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Chronic diseases and degenerative conditions are strongly linked with the geriatric

syndrome of frailty and account for a disproportionate percentage of the health care

budget. Frailty increases the risk of falls, hospitalization, institutionalization, disability,

and death. By definition, frailty syndrome is characterized by declines in lean body

mass, strength, endurance, balance, gait speed, activity and energy levels, and organ

physiologic reserve. Collectively, these changes lead to the loss of homeostasis and

capability to withstand stressors and resulting vulnerabilities. There is a strong link

between frailty, inflammation, and the impaired ability to repair tissue injury due to

decreases in endogenous stem cell production. Although exercise and nutritional

supplementation provide benefit to frail patients, there are currently no specific therapies

for frailty. Bone marrow-derived allogeneic mesenchymal stem cells (MSCs) provide

therapeutic benefits in heart failure patients irrespective of age. MSCs contribute to

cellular repair and tissue regeneration through their multilineage differentiation capacity,

immunomodulatory, and anti-inflammatory effects, homing and migratory capacity to

injury sites, and stimulatory effect on endogenous tissue progenitors. The advantages

of using MSCs as a therapeutic strategy include standardization of isolation and

culture expansion techniques and safety in allogeneic transplantation. Based on this

evidence, we performed a randomized, double-blinded, dose-finding study in elderly,

frail individuals and showed that intravenously delivered allogeneic MSCs are safe and

produce significant improvements in physical performance measures and inflammatory

biomarkers. We thus propose that frailty can be treated and the link between frailty and

chronic inflammation offers a potential therapeutic target, addressable by cell therapy.

Keywords: cell transplantation, regenerative medicine, inflammation, immunosenescence, geriatrics

DEFINITION AND EPIDEMIOLOGY OF FRAILTY

Frailty has been clinically defined as “a state of increased vulnerability resulting from aging-
associated decline in reserve and function across multiple organ systems such that the ability
to cope with everyday or acute stressors is compromised” (1). Central to this geriatric medical
syndrome is the notion that it has multiple causes and contributors that lead to the characteristic
decreases in strength, endurance, activity, energy levels, and physiologic function, which increase
the susceptibility to dependency and death (2, 3). Of note, although frailty is not characterized as
a disability, it does increase the risk of disability in affected individuals (3–5). Moreover, there is
a close link between a patient’s health and frailty (6, 7). These patients tend to show a greater risk
of frailty when there are other comorbidities affecting their physical and psychological well-being,
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such as cardiovascular disease, diabetes, high blood pressure,
cancer, or cognitive impairment (8). The main clinical
presentations of frailty are falls, which are a result of
impaired balance, gait, and awareness, fluctuating disability
with independent and dependent days, and other non-specific
signs and symptoms, such as unexplained weight loss, infections,
and extreme fatigue.

Several instruments have been developed to assess frailty.
These can be categorized as the unidimensional or phenotypic
model, based on the physical or biological dimension, and
multidimensional or cumulative deficit models, centered on the
links between the physical, psychological, and social realms, all
of which have been well validated (1, 8). The unidimensional
or phenotypic model was first operationally defined by Fried
et al. (9) and was used to develop the Cardiovascular Health
Study (CHS) Index, commonly referred to as the “Physical Frailty
Phenotype” (10). Using this model, frailty is defined as having
three out of five phenotypic criteria indicating “compromised
energetics”: weak grip strength, low energy levels or self-reported
exhaustion, slow gait speed, low physical activity (low energy
expenditure), and/or unintentional weight loss (9). On the other
hand, the Canadian Study of Health and Aging (CSHA) frailty
index was developed using the cumulative deficit model (11, 12).
The CSHA frailty index measures several age-associated health
deficits (13), and is computed by counting the number of health
deficits and dividing this number by the total number of health
questions tested (12), with a score of 1 being the maximum index
and indicating the poorest prognosis. Indeed, an index >0.7 is
associated with a high risk of mortality (14). This index has
been simplified for use in the outpatient clinic setting as the
CSHA “clinical frailty scale” (15). This 7-point rapid screening
tool, consisting of 7 variables ranging from fit to complete
functional dependence, highly correlates with the frailty index.
The maximum in this scale is a score of 7, indicating “severe
frailty” (16).

