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The gastrointestinal tract with its microbiota is a complex, open, and integrated

ecosystem with a high environmental exposure. It is widely accepted that the healthy gut

microbiotais essential for host homeostasis and immunostasis, harboring an enormous

number and variety of microorganisms and genes tailored by hundreds of exogenous and

intrinsic host factors. The occurrence of dysbiosis may contribute to host vulnerability and

progression to a large spectrum of infectious and non-communicable diseases, including

diabetes and obesity, two metabolic disorders that are showing an endemic trend

nowadays. There is an urgent need to develop efficient strategies to prevent and treat

metabolic disorders such as diabetes and obesity which are often associated with serious

complications. In this paper, we give an overview on the implications of gut microbiota

in diabesity, with a focus on the triangle gut microbiota—diet-host metabolism and on

the way to manipulate the gut microbial ecosystem toward achieving novel diagnosis and

predictive biomarkers with the final goal of reestablishing the healthy metabolic condition.

The current research data regarding the precision/personalized nutrition suggest that

dietary interventions, including administration of pre-, pro-, and syn-biotics, as well as

antibiotic treatment should be individually tailored to prevent chronic diseases based on

the genetic background, food and beverage consumption, nutrient intake, microbiome,

metabolome, and other omic profiles.
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INTRODUCTION

Human microbiota includes bacteria, fungi, archaea, protozoans, and viruses, which seem to be
even more numerous compared to those contained in the human genome (1). The microorganisms
inhabiting the organism achieve a perfect mutual synergy with its host, being often referred together
as a “superorganism” or a host extra-organ. The gastrointestinal tract (GIT) contains at least
1014 bacteria, with the highest density achieved in the large intestine, while the number of genes
(intestinal microbiome) is superior (150- to 500-fold) to human DNA (2). Thus, GIT microbiota
could be practically considered the fourth organ of the digestive system or the “forgotten organ”
living in the gut like in a bioreactor (3). Large-scale projects, such as the EuropeanMetagenomics of
the Human Intestinal Tract (MetaHIT) (4) and the US HumanMicrobiome Project Consortium(5)
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report more than 2,000 species, classified into 12 different
phyla, of which 93.5% belong to Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes (6–8). Independently of birth
place, sex, age, or body weight, there are three predominant
“enterotypes,” enriched in Bacteroides, Ruminococcus, and
Prevotella (9). The GIT microbiota composition (diversity or the
abundance of particular species) is shaped by hundreds of factors,
including host genetics, mode of delivery (Figure 1), gender, age,
height, weight, diet, immune system, gastrointestinal secretions
blood levels of various molecules or red blood cell counts,
stool consistency, sleep, medical history, ethno-geographical
and socio-economic conditions, sanitary conditions, smoking,
antibiotics and antibiotics-like substances, laxatives and less
intuitive drugs (e.g., antihistamines, antidepressants, and
metformin) (10–13). A deep sequencing study of the gut
microbiomes revealed correlations between the microbiome and
126 exogenous and intrinsic host factors, including 12 diseases,
31 intrinsic factors, 19 drug groups, 60 dietary factors, and 4
smoking categories (10).

ROLE OF GIT MICROBIOTA IN THE HOST
ENERGY BALANCE

GIT microbiota plays a significant role in human health and
disease (1) (Figure 2). The microbiota is a major player in energy
harvest and storage, as well as in a variety of metabolic functions,
such as bile acids and choline transformation, fermenting and
absorbing undigested carbohydrates or providing vitamins and
amino acids for the host (14).

Recent studies show that the microbiota may impact weight-
gain and adiposity via several inter-connected pathways, such as
energy harvest and production of microbial metabolites, through
effects on inflammatory responses and on the gut-brain axis.

One of the most important metabolic activity of GIT
microbiota is the production of non-gaseous SCFAs (acetate,
propionate, and butyrate), through fermentation of microbiota-
accessible, complex carbohydrates (MAC) (e.g., oligosaccharides,
resistant starch, and plant cell wall materials) (15–17). The
predominant commensal bacteria that produce SCFAs are
represented by Akkermansia muciniphilia, Prevotella spp.,
Ruminococus spp., Coprococcus sp., Faecalibacterium prausnitzii,
Eubacterium rectale, and Roseburia spp. (18). Absorbable SCFAs
are important modulators of gut health and immune function
(19), intestinal hormone production, and lipogenesis (20).
SCFAs can interact with the host through many pathways.
SCFAs signal through G-protein-coupled receptors such as
G-protein coupled receptor GPR41 and GPR43 which affect
crucial processes (e.g., inflammation, expression of tight junction
proteins, and enteroendocrine regulation) and have a crucial role
in maintaining an acid pH favoring the proliferation of certain
bacterial species (16, 21, 22). Propionate, butyrate, and acetate
trigger the local release of peptide YY (PYY) and of glucagon-like
neuropeptide-1 (GLP-1) from enteroendocrine L cells regulating
digestion and alter the liver function by modulating lipid
metabolism with an indirect effect on the storage of fatty acids
in the liver. Butyrate in particular is an energy substrate for

colonocytes, releasing 1,000 kcal/day. Due to the trophic role on
the intestinal epithelium and by promoting GLP-2 release and
increasing mucus secretion, butyrate decreases the permeability
of the intestinal barrier and is protective against colitis and
colorectal cancers. SCFAs pathways were shown to be elevated
in obesity metagenomic studies, and SCFAs levels were higher in
overweight or obese people and animal models. Propionate is a
substrate for gluconeogenesis, which signals through the central
nervous system and protects the host from diet-induced obesity
and glucose intolerance. Increased levels of propionate were
associated with the microbiota following gastric bypass, which
granted protection from diet-induced obesity upon transfer to
germ-free recipient mice (2, 18).

Gut microbial metabolism of choline (a water-soluble nutrient
essential for human life, found in eggs, seafood, beef, turkey and
chicken, tuna, salmon, code and sardines, broccoli, cauliflower,
cabbage, spinach, green peas, mushrooms, tomatoes etc.) leads
to accumulation of trimethylamine (TMA), which is converted
in the host liver to trimethylamine-N-oxide (TMAO) by flavin-
monooxigenenase 3 (FMO3) (2). Circulating levels of TMAO
were linked to an increased risk of cardiovascular diseases
mortality and type 2 diabetes (T2DM) (23). Regulation of TMA-
producing microbial species or their activity in the intestinal
microbiota could aid to find novel means for preventing
or treating atherosclerosis and choline deficiency-associated
diseases. Resveratrol reduces TMAO levels through down-
regulation of the enterohepatic farnesoid X receptor-fibroblast
growth factor (FXR) axis, indicating that the gut microbiota
is a potent target for personalized medicine interventions
in diminishing metabolic disease development risk (24, 25).
Another TMAO precursor, betaine is also widely distributed
in animals (seafood), plants (spinach, wheat germ, bran) and
microorganisms, mainly acting as an osmolyte (protecting cells
and proteins from environmental stress) and methyl donor
(transmethylation). Insufficient dietary levels of methyl groups
results in hypomethylation in several metabolic pathways such
as the hepatic fat metabolism, leading to steatosis and plasma
dyslipidemia. Betaine was reported to protect internal organs,
improving vascular risk factors, and enhancing performance,
these beneficial effects justifying the efforts for the development
of databases concerning betaine content in food (26).

Secondary bile acids are generated from cholesterol by
microbiota of the lower small intestine and colon. By binding to
distinct receptors, such as G-protein-coupled bile acid receptor
1 (TGR5) and the bile acid receptor FXR, secondary bile
acids serve as signaling molecules. The ability to metabolize
the naturally occurring FXR antagonist tauro-β-muricholic acid
is an essential process toward obesity, steatosis, as well as
impaired tolerance to glucose and insulin. Bariatric surgery is
associated with changes in the metabolism of bile acids and in
the microbiota composition. Germ-free mice that received a fecal
transplant from people that had Roux-en-Y gastric bypass 10
years before, gained less fat compared tomice that were colonized
by microbiota from obese people (2).

Importantly, the microbiota regulates tissue-level immune
maturation via the microbial metabolism of tryptophan.
Specifically, commensal Lactobacilli use tryptophan as an energy

Frontiers in Nutrition | www.frontiersin.org 2 March 2019 | Volume 6 | Article 21

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Lazar et al. Microbiota and Diet in Diabesity

FIGURE 1 | Development of gut microbiota. During the first years of life, the microbiota is largely influenced by external factors, such as delivery mode and type of

feeding (breast or artificial formula feeding). Subsequently, the intake of solid food as well as the gradual maturation of the immune system modulates the gut

microbiota. By the age of 2–3 years old, the microbiota resembles that of an adult with Bacteroidetes and Firmicutes as the main phyla.

source to generate ligands of the aryl hydrocarbon receptor
(AhR), a transcription factor involved in the organogenesis
of intestinal lymphoid follicles (ILFs). AhR impacts IL-22
production and thus affect the secretion of anti-microbial
peptides (lipocalin-2, S100A8, and S100A9) (27).

