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Vitamins are micronutrients that have physiological effects on various biological

responses, including host immunity. Therefore, vitamin deficiency leads to increased

risk of developing infectious, allergic, and inflammatory diseases. Since B vitamins are

synthesized by plants, yeasts, and bacteria, but not bymammals, mammalsmust acquire

B vitamins from dietary or microbial sources, such as the intestinal microbiota. Similarly,

some intestinal bacteria are unable to synthesize B vitamins and must acquire them from

the host diet or from other intestinal bacteria for their growth and survival. This suggests

that the composition and function of the intestinal microbiota may affect host B vitamin

usage and, by extension, host immunity. Here, we review the immunological functions

of B vitamins and their metabolism by intestinal bacteria with respect to the control of

host immunity.
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INTRODUCTION

The gut is continuously exposed both to toxic (e.g., pathogenic microorganisms) and beneficial
(e.g., dietary components, commensal bacteria) compounds and microorganisms; therefore, the
intestinal immune systemmust maintain a healthy balance between active and suppressive immune
responses. This balance is controlled not only by host immune factors such as cytokines but also by a
variety of environmental factors such as dietary components and the composition of the commensal
bacteria. Furthermore, several lines of evidence have demonstrated that immune homeostasis in
the intestine is related not only to intestinal health but also to the health of the whole body (1–
3). Therefore, immune regulation by environmental factors is attracting attention as a means of
maintaining immunological health and preventing many diseases.

Nutrients are essential for the development, maintenance, and function of the host immune
system (4, 5). Vitamins are essential micronutrients that are synthesized by bacteria, yeasts, and
plants, but not by mammals. Therefore, mammals must obtain vitamins from the diet or rely on
their synthesis by commensal bacteria in the gastrointestinal tract. Some vitamins are water-soluble
(e.g., vitamin B family and vitamin C), whereas others are fat-soluble (e.g., vitamins A, D, E, and K).
Water-soluble vitamins are not stored by the body and any excess is excreted in the urine; therefore,
it is important to consume a diet containing the necessary amounts of these vitamins. Vitamin
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deficiency associated with insufficient dietary intake occurs not
only in developing countries but also in developed countries as a
result of increased use of unbalanced diet (6).

In addition to the diet, the commensal bacteria are recognized
as important players in the control of host health (7–9). From the
point of view of vitamins, commensal bacteria are both providers
and consumers of B vitamins and vitamin K. Although dietary
B vitamins are generally absorbed through the small intestine,
bacterial B vitamins are produced and absorbed mainly through
the colon (10, 11), indicating that dietary and gut microbiota-
derived B vitamins are possibly handled differently by the human
body. B vitamins are important cofactors and coenzymes in
several metabolic pathways, and it has been reported recently
that B vitamins also play important roles in the maintenance of
immune homeostasis (12, 13). Thus, both dietary components
and the gut microbiota modulate host immune function via
B vitamins. Here, we review the metabolism and function of
dietary and gut microbiota-derived B vitamins in the control of
host immunity.

VITAMIN B1

Vitamin B1 (thiamine) is a cofactor for several enzymes,
including pyruvate dehydrogenase and α-ketoglutarate
dehydrogenase, which are both involved in the tricarboxylic acid
(TCA) cycle (14, 15). World Health Organization (WHO)/Food
and Agriculture Organization (FAO) recommend a daily
vitamin B1 intake of 1.1–1.2mg for adult (16). Vitamin B1
deficiency causes lethargy and, if left untreated, can develop
into beriberi, a disease that affects the peripheral nervous
system and cardiovascular system. Accumulating evidence
suggests that energy metabolism—particularly the balance
between glycolysis and the TCA cycle—is associated with the
functional control of immune cells, in what is now referred to as
immunometabolism (17).

Immunometabolism is well studied in T cells and
macrophages; quiescent or regulatory-type cells (e.g., naive
T cells, Treg cells, and M2 macrophages) use the TCA cycle for
energy generation, whereas activated or pro-inflammatory
cells (e.g., Th1, Th2, Th17, and M1 macrophages) use
glycolysis (18, 19).

Previously, we examined B cell immunometabolism in the
intestine. In the intestine, naïve immunoglobulin (Ig) M+ B cells
differentiate into IgA+ B cells in Peyer’s patches (PPs) by class
switching, and then IgA+ B cells differentiate into IgA-producing
plasma cells in the intestinal lamina propria (20). Naïve B cells
in PPs preferentially use a vitamin B1-dependent TCA cycle for
the generation of ATP. However, once the B cells differentiate
into IgA-producing plasma cells, they switch to using glycolysis
for the generation of ATP and shift to a catabolic pathway for
the production of IgA antibody (Figure 1). Consistent with the
importance of vitamin B1 in the maintenance of the TCA cycle,
mice fed a vitamin B1-deficient diet show impaired maintenance
of naïve B cells in PPs, with little effect on IgA-producing plasma
cells. Since PPs are the primary sites of induction of antigen-
specific IgA responses, PP regression induced by vitamin B1

deficiency leads to decreased IgA antibody responses to oral
vaccines (21).