A number of other instruments to assess frailty have
been developed and validated, including the “FRAIL (Fatigue,
Resistance, Ambulation, Illnesses, Loss of weight)” frailty scale
by the International Academy of Nutrition and Aging (17), the
“Study of Osteoporotic Fractures (SOF)” frailty scale (18), the
“Frailty Instrument for Primary Care of the Survey of Health,
the Aging and Retirement in Europe (SHARE-FI)” scale (19),
and the “Groningen Frailty Indicator” (20). The FRAIL and SOF,
for example, predict new disability at 3 and 9 years of follow up
and the FRAIL predicts 9-year mortality in an African American
population (21). A multidimensional instrument based on a
“structural questionnaire” is the “Tilburg Frailty Indicator” (TFI)
(22). This instrument is made up of 10 questions on determinants
of frailty that include demographics and other lifestyle questions,
as well as, 15 frailty elements arranged according to physical,
psychological, and social aspects. The total score of the TFI ranges
from 0 to 15, with frailty ascertained if the total score is 5 or
greater.

In view of the aging population worldwide, there is a growing
medical and scientific interest in the accurate diagnosis and
treatment of frailty. Despite multinational efforts to reach an
agreement on the definition of frailty and how to assess it

with a simple and easily accessible tool, no consensus has been
reached, as evidenced by the various definitions and multiple
assessment tools being currently used in the literature. However,
an agreement has been reached broadly defining frailty as a
clinical syndrome characterized by increased vulnerability to
stressors that leads to functional impairments and adverse
health outcomes (2). This definition is considered to be
useful in primary care assessments. Moreover, these functional
impairments and health outcomes may be preventable or
treatable by pharmacologic or non-pharmacologic interventions.

With regards to the prevalence of frailty in community
dwelling individuals over the age of 65 in the United States, it was
estimated at 7–12% using the frailty criteria validated in the CHS
(10). Moreover, frailty prevalence increased with age from 3.9 to
25% in the 65–74 and over 85 age groups, respectively. Frailty
prevalence was also found to be greater in women than men (8
vs. 5%). Ethnic differences in frailty prevalence were noted, with
black Americans more likely to be frail than white Americans (13
vs. 6%) and Mexican Americans similar to Caucasians 7.8% (23),
based on the Hispanic Established Populations Epidemiologic
Studies of the Elderly. Compared to frailty, pre-frailty has a much
greater prevalence, ranging between 35 and 50% in adults aged
65 or older. Pre-frailty is considered to be present in patients
exhibiting one or two of the phenotypic criteria described in CHS
and is reportedly more common in women than in men, just
like frailty (9). There is also an association between pre-frailty
and lower educational level and socio-economic status (24, 25).
Despite the higher accumulation of deficits in women than in
men of the same age, men exhibit a higher risk of mortality
even though this accumulation is associated with mortality
in both genders (26–28). Importantly, comorbidities, especially
cardiovascular, pulmonary, musculoskeletal, neurologic, and
psychiatric, are more prevalent in pre-frail compared to non-frail
persons (24, 25, 29).

FRAILTY AND CARDIOVASCULAR
PERFORMANCE

The prevalence of cardiovascular disease (CVD) increases
substantially in individuals 65 years of age and over, and
especially in individuals aged 80 and over (30). Not surprisingly,
increased CVD prevalence is linked with increased prevalence
and incidence of frailty, as shown in a meta-analysis of 54,250
elderly patients without frailty at baseline (31).