Other microbial metabolites whose functions in the host
physiology and pathophysiology are still not yet elucidated
include: indole propionic acid, associated with an improved
epithelial barrier in the gut; ethylphenyl sulfate, correlated
with the exacerbation of autistic behavior in a mouse model;
indoxylsulfate and p-cresyl sulfate, both linked with poor
cardiovascular outcomes in patients with uremia (2).

The brain signals to the gut through efferent vagal signaling
and neuroendocrine pathways. The communication pathway
with the microbiota is direct when neurotransmitters (5-
hydroxytryptamine [5-HT], γ-aminobutyric acid [GABA],
catecholamines) are sensed by the microorganisms, or
indirect, via effects on the intestinal niche. The intestinal
microenvironment can be modified by vagal efferent nerves
involved in intestinal physiology (i.e., mucus secretion), mucosal
immune responses, gut motility, intestinal barrier function, all of
which impact microbiome composition and function (28).

The intestine signals to the brain via blood-borne substances
or through afferent vagal and spinal nerves. Metabolites released
by the microbiota can act as signaling molecules that regulate
hormone {peptide YY [PYY], glucagon-like peptide-1 [GLP-
1]} secretion from intestinal enteroendocrine cells. GLP-1 and
PYY have receptors expressed in brain regions involved in the
regulation of host energy balance (29).

Host (Epi)genetics—Git Microbiota—Diet
Metabolic Interplay
The gut microbiota of traditional rural populations in various
parts of the world that have been separated for thousands of
years on different continents showed increased bacterial diversity
and presence of microbial taxa, lacking from the Western

populations, suggesting that modern lifestyles, medical practices
and processed foods in the industrialized world lead to an
overall decline in gut microbiome biodiversity and loss of specific
phylogenetic groups.

The microbiota contributes to the bioavailability,
transformation, absorption, and/or excretion of several chemical
elements including selenium, zinc, cobalt, and iodine all of
which are co-factors for various enzymes involved in epigenetic
processes (30).

Several studies proved an interplay between host genetics and
diet in regulating the microbiome composition. Modifications
in adiposity and metabolic response of low-calorie, weight-
loss diets could be significantly altered by different genetic
variants, especially those linked to T2DM, obesity, food
preference and metabolism (23). A genome-wide significant
variant in LCT region (lactase gene) modulating Bifidobacterium
sp. abundance in the intestinal microbiome, associated with
dairy intake was recently identified. A study in the elderly
Mediterranean population revealed an association of the LCT
variant and obesity, significantly regulated by dairy lactose and
milk intake (23). Therefore, diet could alter the composition
and/or abundance of the intestinal microbiota, as well as
the microbial metabolome (31, 32). For instance, studies in
Japanese populations have reported that after consumption of
seaweeds, the genes encoding enzymes involved in metabolizing
marine red algae were transferred from the marine-associated
bacteria to certain bacteria in the intestinal microbiome (20).
In fact, the microbiome has a huge role in extending our own
metabolism for constituting the hologenome, defined as the sum
of the host and its microbiota genetic information, representing
the result of their longtime coevolution, finally achieving the
host metabolic diversity (33, 34). Many bacterial enzymes,
such as beta-glucosidase, beta-glucuronidase, nitroreductase,
azoreductase, 7-alpha-dehydroxilase, cholesterol-dehydrogenase
are inducible enzymes whose colon concentration is strongly
influenced by the diet. Interestingly, omnivorous subjects had
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FIGURE 2 | Roles and modulation of gut microbiota. In addition to helping

digestion and synthesizing vitamins and other metabolites, such as

short-chain fatty acids (SCFAs), the members of the gut microbiota play an

important role in host defense (by producing antimicrobial compounds and

competing against pathogens for adhesion sites and nutrients) as well as in

the development and training of the immune system. The gut microbiota is

influenced by a wide array of factors such as diet, probiotics, and antibiotics.

enhanced TMAO levels compared to vegans or vegetarians after
ingesting L-carnitine, via an intestinal microbiota-dependent
mechanism (20). There are reports of a gene-diet interaction
in regulating Bifidobacterium sp. and other genera abundance,
hence demonstrating the importance of host-microbiome
interplay (17, 31).

Microbiota can promote epigenetic modification: the host
responds to environmental factors through the alterations of
DNA methylation and histone modifications. DNA methylation
affects gene expression by regulating accessibility of the
transcriptional machinery, transcription factors, and histone
modifiers and to chromatin. DNA methyltransferases (DNMTs)
can add a methyl group from the donor S-adenosylmethionine
(SAM) to the carbon-5 position of the cytosine (5 mC), whereas
the ten-eleven translocation enzyme (TET) dioxygenase family
oxidizes 5 mC to hydroxymethylcytosine (5 hmC). Bacteria
such as Bifidobacterium and Lactobacillus produce folate which
supports the generation of SAM (35). Dietary methionine
modulates the composition of the host microbiota as well as
bacterial metabolism to release substrates for SAM synthesis.
Themechanisms involved inmicrobiota-dependentmodification
of histones are still poorly understood. Acetylation of histones
exposes target sites in nucleosomal DNA for transcription factors
whereas deacetylation triggered by histone deacetylase (HDAC)
removes acetyl groups from histone tails, hence leading to a

reduction in transcriptional accessibility. Butyrate, produced
by various commensal bacteria (Faecalibacterium, Coprococcus,
Roseburia, Eubacterium, etc.) from dietary fiber has emerged as a
HDAC inhibitor, with anti-inflammatory activity by suppressing
STAT1 and NF-kB activation (36).

Several infectious agents (human papilloma virus, hepatitis
viruses B and C, Epstein–Barr virus, polyomaviruses, Chlamydia
pneumoniae, Campylobacter rectus, Streptococcus bovis,
Helicobacter pylori) and members of the gut microbiota are
epigenetic factors implicated in the metabolic syndrome
pathogenesis. An example of an indirect action of microbial low
molecular weight (LMW) molecules on chromatin remodeling,
is the deficiency of some substrates (betaine, methionine,
choline) and/or cofactors (vitamins B12, B2, B6, folate)
generated by the microbiota. Indigenous intestinal bacteria
may affect the bioavailability of dietary methyl groups and
cause the hypomethylation of several epigenomic-associated
pathways. This alteration may hinder DNA methylation leading
to decreased SAM content, elevated plasma homocysteine
concentrations, and elevated risk of various hepatica and
vascular diseases, as well as malignancy. LMW molecules
including SCFAs, sulforaphane cysteine/sulforaphane N-acetyl-
cysteine and allylmercaptan/diallyldisulfide produced during
the microbial metabolism of cruciferous vegetables or garlic
could interfere with the activity of other enzymes responsible for
epigenetic modifications, such as deacetylases, acetyltransferases,
phosphotranferases, nucleases, serine-threonine protein kinases,
etc. Also, gut microbiota is the main donor of acetyl groups
for the formation of acetyl-CoA that is involved in epigenomic
acetylation reactions. Bacteria and eukaryotes biosynthesise
coenzyme A (CoA) from pantothenate, cysteine and β-alanine,
all of which are found in most foods in small amounts and
also produced by the gut microbiota. Deficiencies in these
nutrients impair the synthesis of NADH, acetyl-CoA, and NAD,
leading to disorders of the epigenomic acetylation machine
involved in chromatin remodeling and post-translational protein
modifications (30).