Vitamin B1 is found in high concentrations as thiamine
pyrophosphate (TPP) in meat (particularly pork and chicken);
eggs; cereal sprouts and rice bran; and beans. Dietary TPP
is hydrolyzed by alkaline phosphatase and converted to free
thiamine in the small intestine (22). Free thiamine is absorbed
by the intestinal epithelium via thiamine transporters (e.g.,
THTR-1, THTR-2) and transported to the blood for distribution
throughout the body (11). Free thiamine is converted back to TPP
and is used for energy metabolism in the TCA cycle.

Various types of intestinal bacteria, mostly in the colon, also
produce vitamin B1 as both free thiamine and TPP (11, 23).
In the colon, free bacterial thiamine is absorbed mainly by
thiamine transporters, transported to the blood, and distributed
throughout the body; this mechanism is similar to how free
dietary thiamine is taken up in the small intestine. However,
unlike in the small intestine, TPP produced by the gut microbiota
is not converted to free thiamine, because alkaline phosphatase
is not secreted in the colon (24). Instead, TPP is absorbed
directly by the colon via TPP transporters (e.g., TPPT-1) that
are highly expressed on the apical membrane of the colon
(25). The absorbed TPP enters the mitochondria via MTPP-1,
a TPP transporter that is expressed in the mitochondrial inner
membrane and is used as a cofactor for ATP generation (26). This
suggests that bacterial TPP is important for energy generation in
the colon. Thus, dietary and bacterial vitamin B1 appears to have
different roles in the host.

The vitamin B1 structure consists of a thiazole moiety linked
to a pyrimidine moiety. Bacteria obtain the thiazole moiety from
glycine or tyrosine and 1-deoxy-D-xylulose-5-phosphate, and
plants and yeasts synthesize it from glycine and 2-pentulose (27–
30). In both bacteria and plants, the pyrimidine moiety is derived
from 5-aminoimidazole ribonucleotide, an intermediate in the
purine pathway (29). Metagenomic analyses of the human gut
microbiota predict that Bacteroides fragilis and Prevotella copri
(phylum Bacteroidetes); Clostridium difficile, some Lactobacillus
spp., and Ruminococcus lactaris (Firmicutes); Bifidobacterium
spp. (Actinobacteria); and Fusobacterium varium are vitamin
B1 producers (Table 1) (10, 46), implying that many intestinal
bacteria possess a complete vitamin B1 synthesis pathway, which
includes pathways for the synthesis of thiazole and pyrimidine.
Indeed, Lactobacillus casei produces thiamine during the
production of fermented milk drinks (31), and Bifidobacterium
infantis and B. bifidum produce thiamine in culture supernatant
(32). However, Faecalibacterium spp. (Firmicutes) lack a vitamin
B1 synthesis pathway even though they require vitamin B1 for
their growth (10). Therefore, these bacteria must obtain their
vitamin B1 from other bacteria or from the host diet via a
thiamine transporter, suggesting that there is competition for
vitamin B1 between the host and certain intestinal bacteria.

VITAMIN B2

Vitamin B2 (riboflavin) and its active forms (flavin adenine
dinucleotide [FAD] and flavin mononucleotide [FMN]) are
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FIGURE 1 | Vitamin B1 and B2-mediated immunometabolism in B cell differentiation in the intestine. Vitamin B1 acts as a cofactor for enzymes such as pyruvate

dehydrogenase and α-ketoglutarate dehydrogenase that are involved in the TCA cycle. Vitamin B2 acts as a cofactor for enzymes such as succinate dehydrogenase

in the TCA cycle and acyl-CoA dehydrogenase in fatty acid oxidation (FAO, also known as β-oxidation). Naïve B cells preferentially use the TCA cycle for efficient

energy generation. Once B cells are activated to differentiate into IgA-producing plasma cells, they utilize glycolysis for the production of IgA antibody.