The aging cardiovascular system has some very specific
phenotypic alterations (9, 30, 32). These include aortic stiffness
due to increased collagen and decreased elastin, endothelial
dysfunction, left ventricular hypertrophy, and a diminution
in exercise induced increase in ejection fraction. These
characteristic abnormalities are hypothesized to contribute to
specific symptoms of the frailty syndrome and to increase the
morbidity and mortality from CVD in elderly individuals (7, 10,
30). Several studies document the increased risk for mortality in
frail elderly patients with cardiovascular events such as non-ST-
segment elevation myocardial infarction (NSTEMI) (3, 7). Frail
individuals have increased disease burden and therefore more
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prolonged recuperation vs. a non-frail subject (2, 8, 10). There are
additional associations between frailty and other cardiovascular
diagnoses including angina, myocardial infarction, hypertension,
heart failure with reduced ejection (HFrEF), heart failure with
preserved ejection fraction (HFpEF), and stroke (10, 30). Gait
speed is one symptom of frailty that is linked with increased
cardiovascular events and mortality, specifically in ST elevation
myocardial infarction patients (33, 34). Importantly, frailty
presents a major challenge to the ability of CVD patients to
undergo surgery and other medical interventions successfully,
thus affecting outcomes (30).

ROLE OF INFLAMMATION IN AGING AND
FRAILTY

“Inflammaging” is a term that has been used to depict
the particular molecular and cellular inter-related events that
promote the process of aging (35). With aging, there is a
continuous accumulation of damaged macromolecules and cells,
generation of toxic metabolites and microbial byproducts, and
development of cellular senescence and immunosenescence (36,
37). Not only does inflammaging accelerate the aging process, it
is linked with and accelerates the diseases associated with aging,
including cardiovascular diseases, cognitive, and neurologic
impairments, cancer, and degenerative joint disease. Importantly,
the increased susceptibility to disease and death is a result of
these molecular inflammation-related changes in physiological
systems. As such, measuring the molecules or biomarkers that
mediate inflammation has become a useful tool to assess the aging
process (37). For instance, there is evidence that circulating levels
of pro-inflammatory cytokines increase during aging. High levels
of TNF-α, interleukin-6 (IL-6), and C-reactive protein (CRP),
even in elderly populations considered healthy, are independent
predictors of mortality (38). This same inflammatory response
underlies the tissue damage linked to various age-related chronic
diseases (39). Indeed, a multitude of studies have now reliably
demonstrated that chronically high levels of pro-inflammatory
biomarkers do predict risk of morbidity and mortality in the
elderly population (37).

Frailty involves aging-related decreases in organ physiologic
reserve, leading to impaired ability to withstand stressors and
resulting in increased vulnerability to disease. Frail patients
manifest disturbances in the hematologic and inflammatory
systems, which seem to be at the core of this geriatric syndrome
(37, 40). For instance, frail patients have elevated levels of
fibrinogen, IL-6, factor VIII, D-dimer, and CRP compared
to non-frail patients (32, 41). Studies also report reduced
hemoglobin, high leukocytes, elevated TNF-α, and low vitamin D
as biomarkers of frailty. Importantly, the inflammatory cytokine
IL-6 strongly correlates with the frailty phenotype and with
unfavorable health outcomes (32, 42–44). Of note, among frail
subjects, women exhibit higher concentrations of inflammatory
and coagulation factors than men (41).

CRP is an example of one biomarker that has a higher
concentration in women experiencing symptoms of frailty.
Differential white blood cell counts, on the other hand, similarly

predict frailty risk in men and women. Although there is still
insufficient data to show which markers specifically affect men
or women, dysregulated inflammation is a considerable key
physiological marker in correlation with the frailty syndrome in
both genders. It is of interest to note that the strong correlation
between frailty and inflammatory and hematologic biomarkers is
remarkably similar to the strong correlation between CVD and
these same biomarkers, supporting the notion that frailty and
CVD are clinically interrelated (37). Importantly, frail individuals
also have characteristic declines in cardiovascular reserve, as
described above, which may in turn contribute to the symptoms
of the syndrome.