Interplay of Factors Involved in Diabetes,
Obesity, Oxidative Stress, And
Inflammation
According to WHO report (37), the number of people with
diabetes was four times higher in 2014 than in 1980, the majority
living in developed countries and the WHO’s prediction for
2035 is that diabetes will become the seventh cause of death
worldwide, its prevalence increasing in low-income countries
(37). The International Diabetes Federation (IDF) currently
estimates that so far 415 million people worldwide have been
diagnosed with T2DM and anticipate an increase up to 640
million by the year 2040 (38, 39). Diabesity describes the
association between T2DM and obesity, both being a worldwide
health problem, due to their extremely high prevalence and
serious complications, particularly cardiovascular, respectively
micro and macroangiopathy associated with accelerated vascular
aging leading to atherosclerosis and microvascular dysfunction.
According to the statistical data published by World Health
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Organization (WHO), in 2030 about a fifth of the world’s
adult population will suffer from metabolic syndrome and
almost 23.6 million people will die from cardiovascular disorders
(32). The interactions between genetic and environmental
factors such as over-nutrition and a sedentary lifestyle lead
to the development of these polygenic diet-related diseases
with epidemic proportions (40, 41). Insulin resistance is also
associated with an increased flux of free fatty acids (FFA)
contributing to diabetic dyslipidemia, one of the major risk
factors for cardiovascular disease in diabetes patients. Thus,
an impaired glucose and lipid metabolism is the hallmark of
metabolic syndrome, defined by central (abdominal) obesity
and the presence of two to four of the following factors—
reduced high density lipoprotein (HDL) cholesterol, high blood
pressure, elevated triglycerides, higher resting metabolic rates
(42) and increased fasting blood glucose. Obesity adds to the
genetic susceptibility, insulin resistance due to FFA and tumor
necrosis factor -α (TNF-α), an inhibitor of insulin receptor kinase
activity, leptin-regulating hormone appetite and adiponectin
(43, 44). The inflammatory theory of the diabetogenic process
and the chronic complications installed in the context of
insulin resistance and obesity is intensely debated, but not
fully elucidated (45, 46). Obesity is a major risk factor for
T2DM leading to destruction of insulin receptors causing
insulin resistance. Obesity is characterized by hypertrophy and
hyperplasia of the white adipose tissue and the transformation
of “silent” adipocytes into aggressive adipocytes, capable of
autonomous inflammation, apoptosis and increased secretion
of proinflammatory adipokines (47). The white adipose tissue
is producing more than 100 various signal molecules, such as
hormones (adiponectin, leptin, resistin, visfatin), chemokines,
such as monocyte chemoattractant protein-1 (MCP-1) and
proinflammatory cytokines, including TNF-α and interleukin-
6 (IL-6) all culminating in a “low grade inflammation” with
multiple effects on the endothelial cells (48). There are at
least three intracellular signaling pathways linking obesity
to inflammation: the proinflammatory kinases pathway, the
suppressors of cytokine signaling proteins (SOCS) pathway
and the oxidative stress (49). Adiponectin is secreted only
by the white adipose tissue (48) and its serum concentration
is paradoxically inversely proportional to the body mass
index (BMI); numerous studies have clearly revealed its anti-
inflammatory and anti-apoptotic roles, as well as its insulin
sensitivity (48). In obese individuals the connection between
serum leptinemia and the percentage of body adiposity is
best observed (47). Leptin has a direct inhibitory effect on
both basal as well as glucose-induced insulin level, through
different mechanisms, also modulating the expression of
secreted and membrane-associated mucins in colonic epithelial
cells, targeting protein kinase C (PKC), phosphatidylinositol-3-
kinase (PI3K) and mitogen-activated protein kinases (MAPK)
pathways (50). Complexity is also evident in the process
of transporting glucose into adipocytes; 8 out of the 14
members of the glucose transporters (GLUT) are expressed
in adipocytes. The SOCS1, SOCS3, SOCS6 proteins are
involved in increasing insulin resistance by inhibiting insulin
sensitivity (51).

The overlapping of metabolic and immune processes can
become detrimental under metabolic stress conditions, such
as the immunosuppression characteristic of malnourished
individuals (52). The adipose tissue releases cytokines that
cause up regulation of nicotine-amide-adenine diphosphate
oxidase enzyme (NADPH), nitric oxide synthase (NOS), and
myeloperoxidase (MPO) from macrophages and adipocytes,
favoring the inflammatory processes. Chronic hyperglycemia
leads to an activation of glucose self-oxidation processes,
formation of highly reactive hydroxyl free radicals and decrease
of antioxidant capacity and glutathione regeneration (53).
The non-enzymatic glycation processes render proteins more
susceptible to oxidative stress processes. Hyperglycemia also
stimulates the hexosamine pathway, inducing the formation
of fructose-6-phosphate, a protein glycosylation substrate with
proteoglycan production, but also changes in gene expression for
plasminogen activator inhibitor (PAI) and tumor growth factor
-β (TGF-β). Glycation of lipoproteins leads to decreased low
density lipoprotein (LDL)-cholesterol catabolism and accelerated
catabolism of high density lipoprotein (HDL)-cholesterol,
favoring atherosclerosis and micro-/macro-vascular T2DM
complications. Increased oxidative stress due to the persistence
in circulation of triglyceride-rich lipoproteins along with chronic
hyperglycemia is closely related to changes in monocyte and
macrophage function (54). Catabolism of glycated proteins
leads to the generation of advanced glycation end products
(AGEs), stimulating IL-1 synthesis with fibroblast proliferation
and endothelial damage. Among the consequences of excess
reactive oxygen species (ROS) production is the complex
process of lipid peroxidation, the resulting products being
extremely unstable. Polyunsaturated fatty acids oxidation cascade
is highly activated by free radical molecules (55), leading to the
activation of a proinflammatory type processes via the mRNA-
activated p38MAPK, c-Jun N-terminal kinases (JNK), Janus
kinase (JAK), NF-kB, TGF-β, which either directly inhibit insulin
activity or lead to a synthesis of inflammatory mediators. The
synthesized proinflammatory cytokines stimulate ROS synthesis
and intensify oxidative stress (56). The oxidative stress and
inflammation, especially when associated with obesity, coexist
and mutually potentiate, leading finally to insulin resistance,
beta-pancreatic cell dysfunction, and vascular complications of
T2DM (Figure 3).

Several studies have associated oxidative stress with dysbiosis.
The intestinal tract has a radial oxygen gradient hence microbes
residing on the colonic mucosa harbor elevated oxygen tolerance
and catalase expression compared to luminal or stool-associated
bacteria (58). In addition, inflammation usually promotes an
oxidative state which enhance the enrichment of aerotolerant
phyla such as Actinobacteria and Proteobacteria. Intestinal
inflammation has also been shown to increase the production
of terminal electron acceptors for facultative anaerobes such
as Enterobacteriaceae further augmenting dysbiosis in the
intestine (59, 60).

Microbial Signatures in T2DM and Obesity
The disruption of normal microbiota (generally referred to as
dysbiosis) has been described to be involved in a large spectrum
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FIGURE 3 | Cellular mechanisms by which oxidative stress is involved in T2DM associated with obesity [adapted after (57)]. In obesity, the expansion of the adipose

tissue promotes increased macrophage infiltration and inflammation with increased production of pro-inflammatory cytokines TNFα and IL-6. This is accompanied by

an increased release of free fatty acids and an aberrant secretion of adiponectin and leptin. The resulting chronic hyperglycemia determines the activation of glucose

self-oxidation processes that lead to the formation of highly reactive hydroxyl radicals which together with nitric oxide (NO) forms peroxinitrite, a very aggressive radical

that causes oxidative damage to DNA, proteins, and lipids. The increased oxidative stress also activates signaling pathways such as p38 MAPK, NF-κB which are

involved in insulin resistance and vascular complications of T2DM.

of diseases, including diabetes, obesity, and insulin resistance
(61), through disturbing the energy balance (by increasing the
metabolic rate; coordination of choline availability, affecting
indirectly the liver storage of triglycerides; inhibition of fasting-
induced adipose factor—FIAF expression which promotes
triglyceride deposition in adipocytes; production of SCFAs which
increase lipogenesis, inhibit fatty acids oxidation and trigger
the intestinal absorption of monosaccharides by stimulating
GLUT1 expression, modulation of YYP and GLP-1 hormones,
modulation of intestinal motility and permeability, activation of
Toll-like receptors, etc. (62–65).

It has been therefore suggested that the modulation of
microbiota, either directly (by antimicrobials, diet, prebiotics
and/or probiotics, stool transplant, microbial-derived signaling
molecules or metabolites) or indirectly (e.g., immunotherapy)
may contribute to the therapeutic management of these
pathologies (66).

The impact of the intestinal microbiome on the
pathophysiology of diabetes was revealed by several diabetes
prone animals, specifically non-obese diabetic (NOD) mice
and bio-breeding diabetes prone (BB-DP) rats and human
studies. An initial study revealed that NOD mice with a
chronic viral infection harbored a lower diabetes incidence (67).
Mycobacterial infection followed by stimulation with bacterial
antigens decreased the incidence of diabetes development
in NOD mice, whereas a germ-free environment increases
the risk of diabetes development (15). Nevertheless, recent
studies showed that rather certain microbiota members (i.e.,
Bacillus cereus) were responsible for modulating the risk of
diabetes development (68). A study by Brugman et al. (69),
that used BB-DP rats and fluorescence in situ hybridization
specific for 16S rRNA of Clostridium sp., Bacteroides sp. and
Lactobacillus sp., revealed that rats developing diabetes were
colonized by higher levels of Bacteroides sp. (69). Further studies
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highlighted that BB-DP rats harbored a microbiota characterized
by lower levels of Bifidobacterium sp. and Lactobacillus sp.
In comparison to control, diabetes free rats. Patterson et al.
employed the streptozocin (STZ)-induced T1DM rat model to
gain insights into the diabetes onset and progression in terms of
microbiota shifts (70). T1DM was associated with changes in the
Bacteroidetes: Firmicutes ratio while later T1DM progression
was defined by elevated acid bacteria (i.e., Lactobacillus sp.,
Bifidobacterium sp.).

