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The interaction between gut microbiota and host plays a central role in health.

Dysbiosis, detrimental changes in gut microbiota and inflammation have been reported

in non-communicable diseases. While diet has a profound impact on gut microbiota

composition and function, the role of food additives such as titanium dioxide (TiO2),

prevalent in processed food, is less established. In this project, we investigated the

impact of food grade TiO2 on gut microbiota of mice when orally administered via

drinking water. While TiO2 had minimal impact on the composition of the microbiota

in the small intestine and colon, we found that TiO2 treatment could alter the release

of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria

in vitro by promoting biofilm formation. We also found reduced expression of the colonic

mucin 2 gene, a key component of the intestinal mucus layer, and increased expression

of the beta defensin gene, indicating that TiO2 significantly impacts gut homeostasis.

These changes were associated with colonic inflammation, as shown by decreased

crypt length, infiltration of CD8+ T cells, increased macrophages as well as increased

expression of inflammatory cytokines. These findings collectively show that TiO2 is

not inert, but rather impairs gut homeostasis which may in turn prime the host for

disease development.
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INTRODUCTION

Bacterial species that inhabit the colon interact with the host, promoting the development and
function of immune cells locally and systemically. These interactions are mediated by bacterially
derived metabolites such as short-chain fatty acids (SCFAs), which have been identified as critical
inducers of immune subsets (1–3) key for protecting mice from disease development (2–5),
emphasizing the role of the microbiota in gut homeostasis and host health.
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The colonic epithelium acts as a physical barrier between the
host and the gut microbiota. The secretion of mucus by goblet
cells provides a barrier to microbial infiltration. Further, Paneth
cells release antimicrobial peptides that protect against pathogen
invasion as well as regulate gut microbiota composition (6).
Expression of tight junction proteins by enterocytes also limits
bacterial penetration. Epithelial function can be regulated by
the gut microbiota via SCFAs, by stimulating mucus production
(7) and tight junction assembly (8). In contrast, dysbiosis,
marked by detrimental changes in gut microbiota composition,
triggers increased gut permeability and gut inflammation (9).
Alterations in antimicrobial peptide production, mucus layer
thickness and/or epithelial permeability have been implicated in
the development of a broad range of diseases such as colitis and
colorectal cancer (10). These diseases have also been linked to
abnormal interactions between the host epithelium and the gut
microbiota through the formation of biofilm. Biofilms consist
of aggregates of adherent and planktonic bacteria protected
by an extracellular matrix and have been observed in the
proximal colon of patients diagnosed with such diseases (11).
The mechanisms behind the formation and the role of biofilm in
the gut are not fully understood, but biofilm formation has been
shown to impact both disease development and resolution. Both
in a colitis rat model and in humans, biofilm in the colon has
been shown to facilitate pathobiont adherence to the epithelium
and translocation to the host (12, 13). In human inflammatory
bowel disease, biofilm formation at the site of epithelial wound
healing has been shown to negatively affect healing by impairing
epithelialization and tissue repair (14). Finally, a recent study has
shown that inoculation of germ-free mice with biofilm positive
human colon inocula was carcinogenic (15).

The identification of environmental factors that can affect
gut homeostasis is thus a critical first step in preventing
the development of so-called “western lifestyle diseases,”
encompassing autoimmune, allergic and metabolic diseases. A
broad range of environmental factors can affect gut homeostasis,
with diet composition being the major driver (16). Western-
like diets enriched in fat and simple carbohydrates and deficient
in dietary fiber have been shown to trigger dysbiosis, increases
gut permeability and inflammation (16). While the impact of
these macronutrients on gut homeostasis has been extensively
studied (17), the role of food additives prevalent in processed
food remains poorly defined. Food additives are used to improve
the texture, preservation and aesthetics of food. Food grade
titanium dioxide (TiO2) or E171, is a whitening agent present
in over 900 commonly consumed food products. The average
adult consumes between 0.7 and 5.9mg of TiO2 per kg of body
weight (BW) per day throughout their life and children are
the most exposed, consuming up to 32.4mg TiO2/kg BW/day
in maximally exposed individuals (18). Despite the fact that
regulatory bodies do not define strict guidelines around its
consumption, new evidence from animal studies has emerged,
highlighting that TiO2 may potentiate cancer development (19)
and exacerbate inflammatory bowel disease (20).

The effect of TiO2 on gut homeostasis is poorly understood
yet evidence suggests that TiO2 interacts with gut epithelial cells.
In vivo and in vitro studies have demonstrated the accumulation

of TiO2 in the mucus layer (21) and its uptake by colonic
epithelial cells (22, 23). A study in rats has shown that TiO2 affects
immune cells in the Peyer’s patches associated with a decreased
regulatory T cell proportion (19). However, the impact of TiO2

on colonic immune cells, the site where microbiota is the densest,
has never been investigated. While the impact of TiO2 on the
colonic microbiota has been previously investigated in a short
term study (2.5mg TiO2/kg BW/day for 1 week) (24) and using a
high dose (100mg TiO2/kg BW/day) for up to 4 weeks (25), the
impact of TiO2 on the small intestine microbiota is unknown.

The aim of the present study is to establish the effects of
food grade TiO2 on gut homeostasis in vivo. We investigated the
impact of physiological doses (2 and 10mg TiO2/kg BW/day)
and a high dose of TiO2 (50mg TiO2/kg BW/day) on mouse
colonic and small intestinemicrobiota composition and function,
epithelial function and mucosal inflammation after 3–4 weeks of
treatment via drinking water.