Substantial evidence has shown that chronic inflammation
underlies the syndrome of aging frailty, leading to impairments in
mobility and gait, sarcopenia, osteopenia, and decreased strength.
High levels of circulating IL-6 correlate with the development
of mobility disability (45) and high levels of IL-6 and TNF-
α, either alone or together, are linked with decreased muscle
mass and strength, increasing the susceptibility to sarcopenia
(46, 47). Moreover, high levels of IL-6 and CRP are independently
associated with decreases in physical performance and strength
in the elderly (48, 49). The Women’s Health and Aging Study
(WHAS) demonstrated that elevated IL-6 levels in older women
were associated with a greater decline in the ability to walk
and a greater risk of acquiring physical disabilities (50). The
MacArthur Studies of Successful Aging also found an association
between decreased walking speed and grip strength and elevated
levels of IL-6 and CRP (51). With regards to all-cause mortality
predictors, elevated systemic IL-6 levels correlate strongly with
various causes of death, as well as, with mortality in the near
future (52, 53). A strong correlation is also present between
CRP and early mortality and TNF-α and mortality among the
elderly (54, 55). Since these inflammatory biomarkers are not
specifically indicative of a particular disease or cause of mortality,
these increases in systemic inflammation are thought to reflect a
fundamental aspect of the aging process (37).

Chronic inflammation also causes remodeling of the immune
system, which diminishes immune responses and contributes to
increased mortality in subjects over 60 years of age with frailty
(32, 42–44). Immunologic remodeling, in turn, is an important
pathophysiologic contributor to frailty in older humans (56,
57). This functional impairment in cell-mediated and humoral
immunity in frailty is well documented (58–60) and leads to an
increased vulnerability to infectious diseases (40). However, the
level of inflammation that affects individuals with frailty is “low-
grade,” for example, TNF-α levels range between 1.5 and 1.68
pg/ml (61). In this regard, it has been proposed that the chronicity
of the inflammation causes more harm than the absolute level
at any given time (62). This elevation in systemic TNF-α levels
increases intracellular TNF-α in B cells, which causes a shift in
B cell subsets producing an increased percentage of exhausted
B cells and decreased switch memory B cells, thereby impairing
B cell function (63, 64). In aging and frailty, T cell activity is
also impaired, and can be assessed by a decrease in the ratio
of CD4:CD8 cells (65). Together, these processes promote an
immune cell refractory state where both T and B cell responses
to de novo antigens and vaccines are diminished (66).
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As there is no cure for aging or frailty, the therapeutic
strategy is on developing approaches to lessen or at least regulate
the effects of chronic inflammation on aging, with the goal to
promote a healthier aging process. It is believed that frailty can
ultimately be prevented or attenuated, and the link between
frailty and inflammation offers a potential therapeutic target.

ENDOGENOUS STEM CELLS IN FRAILTY

An individual’s endogenous stem cell production and function
decreases with age and this decrease likely contributes to reduced
ability to regenerate and repair organs and tissues (67–69).
For instance, there is evidence that as mesenchymal stem cells
(MSCs) undergo senescence, their multilineage differentiation
and homing capacity and immunomodulatory and wound
healing properties gradually disappear (69, 70). These aging-
related declines may be due to intrinsic stem cell aging, for
example there is evidence that aging induces a “quiescence-to-
senescence switch” (71) in stem cells, and aging-related changes
in extracellular matrix components and the stem cell niches
in tissues (68, 72, 73). Collectively, these aging-related changes
reduce stem cell self-renewal, maintenance and regenerative
potential. With regard to frailty, altered and dysfunctional stem
cell niches have been implicated in frailty syndrome (74, 75).
As such, it has been proposed that a regenerative medicine
therapeutic approach has the potential to improve or reverse the
signs and symptoms of frailty (32, 70), as further discussed below.

MESENCHYMAL STEM CELLS AS A
THERAPEUTIC STRATEGY FOR FRAILTY

Medical advances and a more health aware society have
contributed to a longer living population. However, as
the population ages, the growing number of frail elderly
patients will continue to increase the demand for healthcare
services. Therefore, novel medical therapies for frailty are
under investigation to address this unmet need amongst
the elderly population. Although certain diets, especially the
Mediterranean diet (76, 77), nutritional supplements (78),
hormonal supplements (79), and exercise regimes (80, 81) have
been shown independently or in combination (82) to improve
the signs and symptoms of frailty (8), there is currently no
specific medical therapy available to prevent or treat the frailty
syndrome.