T1DM prone rats showed increased gut permeability and
altered levels of the tight junction proteins claudin zonulin
(71, 72). Within this context, a study employing the BB-DP rat
model suggested that administration of Lactobacillus johnsonii
N6.2 hindered diabetes development through regulation of gut
integrity, specifically by modulating the tight junction protein
claudin-1 (73). The knock out (KO) of myeloid differentiation
primary response 88 (Myd88) (an adapter protein downstream
of multiple TLR involved in sensing of microorganisms) in the
NOD mouse protected against diabetes. Notably, heterozygous
MyD88KO/+ NOD mice, which normally develop disease, were
shown to be protected from diabetes when they were colonized
from birth with the intestinal microbiota of a MyD88-KONOD
donormouse (74). Hence, disease progression in the NODmouse
is partially caused by an aggravated innate immune response to
commensals and microbiota changes may counteract disease.

It has been shown that the altered microbiota of genetically
obese mice is enough to promote increased adiposity in lean
mice that receive a microbiota transplant. Moreover, the gut
microbiota of obese people can lead to obese or adiposity
phenotypes when transferred to mice (75).

Research carried out within the last few years has highlighted
the features of the human diabetogenic microbiota (Figure 4).

As suspected, the studies demonstrated that microbiome
profiles in diabetics were depending on ethnic origin, diet,
geography, and age. However, in spite of these variations, some
hallmarks could have been established. All research studies have
highlighted Bacteroides sp. as a main culprit for type 1 diabetes
mellitus (T1DM) associated dysbiosis (76).

It has been proved that Akkermansia muciniphila is more
abundant in healthy individuals with normal weight than in
individuals with obesity and T2DM (25). Furthermore, the
Bacteroidetes: Firmicutes ratio was suggested as an early marker
for autoimmune diseases since an enrichment of Bacteroidetes
was reported in children who developed T1DM (77), but also for
obesity and impaired glucose metabolism (78).

Individuals with both T1DM and T2DM were shown to
be colonized by low levels of butyrate producers including
Faecalibacterium prausnitzii, Roseburia intestinalis, Clostridium
sp., Eubacterium rectale, and Faecalibacterium sp. (79) and of
mucin degrading bacteria such as Akkermansia sp. and Prevotella
sp. (77, 80, 81). A study that analyzed Scandinavian post-
menopausal women revealed lower levels of Faecalibacterium
prausnitzii and Roseburia intestinalis in T2DM compared with
individuals having impaired glucose tolerance.

Kostic et al. (82) analyzed 33 infants from Finland and Estonia
who were genetically predisposed to diabetes and detected a
relative 25% reduction in alpha-diversity in T1DM children but
not in disease free seroconverters (82).

T1DM subjects were shown to have a microbiota with an
elevated level of “pathobionts” that are commensal bacteria
with a pathogenic potential, such as members of Blautia
sp., Rikenellaceae, Ruminococcus sp. and Streptococcus sp. In
addition, a depletion of Lachnospiraceae and Veillonellaceae,
commonly encountered in inflammatory conditions was also
evident. Recently, De Groot et al. (83) showed that fecal
samples of T1DM patients were enriched in Christensenella
and Bifidobacterium and low in SCFA producers like Roseburia
(83). The human T2DM intestinal microbiota was shown
to be inhabited by opportunistic pathogens including
the sulfate-reducing genus Desulfovibrio, Escherichia coli,
and Bacteroidaceae.

A Chinese study reported an increase of Escherichia coli
in T2DM patients while a Danish study reported elevated
Proteobacteria in T2DM (84). The bacterial counts of the
L. acidophilus, L. plantarum, and L. reuteri subgroups of
Lactobacillus sp. were significantly lower among Romanian
patients with T2DM and obesity compared to healthy controls
(85). A study performed on Romanian subjects revealed
that the most common aerobic/facultative anaerobic species
isolated from the stool cultures of 100 patients with metabolic
syndrome, such as dyslipidemia, diabetes, and obesity were
the Gram-negative (86). These Gram-negative bacteria may
be linked to T2DM pathophysiology through the release
of lipopolysaccharides (LPS) that promote a subclinical
proinflammation which typical to diabetes and obesity. The
so-called metabolic endotoxemia was firstly described in mice
(87, 88) and defined as increased plasma levels of LPS, which
are first bound by CD14 (cluster of differentiation 14), then
recognized by the Toll like receptor 4 (TLR4) and thereafter, the
formed LPS/CD14/TLR4 complex is taken up into chylomicrons,
promoting systemic inflammation and subsequently inducing
insulin resistance (2, 75, 89). Bacterial peptidoglycans and LPS
are also recognized by specific receptors of intestinal dendritic
cells, such as Nucleotide-binding oligomerization domain-
containing protein 1 (NOD1), CD14 and TLR-4, inducing
mucosal inflammation and bacterial translocation, by activating
the nuclear factor kB (NF-κB) pathway (90). The term of
metabolic infection has recently emerged in order to describe
the role of the microbiota endotoxemia associated inflammation
together with insulin resistance in T2DM (91). Another
mechanism of increased intestinal permeability is represented
by the reduced expression of epithelial tight junction proteins,
including zonulin occluding (92). Zonulin levels are associated
to changes in tight junction and altered intestinal permeability,
allowing the invasion of antigens from intestinal environment,
leading to inflammation and increased oxidative stress
(62) (Figure 5).

Recent molecular studies indicated the presence of
Methanobrevibacter smithii in the human gut, with
variable prevalence, increasing with age, whereas a meta-
analysis showed that the obese individuals had a fewer
Methanobrevibacter sp. than non-obese ones. These results
imply that obesity is associated to a different gut microbiota
pattern (75).

Furthermore, several studies have characterized gut
microbiota in obese subjects. The Roux-en-Y gastric bypass
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FIGURE 4 | The microbiota of diabetic patients. Individuals with diabetes were reported to have an impaired gut barrier function, characterized by a thinner mucus

layer, and increased intestinal permeability. T1DM is an autoimmune disease caused by T-cell–mediated destruction of insulin-producing β-cells, the main genetic

predisposition being the human leucocyte antigen (HLA) DR3-DQ2 and DR4-DQ8 haplotypes. Other factors including diet, antibiotic administration, infections, birth

delivery mode have all been linked to T1DM development, however the mechanisms involved are not clear. The microbiota of T1DM patients is enriched in bacteria

such as Bacteroides sp., Blautia sp., Streptococcus sp., and Rikenellaceae and low in butyrate producing bacteria, such as Faecalibacterium prausnitzii and mucin

degrading bacteria (i.e., Akkermansia muciniphila). In case of T2DM, disease is generally triggered by lifestyle choices (unbalanced diet characterized by a high intake

of refined sugar and saturated fats, sedentarism); individuals with T2DM harbor a microbiota characterized by elevated levels of Bacteroides sp., Intestinibacter sp,

Escherichia coli, and Desulfovibrio sp.

(RYGB) is a powerful treatment for weight loss and improvement
of metabolic status. Furet et al. (93) have analyzed the gut
microbiota in fecal samples before and after RYGB. The
Bacteroides/Prevotella group had a low abundance in obese
subjects before and increased 3 months (M3) after RYGB;
the abundance of Escherichia coli cells also increased at
M3 and was inversely correlated with leptin levels and fat
mass regardless of food intake. Also, lactic acid bacteria
including Lactobacillus/Leuconostoc/Pediococcus group and
Bifidobacterium sp. and were lower at M3 (93).

It has been demonstrated that stool transplant from a lean,
insulin-sensitive donor to insulin-resistant obese men showed
that insulin sensitivity of a subset of participants was significantly
improved 6 weeks after the transplant (94).

Influence of Diet on Gut Microbiota in
Diabetes and Obesity
Diet is one of the major lifestyle factors involved in the
genesis, prevention and control of diabetes, obesity and other
cardiometabolic diseases, being also strongly linked to changes
in microbiota. Many reports have shown that the genetic
susceptibility to obesity may have interacted with an obesogenic
environment (e.g., a major shift in dietary patterns influencing
the gut microbiota, a sedentary lifestyle and physical inactivity)
in determining the obesity epidemic (23). To date, there are
many popular diets including Mediterranean, gluten-free, vegan,
Western, omnivore, vegetarian. To date, most of these diets have
been clearly linked to different microbiome profiles (95). For
instance, gluten free diet is characterized by low Bifidobacterium
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FIGURE 5 | The interplay between T2DM, obesity and the intestinal microbiota. In case of T2DM and obesity, increased intestinal permeability may trigger chronic

bacterial translocation which in turn leads to systemic inflammation characterized by macrophage influx into the visceral adipose tissue, insulin resistance, and hepatic

Kupffer cells activation. The short-chain fatty acids produced by the microbiota normalize gut permeability and reduce free fatty acid production.

sp. and Lactobacillus sp., whereas pathobionts, such as E.
coli and total Enterobacteriaceae, increased proportionally
with the reduction in polysaccharide/fibers intake (96). In
addition, a short-term gluten-free diet lead to diminished
levels of Ruminococcusbromii and Roseburiafaecis and increased
Victivallaceae and Clostridiaceae (17, 31).