cofactors for enzymatic reactions in the TCA cycle and in fatty
acid oxidization (also known as β-oxidization) (15). WHO/FAO
recommends a daily vitamin B2 intake of 1.0–1.3mg for adults
(16). Vitamin B2 deficiency suppresses the activity of acyl-
CoA dehydrogenases involved in the oxidation of fatty acids to
generate acetyl-CoA, which is used by mitochondria to produce
ATP via the TCA cycle. Fatty acid oxidization is involved
in the activation, differentiation, and proliferation of immune
cells through the generation of acetyl-CoA and its entry into
TCA cycle (47). This suggests that vitamin B2 is associated
with the control of differentiation and function of immune
cells through regulation of fatty acid oxidization (Figure 1);
however, the immunological roles of vitamin B2 in the control
of host immunity remain to be investigated. In addition to
energy generation, vitamin B2 is associated with reactive oxygen
species (ROS) generation in immune cells through the priming of
NADPH oxidase 2 (48); ROS are important effector and signaling
molecules in inflammation and immunity.

Vitamin B2 is found at high levels in leafy green vegetables,
liver, and eggs. Dietary vitamin B2 exists as FAD or FMN and is
converted to free riboflavin by FAD pyrophosphatase and FMN
phosphatase in the small intestine (49, 50). Free riboflavin is
absorbed via riboflavin transporter expressed on the epithelium
of the small intestine and is then released into the blood. In the
blood, free riboflavin is converted back to FAD or FMN and
distributed throughout the body (51–53).

Bacterial vitamin B2 is synthesized from guanosine
triphosphate (GTP) and D-ribulose 5-phosphate (54). Bacterial
vitamin B2 exists as free riboflavin, which is directly absorbed in
the large intestine, converted to FAD or FMN, and distributed
throughout the body as described above (23). A metagenome
analysis of the human gut microbiota by Magnúsdóttir et al.
(10) has predicted that Bacteroides fragilis and Prevotella copri
(Bacteroidetes); Clostridium difficile, Lactobacillus plantarum,

L. fermentum, and Ruminococcus lactaris (Firmicutes) express
factors essential for vitamin B2 synthesis, suggesting that these
bacteria are an important source of vitamin B2 in the large
intestine (Table 1). In contrast, Bifidobacterium spp., and
Collinsella spp. (Actinobacteria) lack a vitamin B2 pathway.
Supplementation of fermented soymilk containing Lactobacillus
plantarum with riboflavin deficient diet has been shown to
promote vitamin B2 production and prevent vitamin B2
deficiency in mice (35). L. fermentum isolated from sourdough
can synthesize riboflavin in vitro (36). Furthermore, recent
evidence indicates that some species in Bacteroidetes phylum
produce more riboflavin than do Actinobacteria and Firmicutes
phyla (55). However, Actinobacteria and Firmicutes phyla
still express riboflavin transporter and the enzymes necessary
for FAD and FMN generation from free riboflavin (i.e., FAD
synthases and flavin kinases) (10, 56), suggesting that all
bacteria, including those that are unable to synthesize vitamin
B2 themselves, require FAD and FMN for their growth and
survival. Thus, as with vitamin B1, there is likely competition for
riboflavin between the host and the commensal bacteria.

In addition to being able to produce vitamin B2, some
bacteria (e.g., commensals such as Lactobacillus acidophilus and
pathogens such as Mycobacterium tuberculosis and Salmonella
typhimurium) produce the vitamin B2 intermediate (57–59), 6-
hydroxymethyl-8-D-ribityllumazine (60, 61). 6-Hydroxymethyl-
8-D-ribityllumazine binds to major histocompatibility complex
class I-related gene protein (MR1) on antigen-presenting
cells; this causes mucosal-associated invariant T (MAIT) cells,
an abundant population of innate-like T cells, to produce
cytokines such as interferon gamma and interleukin (IL) 17,
which contribute to host defense against pathogens (Figure 2)
(62). It is thought that stimulation by commensal bacteria
contributes to the development and activation of MAIT cells
for immunological surveillance against pathogens. MAIT cells
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TABLE 1 | Vitamin B family producing bacteria.

Vitamins Forms Bacteria References

B1 Thiamin

pyrophosphate

(TPP)

Bacteroides fragilis

Prevotella copri

Clostridium difficile

Lactobacillus casei

Lactobacillus curvatus

Lactobacillus plantarum

Ruminococcus lactaris

Bifidobacterium infantis

Bifidobacterium bifidum

Fusobacterium varium

(10, 31–33)

B2 Flavin adenine

dinucleotide (FAD)

Flavin

mononucleotide

(FMN)

Bacteroides fragilis

Prevotella copri

Clostridium difficile

Lactobacillus plantarum

Lactobacillus fermentum

Ruminococcus lactaris

(10, 34–36)

B3 Nicotinic acid

Nicotinamide

Bacteroides fragilis

Prevotella copri

Ruminococcus lactaris

Clostridium difficile

Bifidobacterium infantis

Helicobacter pylori

Fusobacterium varium

(10, 32)