There are specific features of the frailty syndrome that
support a potential role of MSCs to ameliorate or improve
frailty. MSCs are drawn to sites of injury, where they act to
reduce inflammation and promote cellular repair (83). Notably,
MSCs improve cardiovascular outcomes in patients with acute
myocardial infarction (84), as well as, ischemic (85) and non-
ischemic cardiomyopathy (86), reduce TNF-α and CRP levels,
and are safe in patients irrespective of age (83, 87). The strong
association between frailty and CVD and the growing database
documenting safety and potential favorable effects of cell-based
therapy in CVD provide justification for the assessment of

TABLE 1 | The potential effects of mesenchymal stem cells (MSCs) on frailty

phenotypes.

Frailty

phenotypes

Therapeutic MSC

effects

Postulated mechanisms of

action

Unintentional

weight loss

↓ Chronic inflammation ↓ Inflammation, ↓ Onset of

sarcopenia, ↓ TNF-α, ↓ IL-6, ↓

CRP, ↓IL-1ß, ↑ IL-10, ↑ TGF-ß

Low energy levels

or exhaustion

↑ Pulmonary function,

↓ Chronic inflammation

↑ Endothelial function,

↓ Biomarkers of inflammation

Weak grip strength ↑ Physical performance ↑ Endogenous stem cell function

Slow gait speed ↑ 6-min walk distance ↑ Endothelial function, ↑ Cardiac

performance, ↑Skeletal muscle

performance

Low physical

activity

↓ Chronic

inflammation, ↑ Quality

of life

↓ TNF-α, ↓ IL-6, ↓ CRP, ↓IL-1ß,

↑ IL-10, ↑ TGF-ß

potential benefits of cell therapy in subjects with frailty (88, 89;
Table 1, Figure 1).

Anti-inflammatory and Immunomodulatory
Effects of Mesenchymal Stem Cells
MSCs can evade and modulate the host’s immune system to
prolong their therapeutic effects without being detected and
eliminated. The absence of major histocompatibility complex
(MHC)/human leukocyte antigen (HLA) class II and associated
costimulatory molecules and low levels of MHC/HLA class I
molecules expressed by MSCs (88, 89) enables them to evade
detection by the host immune system. This absence of class
II molecules provides the basis for allogeneic MSC therapy,
although allogeneic MSCs may eventually induce an immune
reaction due to their mismatched MHC-1 molecules, which can
be recognized by the host CD8+ T-cells (90).

MSCs influence the host immune system in numerous ways.
They reduce both B- and T-lymphocyte proliferation in a
paracrine manner (secretion of factors) and by direct cell-cell
contact (91, 92). MSCs reduce the expression of proinflammatory
cytokines, including, TNF-α, interleukin (IL)-1β, IL-6, and CRP
[see (93–95) for review; Figure 1]. The paracrine effects of MSCs
are produced in response to either secretion of a wide array
of individual factors, such as growth factors and cytokines, or
via exosomes, small extracellular vesicles that contain proteins,
peptides and microRNAs (miRNAs).

Factors secreted by MSCs include transforming growth factor
(TGF)-β, hepatocyte growth factor (HGF) and interleukins,
among many others [see (93) for review]. Many of these
factors interact to produce an immunomodulatory effect (96).
Furthermore, the effect of a specific factor may be modulated by
the microenvironment (93). Perhaps the most well studied factor
secreted by MSCs is TGF-ß. MSCs produce TGF-ß in response
to IL-4 receptor mediated activation of the STAT6 pathway (97).
TGF-ß inhibits the proliferation of CD4+ and CD8+ T-cells
and the secretion of T helper1 (Th1) cells while increasing T-
regulatory cells (Treg). Another factor secreted by MSCs, IL-
10, is an anti-inflammatory and immunoregulatory cytokine also
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FIGURE 1 | Circulating levels of proinflammatory cytokines, particularly TNF-α, interleukin-6 (IL-6), and C-reactive protein (CRP), increase during aging and are

independent predictors of mortality in frail patients. These same pro-inflammatory cytokines are elevated and underlie the tissue damage linked to various age-related

chronic diseases, particularly cardiovascular diseases (CVD). Mesenchymal stem cells (MSCs) reduce the expression of proinflammatory cytokines, including TNF-α,