The Western lifestyle countries, following the industrial
revolution, underlined a nutritional transition from the
traditional diet to a diet rich in heavily processed foods, fats,
sugars, proteins, plus different additives, while remaining low in
micronutrients and dietary fibers (also referred to as Western
diet). Dietary fibers are essential for gut health due to their role
in stimulation of the growth and/or activity of certain beneficial
microorganisms (97). People in traditional societies, with a fiber
intake of almost 50–120 g/day harbor a much more diverse gut
microbiota, on its turn indicating a “good health” condition.
SCFAs are found in lower amounts in individuals consuming
a Western diet. Plant fibers are rich sources of polyphenols
that are considered redox mediators, regulating the oxygen

tension in the gut lumen, where it is considerably lower, in
comparison with that of the gut mucosa, with sufficient high
oxygen tension to inhibit growth of strictly anaerobic microbes;
in the lumen the anaerobes are favored by high consumption of
these non-digestible carbohydrates. A fiber-rich diet leads to an
increase of microbial genes in obese patients (98). Several studies
reported that a diet enriched in non-digestible carbohydrates
modifies the gut microbiota by increasing probiotic bacteria
such as bifidobacteria and lactic acid bacteria. Indeed, diets
rich in whole grain and wheat bran promoted an increase in
intestinal bifidobacteria and lactobacilli (99, 100). In addition,
resistant starch and whole grain barley increased the abundance
of Ruminococcus sp., E. rectale, and Roseburia sp., whereas FOS,
polydextrose- and AOS-based prebiotics were shown to reduce
Clostridium and Enterococcus species (95).

Western diet was correlated with a decrease in the
total bacterial load and in beneficial commensals, such as
Lactobacillus, Bifidobacterium and Eubacterium species.
Conversely, subjects consuming vegan and vegetarian diets
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which are rich in fermentable plant-based foods were reported
to have a microbiota characterized by a lower abundance of
Bacteroides sp. and Bifidobacterium sp. (101).

The Mediterranean diet (vegetables, moderate consumption
of poultry, olive oil, cereals, legumes, winenuts, fish and a
low amount of red meat, dairy products, and refined sugars)
provides beneficial effects through the elevated content in
mono-unsaturated and poly-unsaturated fatty acids, as well
as high levels of antioxidants, fibers and vegetable protein
content (102, 103). The gut microbiota in individuals receiving
Mediterranean diet is characterized by a high colonization
by Lactobacillus sp., Bifidobacterium sp., and Prevotella sp.,
and low levels of Clostridium sp. (95), species which are
associated with weight loss, improvement of the lipid profile and
decreased inflammation.

Dietary proteins were reported to be involved in shaping the
microbiota since 1977. Thus, individuals consuming a diet rich
in beef had high levels of Bacteroides sp. and Clostridia and
were low in Bifidobacterium adolescentis unlike individuals eating
a meatless diet (104). Several studies have recently shown that
diets including vegetarian whey/pea protein, and animal protein
(meats, eggs, and cheese) are linked with microbial diversity (95).
Consumption of animal-based protein was positively associated
to a richness in bile-tolerant anaerobes, including Alistipes sp.,
Bilophila sp., and Bacteroides sp. (105).

As shown by animal studies, a high fat diet leads to the
establishment of a microbiotalow in Lactobacillus intestinalis
and high in Clostridiales, Bacteroidales, and Enterobacteriales
(106). Studies in mice revealed the effects of different type
of lipids on the microbiota. While lard-fed mice harbored
increased numbers of Bacteroides sp. and Bilophila sp. and
reduced levels of Desulfovibrio sp., those fed with fish oil had
increased lactic acid bacteria (Lactobacillus sp. and Streptococcus
sp.), Verrucomicrobia (A. muciniphila), and Actinobacteria
(Bifidobacterium sp. and Adlercreutzia sp.) and mice fed with
a diet rich in milk fat or supplemented with taurocholic acid
(a biliary acid) showed increased levels of Bilophilawadsworthia
(107). The fact that the type of fat used in one’s diet has
distinct impact on the microbiota was recently analyzed in
a study by Prieto et al. (108). Indeed, a diet enriched with
extra virgin olive oil (EVOO) harbored a different effect on the
intestinal microbiota in comparison with an enriched butter diet
(BT). Swiss Webster mice fed with BT exhibited the highest
values of systolic blood pressure and increased abundance of
Desulfovibrio whereas mice fed EVOO had the lowest values
of plasmatic insulin and leptin and a significant increase in
B. fragilis (108). It has also been shown in mice that shifting
from a high-fat/low-fiber diet to a low-fat/high-fiber diet can
alter microbiota composition within a day. Importantly, diet
also depends on the enterotype, as subjects on a diet high
in animal fat/carbohydrate-rich have Bacteroides-/Prevotella-
dominated enterotypes (109). Mice receiving high fat diet (HFD)
until diabetes occurrence, developed endotoxemia, increased
gut permeability and microbiota changes (110). The level of
plasma endotoxins were higher in mice raised in conventional
conditions fed with saturated fatty acids in comparison to
animals fed with polyunsaturated fatty acids. Moreover, lard-fed

mice exhibited white adipose tissue inflammation and impaired
insulin sensitivity compared to fish oil-fed mice (111). In
the adipose tissue, endotoxins activate TLRs, inducing the
expression of chemokines required for macrophage infiltration
(112). It is well established that the intestinal microbiota
interacts with the innate immune system to trigger adipose
inflammation, since mice deficient in TLRs signaling (through
loss of the adaptor proteins MyD88 or TRIF-TIR-domain-
containing adapter-inducing interferon-β) showed reduced levels
of inflammation in adipose tissue and were protected from
saturated fatty acids induced insulin resistance (111, 113, 114).
Mice deficient in Myd88, but not for TRIF, are protected
from diet-induced obesity, suggesting that obesity and insulin
resistance are controlled by different mechanisms. The insulin
resistance promoted by high-fat diet is correlated with increased
levels of Th17 cells, involving gut microbiota, by the following
mechanism: the fat-induced restriction of the commensal
segmented filamentous bacteria determines the expression of
IL-23 in enterocytes (115); IL-23 activates the release of IL-22
from innate lymphoid cells in the submucous ileal lymphoid
folicles; IL-22 induces the production of the serum proteins
amyloid A1 and A2, which are required for the activation
of Th17 cells in the ileum. Unlike fat, fructose and glucose
induce increased levels of diacylglycerols (DAG) which are
mediators for insulin resistance in the liver. Ramos-Romero et al.
demonstrated that GIT microbiota of rats receiving an excess
of fats and sugars in their diet has shown elevated levels of
Enterobacteriales and Escherichia coli, the combination of fats
and sugars proving more harmful than fat or sugar alone when
taken in excess (116).

A high protein consumption elevates insulin-like growth
factor 1 (IGF-1), proved to be linked to a high diabetes risk (117).
Ley et al. (78) found that genetically obese ob/ob animals fed
with polysaccharide-rich diet have a 50% decrease in the quantity
of Bacteroidetes and a proportional Firmicutes increase in cecal
microbiota, this trait being transmissible.

Comparative studies performed on germ-free and
conventional mice have demonstrated that after receiving a
Western-style diet, germ-free mice exhibited reduced adiposity
and improved insulin and glucose tolerance compared to
conventional counterparts (118). The colonization of germ-free
mice with microbiota from conventionally-raised mice lead to a
significant increase in insulin resistance and body fat (64).

Diet-Microbiota Interactions in Patients
With Diabetes and Obesity
The role of diet in diabetes was highlighted decades ago by the
observation that this disease was highly prevalent among rich
people with easier access to food, such as white flour, refined
sugar, and oils, animal fats (±fried) (119).

Many research studies have highlighted a strong link
between high sugar intake and T2DM development (120).
Based on their capability to be degraded enzymatically in the
small intestine, carbohydrates are either digestible (i.e., starch
and sugars including glucose, lactose, fructose, sucrose) or
non-digestible (resistant starch and fiber). After degradation,
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digestible carbohydrates release glucose into the bloodstream
and lead to an insulin response (95). Their ingestion in high
levels leads to a microbiota enriched in Bifidobacteria and low
in Bacteroides (121). The addition of lactose to the previously
mentioned diet replicated the same bacterial shifts but also
decreased the levels of Clostridia (122). The high levels of
fructose corn syrup used for the production of soft drinks
increased the blood glucose levels and the body mass index
thus linking the intake of soft drinks with obesity and T2DM
(123). Moreover, diet soft drinks were reported to contain various
glycated chemicals which promote increased insulin resistance
(124). Ludwig et al. studied 500 ethnically diverse children for
a period of 19 months and showed that the obesity frequency
increased for every intake of carbonated soft drinks (125).

