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Among the many bioactive components in human milk, the free oligosaccharides (OS)

have been intensely studied in recent decades due to their unique ability to selectively

modulate the infant gut microbiota, in addition to providing numerous other health

benefits. In light of the demonstrated value of these compounds, recent studies have set

out to characterize the structures and properties of the similar and more widely-available

OS in the dairy industry. This mini review gives a brief overview of the common analytical

techniques used to characterize bovine milk OS and highlights several recent, key studies

that have identified valuable physiological and metabolic effects of these molecules

in vivo. Although traditionally considered indigestible by human enzymes, evidence now

suggests that milk OS are partially absorbed in the intestines and likely contribute to

the development of molecular structures in the brain. Furthermore, aside from their

prebiotic effects, these compounds show promise as therapeutics that could alleviate

numerous metabolic abnormalities, including undernutrition, obesity, and excessive

intestinal permeability. The need for novel treatments to address these and related health

issues is motivating the development of scalable techniques to produce large quantities

of milk OS for use as food ingredients. The safety and tolerability of high dosages of

bovine milk OS have been demonstrated in two independent human studies, which

potentially opens the door for further research aiming to utilize thesemolecules to alleviate

common metabolic health issues.
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INTRODUCTION

Milk harbors a suite of bioactive compounds, including free oligosaccharide (OS)
structures that are well-characterized as selective prebiotics and that play an important
role in infant health and development (1, 2). Research in the last few decades has
made immense progress in characterizing the beneficial biological functions of OS and
uncovering the mechanistic pathways by which they are exerted. The majority of studies
on milk OS functionality initially focused on the highly-concentrated OS in human
milk. Human milk OS have been extensively profiled, with as many as 200 structures
being identified in comprehensive studies (3, 4), and the ability of gut-associated bacteria
to consume many of these structures is well-documented (5–7). Several gut bacterial
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species, including select species of Lactobacillus and
Bifidobacteria, are highly desirable due to their ability to
down-regulate an over-active immune system and reduce
inflammatory response (8). This research field has now expanded
to identify the similar structures and bioactivities of milk
OS from other mammalian species. In particular, industrial
production of bovine milk has prompted studies into the
therapeutic value of bovine milk oligosaccharides (BMOs) and
the dairy industry’s relatively underutilized BMO-containing
side streams. This mini-review highlights recent studies that
demonstrate novel bioactivities of BMOs, with a particular
focus on their digestibility and metabolic effects. The paper
also provides an overview of the current analytical tools used
in OS characterization and the development of industrial-scale
processes for BMO production. Considering the wide availability
of BMOs in dairy streams and the current need for therapeutics
with BMO-like functionalities, these molecules show promise as
a solution to epidemic metabolic and digestive illnesses.

BOVINE MILK OLIGOSACCHARIDE
COMPOSITION AND STRUCTURES

Oligosaccharides in bovine milk are assembled in the mammary
gland by combining themonosaccharides glucose (Glc), galactose
(Gal), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine,
fucose, and the sialic acids N-acetylneuraminic acid and
N-glycolylneuraminic acid (9, 10). The OS structures
contain either lactose (Gal(β1-4)Glc) or N-acetyllactosamine
(Gal(β1-4)GlcNAc) at their reducing end, with additional
monosaccharide residues branching off from the non-reducing
galactose (9, 10). In some cases, the BMOs possess lacto-N-
biose (Gal(β1-3)GlcNAc) or N-acetyllactosamine units linked
to the lactose core, which are defining features of the type
1 and type 2 OS structures contained within many human
milk OS (Figure 1C) (1, 9). The collection of BMOs found
in milk and colostrum has been extensively profiled by our
research group, with 30–50 structures typically being identified
in comprehensive studies (9, 12–14). Although bovine milk
contains fewer OS structures than human milk, the two share
at least 10 common structures (Figure 1C), including the acidic
3′-sialyllactose and 6′-sialyllactose. These two OS comprise
a large percentage of the BMO pool (9, 11). Complete or
partial structures are known for many BMOs (9); however,
there remains a large proportion of BMOs for which only
monosaccharide compositions are known. For example, recent
studies have identified several large fucosylated OS in bovine
milk, but to date only the monosaccharide compositions have
been determined (9, 15, 16). A more complete structural
characterization of the entire BMO pool could improve our
understanding of their bioactivities and digestibilities by
microbes. In many cases, linkage types influence functionality,