B5 Free pantothenic

acid

Bacteroides fragilis

Prevotella copri

Ruminococcus lactaris

Ruminococcus torques

Salmonella enterica

Helicobacter pylori

(10)

B6 Pyridoxal

phosphate (PLP)

Bacteroides fragilis

Prevotella copri

Bifidobacterium longum

Collinsella aerofaciens

Helicobacter pylori

(10, 32)

B7 Free biotin Bacteroides fragilis

Lactobacillus helveticus

Fusobacterium varium

Campylobacter coli

(10, 37)

B9 Tetrahydrofolate

(THF)

Bacteroides fragilis

Prevotella copri

Clostridium difficile

Lactobacillus plantarum

Lactobacillus delbrueckii

ssp. bulgaricus

Lactobacillus reuteri

Streptococcus thermophilus

Bifidobacterium

pseudocatenulatum

Bifidobacterium

adolescentis

Fusobacterium varium

Salmonella enterica

(10, 38–41)

B12 Adenosylcobalamin Bacteroides fragilis

Prevotella copri

Clostridium difficile

Faecalibacterium prausnitzii

Ruminococcus lactaris

Propionibacterium

freudenreichii

Lactobacillus plantarum

Lactobacillus coryniformis

Lactobacillus s reuteri

Bifidobacterium animalis

Bifidobacterium infantis

Bifidobacterium longum

Fusobacterium varium

(10, 32, 33,

42–45)

also produce inflammatory cytokines and have tissue-homing
properties, suggesting that these cells are also involved in the
development of autoimmune and inflammatory diseases (63).

VITAMIN B3

Vitamin B3 (niacin) is generally known as nicotinic acid and
nicotinamide. These compounds are precursors of nicotinamide
adenine dinucleotide (NAD), a coenzyme in the cellular redox
reaction with a central role in aerobic respiration. WHO/FAO
recommends a daily vitamin B3 intake of 11–12mg for
adults (16).

Vitamin B3 is also a ligand of GPR109a, a G-protein coupled
receptor expressed on several types of cells, including immune
cells (64). Vitamin B3–GPR109a signaling induces differentiation
of regulatory T cells and suppresses colitis in a GPR109a-
dependent manner (65). Vitamin B3 also inhibits the production
of the pro-inflammatory cytokines IL-1, IL-6, and tumor necrosis
factor alpha (TNF-α) by macrophages and monocytes (Figure 3)
(66). Thus, vitamin B3 has anti-inflammatory properties by
modulating host immune cells and playing an important role
in the maintenance of immunological homeostasis. Indeed, in
humans, vitamin B3 deficiency causes pellagra, which is a disease
characterized by intestinal inflammation, diarrhea, dermatitis,
and dementia (67).

Unlike the other B vitamins, vitamin B3 can be generated
by mammals via an endogenous enzymatic pathway from
tryptophan and is stored in the liver, although it is also obtained
from the diet (68). Animal-based foods such as fish and meat
contain vitamin B3 as nicotinamide, and plant-based foods such
as beans contain vitamin B3 as nicotinic acid. Both nicotinamide
and nicotinic acid are directly absorbed through the small
intestine, where nicotinic acid is converted to nicotinamide.

Vitamin B3 is also synthesized from tryptophan by intestinal
bacteria (69, 70). Bacteroides fragilis and Prevotella copri
(Bacteroidetes); Ruminococcus lactaris, Clostridium difficile
(Firmicutes); Bifidobacterium infantis (Actinobacteria);
Helicobacter pylori (Proteobacteria); and Fusobacterium varium
(Fusobacteria) possess a vitamin B3 biosynthesis pathway
(Table 1) (10, 71). Thus, many intestinal bacteria from various
genera can produce vitamin B3, suggesting that both dietary
and commensal bacteria-derived vitamin B3 are important for
host immunity.

VITAMIN B5

Vitamin B5 (pantothenic acid) is a precursor of coenzyme A
(CoA), which is an essential cofactor for the TCA cycle and fatty
acid oxidation (72). WHO/FAO recommends a daily vitamin
B5 intake of 5.0mg for adults (16). Like vitamins B1 and B2,
vitamin B5 is involved in the control of host immunity via
energy generation by immune cells. Vitamin B5 deficiency causes
immune diseases such as dermatitis, as well as non-immune-
related conditions such as fatigue and insomnia (73). In a
randomized, double-blind, placebo-controlled study in adults,
dietary supplementation with vitamin B5 was shown to improve
facial acne (74), suggesting that epithelial barrier function
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FIGURE 2 | Regulation of MAIT cells by microbial metabolites derived from vitamin B2 and B9. Commensal bacteria/pathogens produce the vitamin B2 metabolite

6-hydroxymethyl-8-D-ribityllumazine. It binds to major histocompatibility complex (MHC) related protein (MR1) on antigen-presenting cells, which activate mucosal

associated invariant T (MAIT) cells to promote the production of inflammatory cytokines such as IFN-γ and IL-17. These reactions contribute to defense against

pathogens and conversely are associated with inflammation. In contrast, the vitamin B9 metabolite acetyl-6-formylpterin binds as an antagonist to MR1, thus inhibiting

the activation of MAIT cells.