Artificial Sweeteners are still an intense subject of debate in
the carbohydrate fields. Artificial sweeteners such as sucralose,
saccharin, and aspartame were designed to be a healthier
food additive aimed to replace natural sugar. However, recent
work by Suez et al. showed that artificial sweeteners can
lead to glucose intolerance faster than the glucose or sucrose.
The effects produced by artificial sweeteners were attributed
to the increased abundance of Bacteroides sp. and decreased
Lactobacillus reuteri (126).

Contrary to digestible carbohydrates, non-digestible
carbohydrates are digested in the colon where they undergo
fermentation by commensals leading to the production of
SCFAs. It has been shown that Faecalibacterium prausnitzii, a
high SCFA producer is depleted in diabetic patients (127). When
fed with high levels of resistant starch, individuals who did not
harbor high Ruminococcus bromii also had the highest levels of
undigested starch in the stool, suggesting that the microbiota
composition determines carbohydrates accessibility to the
microbiota. Cocoa products rich in polyphenols (e.g., flavonol)
have been shown to help preventing cardiometabolic disorders,
exhibiting antioxidant, anti-atherogenic, anti-depressant, anti-
inflammatory, antihypertensive, and anti-thrombotic effects,
as well as influence on vascular endothelial function, insulin
sensitivity and activation of nitric oxide (with protective role
by relaxing the blood vessels and lowering blood pressure)
(128). Clinical trials reported that dietary polyphenols
increase the levels of Bifidobacterium sp. (129). Indeed, daily
consumption of red wine polyphenols for 4 weeks significantly
increased Bifidobacterium sp., Prevotella sp., Bacteroides sp.,
Eggerthellalenta, Enterococcus sp., Bacteroidesuniformis, and
Blautiacoccoides-Eubacteriumrectale abundance compared with
baseline (130). It has been shown that chocolate or cocoa reduced
insulin and fasting insulin after glucose challenge and improved
insulin resistance, while there was no change on fasting glucose
and glycated hemoglobin (HbA1c) (131). Consumption of dark
chocolate containing 500mg polyphenols for a period of 4 weeks
lowered fasting glucose, blood pressure, and insulin resistance
compared to 20 g of placebo dark chocolate with a negligible
polyphenol content (132). Drinking cocoa flavanols (902mg)
for 12 weeks also enhanced insulin sensitivity in overweight
and obese people compared to a low-flavanol cocoa drink
(133). However, daily consumption of 25 g dark chocolate for
8 weeks did not improve insulin, fasting glucosea and HbA1c

levels in hypertensive diabetics compared to those who served
25 g of white chocolate (134). Several studies have reported the
positive effects of cinnamon on glycemic control. Importantly,
cinnamon contains polyphenols (e.g., cinnamtannin, trans-
cinnamic acid procyanidin), flavones (cinnamaldehyde and
trans-cinnamaldehyde), and catechin (129). Even though clinical
studies showed positive effects of cinnamon on fasting blood
glucose levels, there were no significant changes in HbA1c, HDL,
LDL or total cholesterol (135, 136). Other reports showed no
significant changes in fasting glucose, HbA1c or insulin levels
in the case of 43 subjects with T2DM receiving 1 g of cinnamon
daily for a period of 3 months (137), 25 post-menopausal
women with T2DM taking cinnamon (1.5 g/day) for 6 weeks
(138), 11 healthy subjects taking cinnamon (3 g daily) for 4
weeks (139), and in 72 adolescents with T1DM taking 1 g of
cinnamon daily (140). A clinical trial using 58 subjects with
T2DM reported that 2 g of daily cinnamon intake for a period
of 12 weeks significantly reduced HbA1c and blood pressure
(141). Supplementation with 500mg olive leaf extract for 14
weeks inT2DM patients significantly reduced HbA1c and fasting
insulin but had no impact on post-prandial insulin levels (142).
Resveratrol supplementation in obese men for 1 month reduced
glucose, insulin resistance index and leptin level and lowered
inflammatory markers (e.g., TNF-α, leukocytes). Even though
resveratrol supplementation also reduced plasma fatty acid and
adipose tissue lipolysis in the post-prandial state (143), the
study lacked some of the necessary controls; therefore more
investigations are required in order to prove that resveratrol
holds antidiabetic effects.

Whole grains including soy, rye, wheat, and flaxseed and
nuts such as almonds, pecans, and hazelnuts are also a high
source of polyphenols (144). Whole grain intake was linked
to a decreased risk of T2DM but the mechanism of the
protection is not well known (145). Moreover, individuals
show large variations in glucose metabolism in response to an
intervention based on whole grains. Thus, eating whole grains
for a period of 3 days improved glucose tolerance in some
responder subjects that revealed an increased prevalence of
certain glycoside hydrolases within their microbiome compared
to the non-responder subjects. This suggests that the gut
microbiota may need to already hold the ability to degrade
specific complex dietary carbohydrates. Importantly, individuals
whose microbiota a responded to a whole-grain intervention
had the tendency to have high fiber diets. Thus, the complex
carbohydrates linked to whole grains andmetabolically accessible
to the responders microbiota were probably inaccessible to non-
responder individuals who also did not usually consume diets
rich in fiber. Improved glucose tolerance in case of the responders
may be due to the enrichment of Prevotella sp.. Prevotella sp.
may also improve glucose metabolism in mice fed diets rich in
carbohydrates instead of high-fat diets (146).

Olive leafs and extra virgin olive oil are a source of
polyphenols, such as hydroxytyrosol and oleuropein with
beneficial effects in T2DM (130).

The Mediterranean diet supplemented with nuts or virgin
olive oil harbored anti-inflammatory effects by decreasing
chemokines, IL-6, T-lymphocytes, monocytes and adhesion
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molecules (147). A study performed on patients with high
cardiovascular risk showed that a Mediterranean diet rich in
extra virgin oil led to a 40% decrease of T2DM risk compared to
the control (148). Addition of olive leaf polyphenols ameliorated
insulin sensitivity and pancreatic β-cells secretory capacity after
oral glucose challenge in middle aged overweight men with risk
of developing metabolic syndrome (149, 150).

Several studies in humans indicate that following a vegan diet
for at least 6 months or a high-fiber–low-fat diet for 10 days
were insufficient to substantially increase microbiota diversity or
production of fecal SCFAs.

Even though it may promote a greater weight loss, a protein
rich diet can also be detrimental. In this sense, individuals on
a high protein/low carbohydrate diet harbored a microbiota
with diminished levels of Roseburia sp. and Eubacterium rectale,
but low levels of butyrate in their feces (151). In addition,
elevated intake of red meat has been linked to elevated
levels of the proatherogenic microbial metabolite TMAO (152).
Also, its precursors such as betaine was also associated with
cardiovascular diseases and T2DM.

Animal-based diets are also high in fat. An association
between fat intake and the subsequent risk of developing
T2DM has been reported. A study which enrolled more than
a thousand individuals without a prior diagnosis of diabetes
reported a relationship among T2DM, fat intake, and impaired
glucose tolerance. Consumption of high saturated and trans-
fat diets elevates cholesterol levels and is linked with a risk of
cardiovascular disease, Conversely, mono and polyunsaturated
fats lower the risk of chronic disease development (153).
Importantly, high-fat diets enrich the abundance of Bacteroides
sp. as well as of total anaerobic microorganisms (109, 154).
Consumption of a low fat diet leads to the over-abundance
of Bifidobacterium sp. and a reduction of fasting glucose and
total cholesterol, while a high saturated fat diet determines a
microbiota enriched in Faecalibacterium prausnitzii (155).

Nutrigenomics and Nutrigenetics in the
Context of the Gut Microbiota-Host
Metabolism–Diet Trialogue
Recently, nutrigenomics and nutrigenetics have emerged due
to the need for a holistic pathway combining genetics,
nutrition, metabolism, and “omic” technologies to analyze the
intricate relationships between environmental factors relevant
to metabolic health and disease status. These emergent fields
of nutritional science hold promise in advancing nutrition for
optimal individual and public health, being carefully supervised
by the International Society of Nutrigenetics/Nutrigenomics
(156). Nowadays, personalized nutritional interventions are
regarded as crucial factors in preventing or reversing the
epidemic features of T2DM and obesity, as well as of other
chronic diseases (157).

Based on current views, personalized nutrition occurs at
three levels: (i) conventional nutrition based on general
guidelines for population groups based on age, gender, and
social determinants; (ii) individualized nutrition that takes into
account the phenotypic information regarding the person’s

current nutritional status (e.g., anthropometry, physical activity
biochemical, and metabolic analysis), and (iii) genotype-directed
nutrition based on a rare or a common gene variation (156).