IL-6, and CRP, in both CVD and frailty syndrome through paracrine effects or via exosomes. Paracrine effects involve the secretion of a multitude of individual growth

factors and cytokines. Exosomes are small extracellular vesicles that contain proteins, peptides and microRNAs (miRNAs).

expressed by a variety of immune cells. MSC expression of IL-
10 requires direct interaction with T-cells (98). IL-10 inhibits the
ability of macrophages to produce pro-inflammatory cytokines.
However, recent evidence suggests that increased production of
IL-10 by cardiac macrophages promotes diastolic dysfunction
(99). This result emphasizes that the effect of a specific factor,
whether secreted by MSCs or another cell type, is dependent on
context and it is the combination and interaction of secreted (and
resident) factors that enable MSCs to modulate the host immune
system.

MSCs also affect the immune system through their release
of exosomes. Exosomes are 40–100 nm extracellular vesicles that
can be isolated from MSC-conditioned media. Ex vivo studies
demonstrate that MSC-derived exosomes reduce secretion
of pro-inflammatory cytokines (IL-1ß, TNF-α) and increase
production of TGF-ß by PBMCs, but don’t affect PBMC
proliferation (100). Administration of MSCs (101, 102) or
MSC-derived exosomes (103) reduces the immune response in
two mouse models of autoimmune disease, Type 1 diabetes
mellitus and uveoretinitis. These results and those from many
other studies, suggest that MSC-derived exosomes represent an
alternative to stem cell therapy.

Exosomes are secreted by many cell types, including cells
of the immune system. A recent study by Ipson et al. isolated
exosomes from 7 frail and 7 robust individuals who suffered
from similar chronic diseases. Eight exosome-derived miRNAs
were identified that were differentially expressed in these two
populations and are found at higher levels in frail individuals
(104). While the sample size was small, this result suggests that
exosome miRNA profiles may represent biomarkers for frailty.
Perhaps isolating and administering MSC-derived exosomes
containing miRNAs that can counteract these “frailty-specific”
miRNAs, will provide a therapeutic option for treating frailty.

Not only do MSCs affect the host’s immune system, but
the host immune system also modulates the activity of MSCs

(105–107). Exposure to interferon (IFN)-γ generally enhances
the immunosuppressive action of MSCs while simultaneously
increasing their HLA class I and II cell surface marker
expression (94). However, low concentrations of both IFN-γ
and TNF-α, can cause MSCs to become pro-inflammatory
(94, 95). Furthermore, host-derived pro-inflammatory cytokines
can impair the capability of MSCs to differentiate into bone,
fat, and cartilage lineages [see (94)]. However, even after
MSCs have differentiated into chondrocytes, they can exert
immunosuppressive effects (108, 109).

MSCs are not all equal. Recent studies suggest that the tissue
fromwhich anMSC originates influences its immunomodulatory
properties. Kim et al. compared the immunosuppressive
properties of MSCs isolated from periodontal ligament, umbilical
cord, and adipose tissue and determined that while they all
similarly inhibited the proliferation and activation of PBMCs,
UC-MSCs and to a lesser extent Ad-MSCs, secreted higher
levels of immunosuppressive cytokines in response to IFN-γ
(110). Furthermore, MSCs obtained from aged individuals
possess reduced immunomodulatory properties compared to
those from the young (111, 112). The tissue microenvironment
into which MSCs migrate/are injected into also influences
their immunosuppressive properties. MSCs located within an
inflammatory microenvironment can suppress cytotoxic T cells
(96, 113), induce T regulatory cells (114, 115), and stimulate
macrophage polarization (116) (transition from an M1 to an
M2 phenotype) thereby promoting an anti-inflammatory milieu.
Furthermore, a recent study demonstrated that MSCs exert
antibacterial effects (117) indicating that MSCs possess an
immune function independent of the host’s immune system.