FIGURE 3 | Pivotal roles of vitamins B3, B7, and B9 in maintenance of immunological homeostasis. Vitamin B3 binds to GPR109a in dendritic cells and

macrophages, and GPR109a signaling leads to an increase in anti-inflammatory properties, resulting in differentiation into regulatory T cells (Treg). Vitamin B7 binds to

histones and, by histone biotinylation, suppresses the secretion of pro-inflammatory cytokines. Once naïve T cells differentiate into Treg cells, they highly express folate

receptor 4 (FR4). Consistent with this finding, vitamin B9 is required for the survival of Treg cells.

improves via the promotion of keratinocyte proliferation and
differentiation into fibroblasts (75). To maintain vitamin B5
levels during times of deficiency, CoA is converted back
to vitamin B5 or cysteamine via pantetheine (76). However,

cysteamine inhibits peroxisome proliferator-activated receptor
gamma (PPARγ) signaling, causing inflammation (77). Indeed,
colitis has been improved in pantetheine-producing-enzyme
knockout mice (78). Thus, vitamin B5 deficiency causes
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inflammation through both dysfunction of the epithelial barrier
and the production of pro-inflammatory molecules.

In terms of immune responses, vitamin B5 enhances
protective activity against Mycobacterium tuberculosis infection
by promoting innate immunity and adaptive immunity. In mice,
vitamin B5 supplementation activates phagocytosis and cytokine
production (including IL-6 and TNF-α) by macrophages and
subsequently promotes Th1 and Th17 responses for the clearance
of M. tuberculosis from the lungs (79). Thus, vitamin B5
contributes to host defense by activating immune responses,
suggesting that this vitamin has an important role as a
natural adjuvant.

Vitamin B5 is found in high concentrations as CoA or
phosphopantetheine in liver, eggs, chicken, and fermented
soybeans. CoA and phosphopantetheine are converted to free
pantothenic acid by endogenous enzymes such as phosphatase
and pantetheinase in the small intestine. Free pantothenic acid
is absorbed via sodium-dependent multivitamin transporter
(SMVT) expressed on the epithelium of the small intestine and
is then released into the blood (80). Finally, free pantothenic acid
is converted back to CoA and distributed throughout the body,
particularly to the liver and kidney.

Bacterial vitamin B5 is synthesized from 2-dihydropantoate
and β-alanine via de novo synthesis pathways (10). Bacterial
vitamin B5 exists as free pantothenic acid, which is directly
absorbed in the large intestine, converted to CoA, and
distributed in the same way as dietary vitamin B5. According
to a genomic analysis, Bacteroides fragilis and Prevotella copri
(Bacteroidetes); some Ruminococcus spp. (R. lactaris and R.
torques) (Firmicutes); Salmonella enterica andHelicobacter pylori
(Proteobacteria) possess a vitamin B5 biosynthesis pathway,
indicating that intestinal commensal bacteria can produce
vitamin B5. In contrast, most Fusobacterium (Fusobacteria)
and Bifidobacterium spp. (Actinobacteria) and some strains of
Clostridium difficile, Faecalibacterium spp., and Lactobacillus spp.
(Firmicutes) lack such a pathway (Table 1), although some of
them do express pantothenic acid transporter to utilize vitamin
B5 for energy generation (10), suggesting that these bacteria
compete with the host for vitamin B5.