Certain food ingredients, environmental pollutants, and drugs
can induce epigenetic changes related to the occurrence of
diabetes and obesity, transmissible to subsequent generations
(30, 158). Animal and human studies have shown that the
nutritional status in one generation can change the epigenetic
profiles in subsequent generations, thus having an evident effect
on children health. Within this line of thought, nutrients such
as niacin, flavonoids, folate, selenium, and choline are only a
few examples. In addition, high-fat diets and maternal protein
restriction produce a negative effect on the epigenetic regulation
of genes by altering their DNA methylation status, dictating
the quick adaptation to available food. As obesogenic diets,
high- in fat and calorie-dense foods are unfortunately the most
available for the general population, hence, they will be over-
consumed not only by the current generation, but also by the
subsequent generations, “instructed” to seek and consume the
“most available” diet (158).

Obesogenic diets lead to remarkable differences between
siblings despite their identical genotype. Studies on primates
or rodents reported that an obesity-promoting, calorie-dense
maternal diet epigenetically changed the fetal chromatin
structure by producing covalent modifications of histones.
Maternal food restriction during pregnancy, as well as the
nutritional status of grandparents altered the DNA methylation
status of genes involved in the pathogenesis of obesity, diabetes
or cardiovascular events in subsequent generations (30, 159).
Other studies indicated that weight status (as an indicator of food
intake) modified the risk of disease in subsequent generations
(160). Maternal obesity- or malnutrition-related exposures at
the very early development, even prior conception, usually
reveal a positive association with congenital anomalies, related
to abnormal methylation patterns (161). Obesity of the father
was also linked with aberrant low methylation patterns in the
offspring (162).

LMW metabolites and signal molecules generated by the
indigenous gut and vaginal microbiota of pregnant women can
cross the placenta and reach the fetus, affecting its development,
metabolism, cognitive function and body composition in the
natal and post-natal periods of life through the epigenetic
modulation of gene expression (30). This information suggests
that significant modifications in the maternal indigenous
microbiota may produce long-term metabolic consequences in
the offspring which subsequently may affect adult health and
life span as a result of epigenetic modifications. Providing
pregnant women with an appropriate diet, prebiotics, probiotics,
and/or bioactive supplements (enzymes, relevant cofactors, or
their precursors) will restore the intracellular concentrations
of signal molecules necessary for the epigenetic modulation of
chromatin, DNA, and histones or alteration of post-translated
products (163).

Even though dietary interventions impact the metabolic host
response in an individual manner, analysis of the microbiome
can aid to predict the response and moreover, orient the
selection of therapeutic interventions (e.g., probiotic strains able
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to metabolize specific dietary components toward getting a
desired effect) (164).

THERAPEUTIC INTERVENTIONS
TRIGGERING THE GUT MICROBIOTA

While governments and health organizations are engaged to
discover treatment options for largely preventable diseases, an
emerging research area targeting the microorganisms inhabiting
the digestive tractis providing new insights and possible ways
for intervention.

Probiotics
Nowadays, probiotics are highly investigated for their effects
on host health and, in addition, intensive research is being
done to select novel strains with probiotic potential (165–
169). Probiotics have anti-inflammatory, hypoglycemic,
insulinotropic, antioxidative, and satietogenic properties,
thus they can be employed in the treatment of T2DM and
obesity (170).

The multiple protective mechanisms of probiotics in T2DM
treatment were reported by several studies using animal models.
Oral inoculation (0.05%) or diet supplementation (0.1%) of heat-
killed Lactobacillus casei in several mouse models including
KK-Ay mice, NOD mice, and Alloxan-induced diabetic mice
led to reduced plasma glucose level and diabetes development
(171, 172). Neonatal STZ-induced diabetic (n-STZ) rats that
were fed with a diet containing Lactobacillus rhamnosus GG
for 9 weeks exhibited lower blood hemoglobin levels and an
improved glucose tolerance compared to the control group fed
with a conventional diet. The group that received L. rhamnosus
GG harbored a serum insulin level significantly higher than
in the control group just 30min after glucose loading (173).
Feeding NOD mice with the multispecies probiotic VSL#3 led
to increased IL-10 secretion in Peyer’s patches, pancreas, and
spleen and lowered β-cell destruction and inflammation. Several
reports highlighted that oral administration of probiotics to
diabetic rats significantly improved hyperglycemia, oxidative
stress, and dyslipidemia.

In fructose-induced diabetic rats of the use of a probiotic
containing Lactobacillus acidophilus NCDC14 and Lactobacillus
casei NCDC19 significantly decreased glycosylated hemoglobin,
free fatty acids, blood glucose, and triglycerides (174). Feeding
the same probiotic to STZ-induced rats abolished the oxidative
damage induced by STZ in pancreatic tissues through inhibition
of nitric oxide release and lipid peroxidation and also enhanced
the antioxidant potential of catalase, glutathione, superoxide
dismutase, and glutathione peroxidase (175). In alloxan induced
diabetic rats, probiotic pre-treatment employing a mixture
containing Bifidobacterium lactis, Lactobacillus acidophilus, and
Lactobacillus rhamnosus lead to lower blood glucose and elevated
the bioavailability of gliclazide, a sulphonylurea used for treating
non-insulin dependent T2DM (176, 177). The antidiabetic effects
against insulin resistance of different probiotics may also be due
to increased hepatic natural killer T (NKT) cells. Depletion of
NKT cells determined enhanced secretion of proinflammatory

cytokines, whereas HFD was reported to induce depletion of
hepatic NKT cells, thus leading to insulin resistance in C57BL/6
mice. Nevertheless, administration of VSL#3 led to reduced
insulin resistance, weight loss, and improved inflammation, by
modulating NF-kB (178). In HFD fed C57BL/6 J mice, as well
as in STZ-induced diabetic rats, Lactobacillus plantarum DSM
15313 and Lactobacillus reuteri GMNL-263 lowered glycosylated
hemoglobin and blood glucose (179, 180). Dendritic cells (DCs)
from NOD mice were stimulated with Lactobacillus casei,
Lactobacillus reuteri, or Lactobacillus plantarum for a 1 day
and out of the strains tested, Lactobacillus casei induced the
highest level of IL-10. Subsequently, when the Lactobacillus casei-
stimulated DCs were transferred to NOD mice, the recipients
revealed a significant delay in diabetes incidence (181).

In HFD fed mice, the administration of Bifidobacterium
animalis subsp. lactis 420 improved insulin sensitivity and fasting
hyperinsulinemia and also reduced the bacterial translocation
to mesenteric adipose tissue, lowering the expression of IL-
6, TNF-α, and IL-1β in mesenteric adipose tissue, liver, and
muscles (90). A novel study by Lee et al. analyzed the anti-
diabetic effects of Lactobacillus plantarum Ln4 (Ln4), which was
obtained from napa cabbage kimchi. The oral administration
of Ln4 reduced epididymal fat mass and weight gain, lowered
plasma triglyceride levels and the insulin resistance index in
HFD fed mice (182). It has been shown that among probiotic
bacteria, only Lactobacillus plantarum and several selected
strains within the genus Bifidobacterium (mostly Bifidobacterium
adolescentis and Bifidobacterium pseudocatenulatum) are capable
of in vivo folate production. Therefore, the use of folate-
producing probiotic strains could more effectively confer
protection against inflammation (183). Since there are only a
few studies available, the role of probiotics in diabetic human
subjects is still largely unknown. Several randomized, double
blind, placebo controlled (RDBPC) clinical trials investigated the
effects of probiotic administration on antioxidant status, blood
glucose, and lipid profile in T2DM. The probiotic intervention
group consumed 300 g/day of probiotic yogurt containing 106

CFU/ml Lactobacillus acidophilus La5 and 106 CFU/ml B. lactis
Bb12 whereas the control group consumed the same dose
of conventional yogurt for 6 weeks. The probiotic treatment
cohort showed as an increase in the activities of the glutathione
peroxidase and a significant decrease in fasting blood glucose.
The total cholesterol: HDL ratio and LDL-C:HDL-C ratios were
also lower in the probiotic treatment group, compared to the
control (184, 185). A randomized clinical trial that enrolled 450
patients with T2DM and hyperlipidemia was recently performed
by Tong et al. The group tested the hypothesis that gutmicrobiota
alteration may be involved in the mitigation of T2DM with
hyperlipidemia by using metformin and a specifically designed
herbal formula. Metformin and the herbal formula were shown
to ameliorate T2DM with hyperlipidemia by enriching beneficial
bacteria, such as Blautia and Faecalibacterium spp (186). The
effects of maternal dietary counseling during pregnancy were
investigated in a RDBPC study by Luoto et al. (187). Within
this study, 256 pregnant women were randomized into three
treatment groups: a control cohort (control/placebo), dietary
intervention with probiotics (diet/ Lactobacillus rhamnosus

Frontiers in Nutrition | www.frontiersin.org 13 March 2019 | Volume 6 | Article 21

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Lazar et al. Microbiota and Diet in Diabesity

GG and B. lactis), and with placebo (diet/placebo). The
study revealed that the probiotic supplement increased the
colostrum adiponectin concentration compared to the control.
A recent study by Kijmanawat et al. revealed that 4 weeks
supplementation using a probiotic containing Bifidobacterium
and Lactobacillus in women with diet-controlled gestational
diabetes in the late second- and early third-trimester lowered
fasting glucose and increased insulin sensitivity (188). A recent
clinical study by (189), showed that probiotic supplementation
(containing L. casei 2 × 109, Bifidobacterium bifidum 2 ×

109, L. acidophilus 2 × 109 CFU/day) for a period of 12
weeks had beneficial effects on biomarkers of inflammation in
diabetic patients with coronary heart disease (CHD) as well as
on glycemic control, HDL-cholesterol, total-/HDL-cholesterol
ratio, and oxidative stress (189). Administration of a multi-strain
probiotic supplementation over 6 months as a monotherapy
lead to significantly lower HOMA-IR in T2DM patients, with
inflammation and an improved cardiometabolic profile (190).

