseases and optimize the growth
performance of target organisms. Host–microbe interaction in
individual agricultural organisms should be studied with close
reference to the current knowledge available from laboratory
models and humans, through which new ideas for modulating
microbiota as alternative strategies to antibiotic use can be
shared and discussed interdisciplinarily.
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