VITAMIN B6

Vitamin B6 exists in several forms, including as pyridoxine,
pyridoxal, and pyridoxamine. These forms of vitamin B6 are
precursors of the coenzymes pyridoxal phosphate (PLP) and
pyridoxamine phosphate (PMP), which are involved in a variety
of cellular metabolic processes, including amino acid, lipid, and
carbohydrate metabolism (81). WHO/FAO recommends a daily
vitamin B6 intake of 1.3–1.7mg for adults (16). Vitamin B6
deficiency is associated with the development of inflammatory
diseases such as allergy and rheumatoid arthritis, as well as with
neuronal dysfunction (82–84). Vitamin B6 deficiency disrupts the
Th1–Th2 balance toward an excessive Th2 response, resulting in
allergy (85). Moreover, low plasma vitamin B6 levels, together
with increased levels of pro-inflammatory cytokines such as
TNF-α and IL-6, have been observed in patients with rheumatoid

arthritis (86). However, themechanism underlying the regulation
of inflammation by vitamin B6 is currently unknown. Vitamin
B6 contributes to intestinal immune regulation through the
metabolism of the lipid mediator sphingosine 1-phosphate (S1P).
S1P regulates lymphocyte trafficking into the intestines, especially
in the large intestine. Lymphocyte trafficking is dependent on S1P
gradient which is created by S1P production and its degradation.
S1P degradation is mediated by S1P lyase that requires vitamin
B6 as a cofactor. The administration of vitamin B6 antagonist
impairs S1P lyase activity and creates an inappropriate S1P
gradient, resulted in impairing lymphocyte migration from
lymphoid tissues and reducing the numbers of lymphocytes
in the intestines (87). The lymphocytes located between gut
epithelial cells are known as intraepithelial cells (IELs) which
are involved in the protection against pathogens (88). Therefore,
vitamin B6 is important role for immunosurveillance in
the intestines.

Vitamin B6 is abundant in fish, chicken, tofu, sweet potato,
and avocado. Dietary vitamin B6 exists as PLP or PMP; it
is converted to free vitamin B6 by endogenous enzymes such
as pyridoxal phosphatase and is then absorbed by the small
intestine. Although absorption of vitamin B6 through acidic pH-
dependent and carrier-mediated transport has been shown, an
intestinal pyridoxine transporter is yet to be identified in any
mammalian species (11). After the absorption of free vitamin B6,
it enters the blood and is converted back to PLP or PMP.

Microbial vitamin B6 is synthesized as PLP from
deoxyxylulose 5-phosphate and 4-phosphohydroxy-L-threonine
or from glyceraldehyde-3-phosphate and D-ribulose 5-phosphate
(10). In the large intestine, bacteria-derived PLP is converted
to free vitamin B6, which is absorbed by passive transport,
transported to the blood, and distributed throughout the body.

Metagenomic analysis has shown that Bacteroides fragilis
and Prevotella copri (Bacteroidetes), Bifidobacterium longum
and, Collinsella aerofaciens (Actinobacteria), and Helicobacter
pylori (Proteobacteria) possess a vitamin B6 biosynthesis
pathway. Bacteroidetes and Proteobacteria likely produce
vitamin B6 starting from deoxyxylulose 5-phosphate and 4-
phosphohydroxy-L-threonine, whereas Actinobacteria likely
start from glyceraldehyde-3-phosphate and D-ribulose 5-
phosphate. In contrast, most Firmicutes genera (Veillonella,
Ruminococcus, Faecalibacterium, and Lactobacillus spp.),
except for some Clostridium (C. bartlettii, C. leptum, C.
methylpentosum, and C. sporogenes) and Lactobacillus spp. (L.
brevis and L. ruminis) lack a vitamin B6 biosynthesis pathway
(10) (Table 1).

VITAMIN B7

Vitamin B7 (biotin) is a cofactor for several carboxylases that
are essential for glucose, amino acid, and fatty acid metabolism
(89). For example, vitamin B7 is an essential cofactor for acetyl-
CoA carboxylase and fatty acid synthase, which are enzymes
involved in fatty acid biosynthesis (90, 91). Thus, vitamin B7
likely influences immunometabolism. WHO/FAO recommends
a daily vitamin B7 intake of 30 µg for adults (16). Vitamin
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B7 suppresses gene expression by binding to (biotinylating)
histones; these genes include that encoding NF-κB, which is
a major signaling molecule for the production of several pro-
inflammatory cytokines (e.g., tumor necrosis factor alpha, IL-
1, IL-6, IL-8) (92, 93). Nuclear transcription of NF-κB is
activated in response to vitamin B7 deficiency (94), suggesting
that biotinylation of histones suppresses the expression of
genes encoding pro-inflammatory cytokines in NF-κB signaling
(Figure 3). Therefore, vitamin B7 has anti-inflammatory effects
by inhibiting NF-κB activation, and dietary vitamin B7 deficiency
causes inflammatory responses via enhanced secretion of pro-
inflammatory cytokines (95, 96).

Vitamin B7 is abundant in foods such as nuts, beans, and
oilseed. However, raw egg-white contains a large amount of
avidin, which binds strongly to vitamin B7 and prevents its
absorption in the gut (97). Therefore, vitamin B7 deficiency can
be caused not only by insufficient vitamin B7 intake, but also by
excessive intake of raw egg-white. Dietary biotin exists as a free
protein-bound form or as biocytin (11). In the small intestine,
biotinidase releases free biotin from the bound protein and the
free biotin is absorbed via the biotin transporter SMVT (98).