Results of Phase I and II Clinical Trials of
MSCs for Frailty
Currently, there is no specifically approved treatment for frail
patients and therefore no established standard of care. The
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ultimate goal of a therapeutic strategy for frailty is to lengthen the
healthy lifespan and restore or maintain cognitive and physical
functionality of patients. We conducted a phase I and a phase II
clinical trial, CRATUS (NCT02065245), investigating the safety
(primary outcome) and efficacy (secondary outcome) of an
intravenous infusion of allogeneic bone marrow-derived MSCs
as a novel therapy for treating patients experiencing mild to
moderate frailty (56, 57, 75). Efficacy outcomes included physical
performance, quality of life, and systemic inflammation.

The phase I trial was a non-randomized, dose-escalation study
in which 15 patients diagnosed with frailty, based on the CSHA
clinical frailty scale, received allogeneic MSCs by intravenous
infusion at doses of 20, 100, or 200 million MSCs (5 patients per
group). All of the doses were administered as an 80mL infusion
at a speed of 2 mL/min, for a total infusion time of 40min.
Incidence of any treatment-emergent serious adverse events
(TE-SAEs) at 1 month post-infusion was the primary outcome.
Physical function measurements and circulating inflammatory
biomarkers, measured at 3 and 6 months post-infusion, were
the secondary outcomes. No TE-SAEs were reported with any of
the doses at 1-month post-infusion and no clinically significant
donor-specific immune reactions occurred during the first 6
months post-infusion. The six-min walk distance significantly
increased at 3 and 6 months and circulating TNF-α levels
significantly decreased at 6 months in all treatment groups.
The best improvement in all efficacy outcomes was observed
with the 100-million dose, except in the case of TNF-α, which
showed a significant improvement with both the 100- and 200-
million doses. The physical component of the SF-36 quality of
life assessment also showed significant improvements in the 100-
million dose group at all time points relative to baseline. This
study indicated that allogeneic infusion of MSCs is safe and
immunologically tolerated in aging frailty patients.

The phase II trial was a randomized, double-blinded, dose-
finding study of intravenous allogeneic MSCs at doses of 100-
or 200-million compared to placebo in 30 frailty patients (mean
age 75.5 ± 7.3) (57). The primary outcome was safety, namely
incidence of TE-SAEs at 1-month post-infusion. The secondary
outcomes were physical performance measures, patient-reported
quality outcomes, and immune markers of frailty, measured
at 6 months post-infusion. There were no therapy-related TE-
SAEs reported at 1-month post-infusion. Physical performance
improved to a greater extent in the 100-million dose group
and measures of immunologic parameters improved in both
the 100-million and 200-million dose groups. The 6-min walk

test, short physical performance exam, and forced expiratory
volume in 1 s improved significantly in the 100-million dose
group but not in the 200-million dose or placebo groups.
Moreover, there was improvement noted in the female sexual
quality of life questionnaire and decreases in serum TNF-α
levels in the 100-million dose group. B cell intracellular TNF-α
improved significantly in both the 100-million and 200-million
dose groups compared to placebo. Early and late activated T-
cells were decreased as well by MSC infusion compared to
placebo. Although there were no safety concerns with the 200-
million dose, there was no added benefit observed with this
higher dose compared to the 100-million dose. In summary,
intravenous allogeneic MSCs were found to be safe in individuals
with aging frailty and produced significant benefits in measures
of physical performance as well inflammatory biomarkers, which
are important therapeutic outcomes in the frailty syndrome.

Allogeneic therapy was used in these studies because it
offers “off-the-shelf ” availability and a consistency to the
cell product (118). These properties are extremely important
as autologous cells may have deficiencies in function due
to the underlying disease process, co-morbidities, lifestyle,
concomitant medications, and/or patient age (119–121).
Despite reports that allogeneic MSCs may be immunologically
cleared more rapidly than autologous cells after differentiation
(122), due to immunogenicity, this immunologic clearance
might be beneficial in reducing any long-term risks of
cell engraftment (123). Given the excellent safety profile
and promising therapeutic efficacy demonstrated in these
early phase trials (Table 1), studies with repeat dosing and
longer follow up time (CRATUS; NCT02065245), as well
as, a larger phase IIb (NCT03169231) clinical trial are
ongoing to establish the efficacy of MSCs in the frailty
syndrome.
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