Abbreviations: BMO, bovine milk oligosaccharide; Gal, galactose; Glc,

glucose; GlcNAc, N-acetylglucosamine; LC-MS, liquid chromatography—mass

spectrometry; OS, oligosaccharide.

as exemplified by in vivo studies showing the ability of α1-2–
linked fucosyloligosaccharides to prevent Campylobacter jejuni
infection (17).

ANALYTICAL METHODOLOGIES FOR
MILK OS

Identification of the individual OS structures in milk has
come with numerous analytical challenges, many of which
have been resolved in the past two decades. The free OS in
milk are frequently analyzed by liquid chromatography-mass
spectrometry (LC-MS, Figure 1A) (12, 16, 18). This technique is
utilized for initial discovery and profiling of the entire collection
of OS in a sample. It conveniently provides relative compound
abundances and monosaccharide compositions for a multitude
of OS within a single experiment. Common LC-MS strategies
for OS analysis have been recently reviewed in greater detail
elsewhere (19). However, the potential for branching within
an OS structure, as well as the numerous possible linkages
between neighboring monosaccharides, often requires further
experiments to achieve complete structural elucidation.

In some cases complementary techniques are used along
with MS for in-depth characterization of OS structures. For
example, Aldredge et al. (9) fractionated the bovine milk OS
pool by high performance liquid chromatography, incubated
each bovine milk OS with glycosidases of known specificity, and
analyzed the changes produced with LC-MS. This labor-intensive
approach determined a variety of glycosidic linkages and specific
monosaccharide types for numerous OS (9). A similar approach
was used by Wu et al. in the determination of human milk
OS structures (3, 20). Alternatively, more rapid approaches that
do not rely on pre-fractionation use strategic derivatization
and subsequent analysis of the hydrolyzed monosaccharides to
provide at least partial linkage information. Galermo et al. have
recently published a method by which the monosaccharides
and linkage types present in oligo- and polysaccharides can
be determined in a high-throughput manner using a pair of
derivatization strategies and LC-MS (21).

Not surprisingly, themultitude of potential glycosidic linkages
and the efforts required to deduce complete OS structures has
hindered chemical synthesis of larger OS structures for use
as analytical standards. However, several standards are now
available for the smaller bovine milk OS, allowing absolute
quantification of a subset of the OS ensemble (18, 22). When
analytical standards are unavailable, OS abundances are often
measured in relative terms. This can be done usingmeasures such
as mass spectral peak height or chromatographic peak area of
OS to compare abundances among samples, known as a “label
free” relative quantification. Alternatively, several derivatization
strategies have been developed that allow relative abundances of
isotopically-labeled carbohydrates to be compared on the basis of
the intensity of their unique mass spectral peaks. Some examples
include reducing-end derivatization of glycan sample pairs with
a heavy/light label pair (23, 24) or with a series of isobaric
reagents (Figure 1B) (25, 26). Further details of these relative
quantification techniques and derivatization strategies have been
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FIGURE 1 | Overview of common analytical methodologies used to study milk oligosaccharides. Following a suitable extraction procedure, bovine milk is often

analyzed by liquid chromatography-mass spectrometry to identify the oligosaccharides present in a sample and measure their abundances (A). Quantification can be

conducted using peak heights or areas (label-free quantification) or by isotopic labeling strategies (B). Through analysis of tandem-MS data and comparison with

analytical standards, specific oligosaccharide structures present in a sample can be deduced. This panel represents a selection of oligosaccharides with

fully-elucidated structures that are found in both bovine and human milk (C) (11). Hex, hexose; NeuAc, N-acetylneuraminic acid. – glucose; – galactose; –

N-acetylglucosamine; – N-acetylneuraminic acid; – fucose.

described in a recent book chapter by Orlando (27) and in a
review by Dong et al. (28), Robinson (29).