Vitamin B7 is also produced by intestinal bacteria as
free biotin synthesized from malonyl CoA or pimelate via
pimeloyl-CoA (99, 100). Bacterial free biotin is absorbed
by SMVT expressed in the colon (23, 101). Metagenomic
analysis has shown that Bacteroides fragilis and Prevotella
copri (Bacteroidetes); Fusobacterium varium (Fusobacteria)
and Campylobacter coli (Proteobacteria) possess a vitamin
B7 biosynthesis pathway (10). In contrast, Prevotella spp.
(Bacteroidetes), Bifidobacterium spp. (Actinobacteria), and
Clostridium, Ruminococcus, Faecalibacterium, and Lactobacillus
spp. (Firmicutes) lack such a pathway (Table 1); however, they
do express free biotin transporter (10, 102), suggesting that
these bacteria also utilize dietary and bacterial vitamin B7 and
therefore may compete with the host. Thus, free biotin may
influence the composition of the gut microbiota, because biotin is
necessary for the growth and survival of the microbiota. Indeed,
biotin deficiency leads to gut dysbiosis and the overgrowth of
Lactobacillus murinus, leading to the development of alopecia
(103). Furthermore, vitamin B7 production appears to proceed
in a cooperative manner among different intestinal bacteria;
Bifidobacterium longum in the intestine produces pimelate, which
is a precursor of vitamin B7 that enhances vitamin B7 production
by other intestinal bacteria (104).

VITAMIN B9

Vitamin B9 (folate), in its active form as tetrahydrofolate,
is a cofactor in several metabolic reactions, including DNA
and amino acid synthesis. WHO/FAO recommends a daily
vitamin B9 intake of 400 µg for adults (16). Owing to the
high requirement of vitamin B9 by red blood cells, vitamin
B9 deficiency leads to megaloblastic anemia (23). Vitamin B9
deficiency also inhibits the proliferation of human CD8+ T cells
in vitro by arresting the cell cycle in the S phase and increasing
the frequency of DNA damage (105). Moreover, vitamin B9

contributes to the maintenance of immunologic homeostasis.
Regulatory T cells (Treg) express high levels of vitamin B9
receptor (folate receptor 4 [FR4]). Administration of anti-FR4
antibody results in specific reduction in the Treg cell population
(106), suggesting that the vitamin B9–FR4 axis is required for
Treg cell maintenance. In vitro culture of Treg cells under vitamin
B9-reduced conditions leads to impaired cell survival, with
decreased expression of anti-apoptotic Bcl2 molecules, although
naïve T cells retain the ability to differentiate into Treg cells;
this suggests that vitamin B9 is a survival factor for Treg cells
(87). Consistent with these findings, deficiency of dietary vitamin
B9 results in reduction of the Treg cell population in the small
intestine (107, 108). Since Treg cells play an important role in
the prevention of excessive immune responses (109), mice fed
a vitamin B9-deficient diet exhibit increased susceptibility to
intestinal inflammation (107).

Foods such as beef liver, green leafy vegetables, and asparagus
contain high levels of vitamin B9. Vitamin B9 exists as both
mono- and polyglutamate folate species in the diet (110). Folate
polyglutamate is deconjugated to the monoglutamate form and
then absorbed in the small intestine via folate transporters
such as proton-coupled folate transporter (PCFT) (11, 111). In
the intestinal epithelium, folate monoglutamate is converted to
tetrahydrofolate (THF), an active form and cofactor, before being
transported to the blood (111).

Intestinal bacteria synthesize vitamin B9 as THF from GTP,
erythrose 4-phosphate, and phosphoenolpyruvate (38, 112).
Bacterial THF is directly absorbed in the colon via PCFT and
distributed through the body by the blood (113). Metagenomic
analysis has shown that Bacteroides fragilis and Prevotella copri
(Bacteroidetes); Clostridium difficile, Lactobacillus plantarum,
L. reuteri, L. delbrueckii ssp. bulgaricus, and Streptococcus
thermophilus (Firmicutes), some species in Bifidobacterium spp
(Actinobacteria); Fusobacterium varium (Fusobacteria) and
Salmonella enterica (Proteobacteria) possess a folate biosynthesis
pathway (Table 1) (10, 40). This suggests that almost all species
in all phyla produce folate. Indeed, dietary supplementation
with Bifidobacterium probiotic strains (B. adolescentis and
B. pseudocatenulatum) enhances folate production in the
large intestine of folate-deficient rats and folate-free culture
medium (38, 41, 114). Furthermore, Lactobacillus plantarum,
L. delbrueckii ssp. bulgaricus, and L. reuteri enhance folate
production in bacterial culture supernatant lacking the
components needed for folate synthesis (38, 39, 115).