Importantly, patients with diabetes are often faced with major
depression leading to more diabetic complications, poorer self-
care, and lower medication adherence (191). Within this line
of thought, probiotics have been administered to diabetics with
depression. Vitamin D and probiotic (Lactocare Zisttakhmir Co)
co-supplementation for a period of 12 weeks among diabetic
people with CHD harbored positive effects on mental health
parameters, HDL-cholesterol level, glycemic control, and total
antioxidant capacity (192).

However, other studies state that probiotic use does not
provide a significant benefit for the diabetic patients. For
example, a randomized, double-blinded clinical trial using
Lactobacillus acidophilus NCFM in 45 men for a period
of 4 weeks reported that there were no changes in the
expression of baseline inflammatory markers and in the systemic
inflammatory response after probiotic treatment (193). Recently,
Kobyliak et al. (194), showed that probiotic therapy consisting
of a concentrated biomass of 14 probiotic bacteria genera
Bifidobacterium, Lactobacillus, Lactococcus, Propionibacterium
had a modest effect on insulin resistance in patients with type 2
diabetes (194).

Prebiotics
As a source of SCFAs, prebiotics may improve glucose tolerance.
Prebiotics were also suggested to reduce hypercholesterolemia
through lowering of cholesterol absorption as well as by inducing
SCFAs production by commensals (195, 196). The intake of
the prebiotic inulin (20 g/day) significantly lowered serum
triglycerides, increased serum HDL-cholesterol, and decreased
serum LDL-cholesterol compared to the control group (197).
In addition, normolipidemic individuals consuming daily 18%
of inulin without any other dietary restrictions exhibited a
lowering in triacylglycerols and total plasma cholesterol as well
as elevated fecal concentrations of Lactobacillus-lactate (198).
In rats, the addition of inulin to diet, increased the fecal
excretion cholesterol and lipids compared to the control group,
due to a lower cholesterol absorption (199). Other prebiotics
including oligodextrans, lactose, resistant starches, lactoferrin-
derived peptides, and N-acetyl-chito-oligosaccharides were also

reported to have hypocholesterolaemic effects in T2DM patients
at risk to develop cardiovascular complications (200). A diet
rich in arabinoxylan and resistant starch lead to increased
Bifidobacterium and butyrate levels in patients with metabolic
syndrome (201).

Due to their cost, availability and lack of acute toxicity, dietary
polysaccharides may be employed alone or in combinations,
to improve human health in various health conditions. Using
prebiotics in synbiotic products, besides their role in stimulating
the expansion of probiotics, they also inhibit pathogen growth,
stimulate immunity, and vitamins synthesis. A RDBPC study that
enrolled 20 diabetic volunteers aged 50–60 years, for a time frame
of 30 days analyzed the effects of a synbiotic drink (a combination
of probiotics and prebiotics) on blood glucose and cholesterol
levels. The symbiotic treatment group consisted of patients that
consumed 108 CFU/mL Bifidobacterium bifidum, 108 CFU/ml
of Lactobacillus acidophilus, and 2 g oligofructose harbored
increased HDL cholesterol, and decreased fasting glycemia; but,
importantly, no significant changes were observed in the placebo
group (202).

CONCLUSIONS AND PERSPECTIVES

The complex molecular and cellular interactions established
between the gut microbiota and the host, starting immediately
or even before birth (as stated in some recent studies),
have a key role in host homeostasis. Any disorder of the
“healthy” gut microbiome induced by infections, changes in the
lifestyle, diet or use of antimicrobial substances can result in a
plethora of pathologies, such as chronic gastrointestinal diseases,
neurological disorders, autoimmune diseases, allergies, diabetes,
obesity, cardiovascular diseases, chronic inflammation or cancer.
The high biodiversity within the microbiota may act as an
important marker of eubiosis. The capacity to access and remodel
the composition and function of the microbiota makes it an
attractive target for establishing a link between certain patterns of
gut microbiota and physiology/pathology status. This paves the
opportunity for development of potential biomarkers, and new
tools for prevention, screening and treatment in personalized
healthcare strategies. Nevertheless, due to the complexity and
individuality of human microbiota, a challenge at present time is
the identification of microbial patterns and microbial metabolic
pathways specifically linked to health or disease. In this regards
it is critical to establish the profile, if any, of a normal
gut microbiome.

There are many studies linking an altered gut microbiota with
metabolic diseases from obesity to T2DM and cardiovascular
diseases. Members of the indigenous microbiota may regulate
body weight via the modulation of the host metabolism,
immunity and neuroendocrine functions. The gut microbiota
provides metabolic functions and is involved in regulating host
gene expression, influencing the ability to extract and store
energy from dietary sources. Moreover, obese individuals with
lower bacterial richness/dysbiosis have been shown to have
greater weight gain, while microbiota transplantation of either
obese or lean mice in germ-free recipients influences body
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weight, suggesting that the intestinal ecosystem is a powerful tool
for weight management.

However, there are still questions and hypotheses waiting
to be confirmed or disapproved by future studies, such as:
can intestinal microbiota be a target in the treatment of
diabetes and obesity? Can the transplant of human normal,
“healthy” intestinal microbiota to another human with dysbiosis
or “decompensated” intestinal microbiota be possible as a
therapeutic measure?

Prospective studies on large cohorts of participants
using high-resolution monitoring of host and microbial
parameters assessed by omics approaches are needed to
determine if the microbiota is altered prior or after disease
onset. A multi-parameter individual approach, including
microbiota analysis will provide information regarding the
characteristics of people responding positively to a given
intervention. A deeper understanding of the gut microbiota
could essentially contribute to the management of metabolic
health and weight loss paving the way for microbiota-focused
precision nutrition.

Experiments of microbiota transplantation from humans
to mice could highlight the microbial species responsible
for the occurrence of obese phenotype vs. protective species,
such as Christensenellaminuta, specific metabolic pathways
(e.g., biosynthesis of branched-chain amino acids, which
linked to impaired sensitivity to insulin vs. SCFAs pathway),
microbial metabolites (detrimental vs. beneficial), or diets
(high fat vs. high in fruits and vegetables; low vs. rich
in fibers).

A better knowledge of the interactions between the host
and gut microbiota is also needed in order to increase the
predictability of the experimental models. Studies performed
exclusively on fecal samples could not be indicative about the
processes occurring in the small intestine, which are essential
for vitamin absorption. Intestinal microbiota can be directly
modulated by the use of probiotics, prebiotics, and even
antibiotics. The use of antibiotics in early life is correlated
with obesity in both humans and mice. Antibiotics can be
used for treating certain GIT ailments, but the microbiota
alterations they induce may promote metabolic disturbances,
changes in intestinal permeability, susceptibility to infections,

especially fungal ones and an increased risk of Clostridium
difficile infection.

Increased polysaccharides levels are likely to be beneficial
for individuals eating a typical Western-style, fiber-poor diet.
Beneficial metabolites such as butyrate or the bacteria that
produce them could be supplemented pharmacologically,
while receptor antagonists or enzymatic inhibitors could
be developed for detrimental metabolites, such as TMAO.
However, controlled dietary interventions that document the
utility of various nutrients, supplements, probiotics, and foods
in regulating aspects of the microbiota and human health
are required. Dietary interventions need to be individually
adjusted to prevent or treat chronic diseases based on
the genetic background, food and beverage consumption,
nutrient intake, microbiome, metabolome, and other
omics profiles.

As a general purpose, we can achieve eubiosis and
host health by reducing the antimicrobials consumption
and assuring the necessary nutrients, respecting everyone’s
preferences, by a diverse and balanced diet containing macro-
and micro-nutrients.
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