BOVINE MILK OLIGOSACCHARIDE
CONTENT AND KNOWN
PHENOTYPIC VARIATIONS

Although analytical standards for quantification do not yet
exist for many BMOs, the total OS concentration in bovine
milk is estimated at approximately 1–2 g/L in colostrum and
100 mg/L in mature milk (18, 30, 31). Despite the current
difficulties in quantifying some OS structures, analytical studies
have deduced a wealth of relevant information on OS production
in cows. During the first week of lactation, BMO abundances
drop relatively quickly and decline somewhat further as cows
transition to mature milk (14, 18). Bovine colostrum is a
particularly rich source of these OS, and processing streams
within the dairy industry have the potential to serve as a raw
material for BMO isolation. During cheese production, non-
casein proteins and polar molecules such as salts, lactose, and
BMOs are eliminated from the cheese as whey. Purification

of the whey proteins produces a liquid byproduct known as
whey permeate, a stream that contains BMOs (32). Although
uses for whey permeate have been identified, it is often
considered a waste stream (33), and dried whey permeate and
its byproducts are typically sold at low prices (34). Therefore,
recovery of BMOs from whey permeate could add value to
this stream and improve dairy industry sustainability. Pilot-
scale techniques to isolate OS from this dairy stream have
been developed using membrane filtration (35, 36). The wide
availability of dairy side streams that contain BMOs could
allow these processing techniques to feasibly produce isolated
milk OS for functional testing and therapeutic applications
(Figure 2). As described in the following sections, isolated
BMOs have demonstrated beneficial health effects in a variety of
in vivo studies.

Several studies have explored variations in milk OS
abundances within dairy cattle in order to characterize
industrial BMO availability and to elucidate factors that
influence OS production. The Holstein-Friesian and Jersey
breeds are commonly used for milk production, and several
studies have examined differences in OS production among these
and related breeds (14, 16, 30). Most recently, we have profiled
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FIGURE 2 | A pictorial representation of the progress made in milk oligosaccharide functional testing and isolation strategies over the past 20 years. Previously,

functional testing was generally limited to in vitro studies conducted with oligosaccharides isolated from milk at lab scale. Synthetic and pilot-scale isolation can now

generate these compounds in larger quantities, and oligosaccharides from both sources have been used in in vivo studies and clinical trials (37).

milk OS abundances in a total of 634 samples collected from
these breeds and have measured greater amounts of most OS
in milk from the Jersey breed (38). The Jersey cows, however,
also showed much greater cow-to-cow variability. In light of the
fact that environmental sources of variation were controlled,
these results may reflect an underlying genetic influence on
OS production. A recent study by Liu et al. examined the OS
content of genotyped Australian Holstein cows and measured
high heritabilities for many OS, indicating that the variation in
OS abundances between cows were substantially influenced by
genetics (39). The study also identified numerous quantitative
trait loci, or regions of the genome which likely influence
OS abundances (39). Further studies on this topic will be
integral to complete elucidation of the pathways responsible
for BMO synthesis. While it is suspected that free milk OS are
synthesized by some of the same enzymatic pathways that are
used in protein-linked glycan synthesis, investigating the genetic
influence on OS production should provide more concrete
proof of this possibility. This knowledge could also enable
implementation of selective breeding strategies to increase the
levels of BMOs in milk without requiring genetically modified
organism-based approaches.

DIGESTIBILITY: LOCALIZED AND
SYSTEMIC ACTIVITIES

Free milk OS are typically considered indigestible by human
enzymes (40–42). Nonetheless, there are several reports of
human milk OS existing in infant blood (43) and urine (44–46),
indicating that a portion of these molecules are absorbed
and circulate in the body. The degree of absorption appears
to vary substantially by structure (44), and the biological
implications of this absorption have yet to be fully elucidated.

It has been hypothesized that absorbed OS can prevent
urinary tract infections in infants (47), and recent in vivo
evidence demonstrates that consumption of 3′-sialyllactose
and 6′-sialyllactose increases brain ganglioside-bound sialic
acid content in piglets (48). Dietary supplementation with
various forms of sialic acid (free or bound to milk OS or
protein-linked glycans) has improved learning and increased
brain sialic acid content in animal studies (49–51), suggesting
that these carbohydrates make an important contribution to
brain development.