In commensal bacteria, a vitamin B9 metabolite, 6-
formylpterin (6-FP), is produced by photodegradation
of folic acid (116). Like the vitamin B2 metabolite 6-
hydroxymethyl-8-D-ribityllumazine, 6-FP binds to MR1,
but unlike 6-hydroxymethyl-8-D-ribityllumazine it cannot
activate MAIT cells (62, 117). An analog of 6-FP, acetyl-6-FP, is
an antagonist of MR1, which inhibits MAIT cell activation (118).
As mentioned in the section on vitamin B2, 6-hydroxymethyl-8-
D-ribityllumazine activates MAIT cells, which provide defense
against pathogens, so vitamin B9 metabolites may suppress
excess MAIT cell responses and prevent excessive allergic and
inflammatory responses (Figure 2). The quantitative balance
between dietary vitamin B2 and B9 and the composition of
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FIGURE 4 | Schematic representation of B-vitamin-mediated interaction between commensal bacteria and host immunity.

the microbiota and its ability to metabolize these vitamins may
be keys to understanding MAIT-cell-mediated homeostasis in
the intestine.

VITAMIN B12

Vitamin B12 (cobalamin) is a cobalt-containing vitamin that,
in its active forms of methylcobalamin and adenosylcobalamin,
catalyzes methionine synthesis (119). WHO/FAO recommends
a daily vitamin B12 intake of 2.4 µg for adults (16). Together
with vitamin B6 and B9, vitamin B12 plays important roles
in red blood cell formation and nucleic acid synthesis,
especially in neurons. Therefore, vitamin B12 deficiency causes
megaloblastic anemia and nervous system symptoms such
as numbness of the hands and feet (119). In terms of
host immunity, dietary vitamin B12 deficiency decreases the
number of CD8+ T cells and suppresses natural killer T-
cell activity in mice; supplementation with methylcobalamin
improves these conditions (120), suggesting that vitamin B12
contributes to the immune response via CD8+ T cells and natural
killer T cells.

Beef liver, bivalves, fish, chicken, and eggs contain high levels
of vitamin B12. Dietary vitamin B12 exists in complex with
dietary protein and is decomposed to free vitamin B12 by pepsin
in the stomach. Free vitamin B12 is absorbed by the epithelial
cells of the small intestine via intrinsic factor (IF), a gastric
glycoprotein. Inside the epithelial cells, IF-vitamin B12 complex
is decomposed to free vitamin B12 by lysosome and then released
into the blood, where it is converted to the active form and
distributed throughout the body (121, 122).

Bacterial vitamin B12 is synthesized from precorrin-
2 to produce adenosylcobalamin (10), which is absorbed
directly by the large intestine and distributed throughout the
body; the mechanism underlying this absorption is currently
unclear. Metagenomic analysis has predicted that Bacteroides
fragilis and Prevotella copri (Bacteroidetes); Clostridium
difficile, Faecalibacterium prausnitzii and Ruminococcus
lactaris (Firmicutes); Bifidobacterium animalis, B.infantis,
and B.longum (Actinobacteria); Fusobacterium varium
(Fusobacteria) possess a vitamin B12 biosynthesis pathway

(Table 1) (10, 32, 42, 43, 45). Indeed, Lactobacillus plantarum
and L. coryniformis isolated from fermented food produce
vitamin B12 (33), and Bifidobacterium animalis synthesizes
vitamin B12 during milk fermentation (123).

CONCLUSION

B-vitamin-mediated immunological regulation is specific
to different immune cells and immune responses: that is,
different B vitamins are required for different immune responses
(Figure 4). It was once thought that B vitamins were obtained
only from the diet; however, we know now that this is not the
case and that the intestinal microbiota is also an important
source of vitamins. Within the intestinal microbiota, not all
bacteria produce B vitamins and some bacteria utilize dietary
B vitamins or B vitamins produced by other intestinal bacteria
for their own needs; therefore, there may be competition
between the host and the intestinal microbiota for B vitamins
(Figure 4). Research in this field is complicated, because not
only does the composition of the intestinal microbiota vary
among individuals, but also the composition of the diet can
alter both the composition and function of the intestinal
microbiota. Therefore, vitamin-mediated immunological
maintenance also varies among individuals. Further
examinations in this field are needed, and the new information
uncovered will help to develop a new era of precision health
and nutrition.
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