Milk OS that are not absorbed are available for consumption
by the gut microbiota. Human milk has long been known to
influence the development of the infant gut microbiota in ways
that confer health benefits to the infant, and more recent studies
have determined that the milk OS are key to providing this
prebiotic functionality (1, 5, 7, 11, 52). These OS selectively feed
specific bacterial species that possess the enzymes necessary to
metabolize the wide variety of glycosidic linkages found in OS
(7, 11, 53). Several of these prebiotic OS from human milk,
including lacto-N-tetraose and the sialyllactose isomer pair, are
also found in bovine milk (9, 40), and the ability of the BMO
ensemble to modulate the gut microbiota in vivo has recently
been demonstrated (54, 55). Considering the wide availability of
dairy side streams from which these OS can be isolated, BMOs
show promise as future therapeutics that could be used to provide
humanmilk OS-associated health benefits to infants and adults at
a large scale. Initial studies utilizing these OS from dairy streams
have revealed a variety of metabolic benefits resulting from BMO
consumption, which are reviewed in the following section.

METABOLIC EFFECTS

A well-studied metabolic impact of prebiotic carbohydrates is
the ability to indirectly influence short-chain fatty acid (SCFA)
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production in the intestine by promoting the growth of SCFA-
generating bacteria (56, 57). SCFAs are products of anaerobic
bacterial fermentation that occurs in the gastrointestinal tract.
The major SCFAs produced by the gut microbiota are acetate,
butyrate, and propionate. These bacterial metabolites are used as
substrates for a variety of host processes, including cholesterol
synthesis and gluconeogenesis in the liver, as well as serving as
a key energy source for colonocytes (58). The bacterial genera
Bifidobacterium and Bacteroides, each of which contain well-
characterized milk OS consumers (5, 7, 59), are contributors
to SCFA production (56, 60). Recently, our research group has
shown that BMO supplementation alone significantly increased
the expression of butyrate-generating bacterial genes in western
diet-fed mouse models (55). Aside from being the preferred
energy source for colonocytes (58), butyrate can have anti-
inflammatory effects in the liver and colon (61).

Isolation of milk OS from dairy streams has enabled
experiments identifying novel metabolic effects of OS in vivo.
A study by Charbonneau et al. used animal models of infant
undernutrition to show that dietary supplementation with
BMOs provides a microbially-mediated increase in lean body
mass and bone growth, and generates metabolite profiles
indicative of improved nutrient utilization (62). These results
were characterized in both gnotobiotic mice and piglets, and
they provide striking evidence that milk OS, in combination
with the gut microbiota, play a substantial role in development
and regulation of metabolic pathways. Although other non-
milk carbohydrate polymers, such as inulin, share some of the
properties of milk OS, this study revealed that the metabolic
changes induced by milk OS were not duplicated with inulin
supplementation (62). Therefore, the unique functionalities
of milk OS may be imparted by their higher diversity of
monosaccharide types and linkages compared to the less
structurally diverse prebiotic polymers.

The availability of a pilot-scale supply of milk OS has also
led to key experiments demonstrating the beneficial effects of
OS on the development of obesity and intestinal permeability.
With the prevalence of overweight adults reaching nearly
40% worldwide, and obesity at 13% worldwide (63), novel
strategies to combat this unfavorable metabolic state could
lead to widespread improvements in health status and reduce
healthcare costs arising from obesity-associated illnesses. A
growing body of evidence is establishing a causal relationship
between gut microbial dysbiosis, intestinal permeability, and
the onset of obesity. Weight gain from diet-induced obesity
occurs simultaneously with altered intestinal permeability and
gut microbial profiles, as well as decreases in anti-inflammatory
cytokine expression (64, 65). Furthermore, transplantation of
the gut microbiota from an obese individual to germ-free
mice can induce elevated weight gain in the mice (66, 67),
highlighting the gut environment as a potential target for
therapeutic interventions. Though not entirely understood, it
is possible that obesity onset is at least partially initiated
by increases in circulating bacterial endotoxin as a result
of altered intestinal permeability, as outlined in a previous
review (68). Therefore, treatments that maintain gut barrier
function and/or reduce endotoxin circulation could lead to

viable interventions to prevent obesity and its related metabolic
conditions. Studies investigating the ability of BMOs to modulate
intestinal permeability have shown promising results. Hamilton
et al. recently showed that consumption of an ensemble of BMOs
can significantly reduce weight gain and reduce the intestinal
permeability that is induced in mice consuming a high-fat diet
(54). Dietary supplementation with BMOs also increased SCFA
abundance in the cecum, an effect that was not replicated by
inulin supplementation (54). In a similar study, introduction
of BMOs to the diet of high fat-fed mice, in combination
with a weekly gavage of the probiotic Bifidobacterium longum
subspecies infantis, prevented increases in intestinal permeability
otherwise associated with the high-fat diet (69).

The prebiotic effect of milk OS could be another significant
factor contributing to obesity prevention. The presence of
bifidobacteria in the mouse gastrointestinal tract is correlated
with reduced plasma and intestinal endotoxin levels (70, 71).
Conversely, the gut microbiota of high fat-fed mice is associated
with increased endotoxin levels. Cani et al. have shown that
administration of broad-spectrum antibiotics to mice consuming
a high fat diet reduces plasma endotoxin levels to that of the
control mice, while antibiotic administration to the control
mice produced no significant change in plasma endotoxin
(65). The presence of bifidobacteria has also been correlated
with a reduction in diabetic symptoms, including improved
glucose tolerance (70). Modulation of the gut microbiota
may therefore be another promising strategy to prevent these
prevalent metabolic issues. Furthermore, although prevention
of the obese phenotype is a major clinical target, prevention
of gut dysbiosis and excessive intestinal permeability will likely
have other important health effects. For example, a high-
fat diet can induce liver abnormalities, such as steatosis and
inflammation (72), and a recent report suggests that these effects
can be eliminated via regulating lipid and glucose metabolism
through the consumption of BMOs and Bifidobacterium longum
subspecies infantis in genetically predisposed animal models
(55). Considering the interrelated nature of these and other
physiological processes, the above studies may represent only a
fraction of the metabolic benefits provided by milk OS.

In light of the promising effects of milk OS consumption,
industrial interest in marketing these compounds for therapeutic
purposes is building. As of January 2019, over 180 US
patents have been filed relating to 2′-fucosyllactose alone,
and the inclusion of 2′-fucosyllactose as a food ingredient is
now commonplace in infant formula (73, 74). The use of
2′-fucosyllactose as an ingredient has prompted a need for
large quantities of this OS to be produced synthetically. A
multitude of strategies to produce synthetic OS have been
designed, using both genetically engineered microorganisms
and enzymatic approaches. These strategies, which have been
reviewed extensively elsewhere (75), are promising routes by
which individual OS could be made available at large scale.
These synthetic approaches, in conjunction with the established
membrane filtration strategies described above, will likely grow
in application to supply the marketplace with OS that can be used
as ingredients for therapeutic foods, extending availability of milk
OS and their bioactivities to the general public.

Frontiers in Nutrition | www.frontiersin.org 5 April 2019 | Volume 6 | Article 50

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Robinson Milk Oligosaccharides as Novel Therapeutics

CONCLUSION

Growing availability of milk OS for in vivo experimentation
is uncovering a multitude of unique and previously unknown
bioactivities that could be harnessed to alleviate widespread
metabolic illnesses. Future studies will likely probe further
into the mechanistic details of OS functionalities, as well
as evaluate the feasibility of supplementing these molecules
into adult diets as therapeutics. The safety and tolerability
of isolated milk OS for human consumption were recently
evaluated in two independent studies and showed promising
results, with even relatively high dosages being well-tolerated
(76, 77). These studies could pave the way for the known
metabolic impacts of BMOs to be further evaluated in
human subjects, including in specialized applications such as
infant formula production. Finally, implementing industrial-
scale strategies to produce and isolate OS with desired
bioactivities will be imperative to the application of OS as
therapeutics. Therefore, we should expect continued work to
identify factors influencing OS production in dairy cattle, as well

as efforts to translate pilot-scale isolation techniques to dairy
processing facilities.
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