MATERIALS AND METHODS

E171 Characterization
Size and Morphology
Food grade TiO2 was purchased from All Color Supplies PTY.
Average hydrodynamic diameter, polydispersity index and zeta
potential of the TiO2 nanoparticles dispersed in drinking water
were determined with a Malvern Zetasizer Nano ZS at 25◦C. The
dispersion was measured 3 times for both size and zeta potential.
The size distribution and shape of the TiO2 nanoparticles
dispersed in mice drinking water were determined using a
NanoSight NS300 (equipped with a sCMOS camera) at 25◦C.
The dispersion was measured 5 times (1min per measurement).
The size distribution and shape of the TiO2 nanoparticles
dispersed in drinking water were further investigated using
a Zeiss Ultra Plus scanning electron microscope operated at
an accelerating voltage of 10 kV. A drop of the nanoparticle
dispersion was allowed to dry on a stub, after which ∼20 Å of
platinummetal was sputter coated onto the stub under vacuum to
prevent charging.

Crystal Structure and
Elemental Composition
A D8 Advance Bruker diffractometer was used to conduct the
X-ray powder diffraction (XRD) analysis in a flat plate geometry
using Ni-filtered Cu Kα radiation and a Bruker Lynx eye detector.
The XRD patterns were acquired from 10 to 100◦ 2θ with a step
size of 0.02◦ and a count time of 0.1 s. Elemental composition
was determined using X-ray photoelectron spectroscopy (XPS)
with an Al Kα monochromator X-ray source. A survey scan was
acquired at 100 eV pass energy between 0 and 1,400 eV. High
resolution spectra for individual elements were collected at 100
Ca + 0.05 Ga. Elemental composition was calculated from the
high-resolution spectra using CasaXPS with measurements done
in triplicate.

Mice and TiO2 Dosage Information
Five to six week-old male C57BL/6JAusb mice from Australian
Bio Resources were maintained under specific-pathogen-free
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conditions. All experimental procedures involving animals were
approved by the University of Sydney Animal Ethics Committee
under protocol number 2014/696. Mice were cohoused with
water and food (AIN93G; Specialty Feeds) access ad libitum.
Titanium dioxide (E171) was added to water and sonicated daily.
TiO2 was administered in drinking water at doses of 0, 2, 10, and
50mg TiO2/kg BW/day, which was calculated based on the water
intake measured per cage. At week 4, mice were euthanized using
CO2 asphyxiation.

Colonic Immune Cell Isolation and
Flow Cytometry
Pieces of colon were incubated at 37◦C for 40min in Hank’s
Balanced Salt Solution (HBSS; Gibco) with 5mM EDTA, 5% FBS
(Gibco) and 15mMHEPES (Gibco). Intraepithelial lymphocytes
were discarded and the remaining tissue was incubated at
37◦C for 1 h in HBSS (Gibco) with 6.7 mg/ml collagenase type
IV (Gibco), 10% FBS (Gibco) and 15mM HEPES (Gibco).
Cells were passed through a 70µm mesh and lymphocytes
enriched via percoll gradient of 80% and 40% (GE Life Sciences).
The list of antibodies used for flow cytometry is in the
Supplementary Methods. Viability was determined using the
LIVE/DEAD Fixable Blue Dead Cell stain kit (Invitrogen).
Flow cytometry was performed on a LSRII flow cytometer (BD
Biosciences) and data analysis with FlowJo software (Treestar
Inc., Ashland, OR, USA).

RNA Extraction and Quantitative
Real-Time PCR
Total tissue RNA was extracted using TRI Reagent (Sigma)
and converted into cDNA using iScript RT Supermix (BioRad)
according to both manufacturer’s instructions. qPCR was
performed on a LightCycler 480 (Roche) using SYBR Green
(Biorad) with primer sequences listed in Supplementary Table 1.

Acetate and Trimethylamine
(TMA) Quantification
Quantitative measurements of acetate and TMA in plasma
were determined by nuclear magnetic resonance spectroscopy
(NMR). Briefly, plasma was filtered through a 3 kDa membrane
filter (Merck Millipore) and polar metabolites extracted from
the aqueous phase of a water:chloroform:methanol mixture.
Samples, containing 4,4-dimethyl-4-silapentane-1-sulfonic acid
as an internal standard, were analyzed on a Bruker 600
MHz NMR.

Plasma Metabolomic Screening
A hydrophilic interaction chromatography LC-MS/MS method
was used for choline detection in plasma as described previously
(26). The LC was connected to an AB Sciex Triple Quad 5,500
mass spectrometer run in positive ion mode. Data analysis
was done on software Multi-Quant 3.0 for MRM Q1/Q3
peak integration.

Nanolive Imaging
Escherichia coli K-12 MG1655 (E. coli) or Enterococcus faecalis
NCTC 775 (E. faecalis) were incubated for 7 h at 37◦C, 5%

CO2 with Luria-Bertani (LB) broth containing E171 at indicated
concentrations and then fixed in 3% formalin overnight. Cells
were resuspended in PBS and visualized using a Nanolive 3D cell
explorer. False colors were applied to images based on refractive
index using STEVE software.

Biofilm Visualization
Biofilm Formation Assay in vitro on Cultured E. coli

and E. faecalis
The in vitro biofilm formation assay was based on a previously
published protocol (13). Overnight culture in quadruplicates of E.
coli (low salt LB broth; Beckton Dickinson), E. faecalis (tryptone
soya broth supplemented with 0.25% glucose; Sigma Aldrich) or
Staphylococcus epidermidis NCTC 6512 (LB broth) was adjusted
to OD of 0.5 at 600 nm and 100 µl of each bacterial culture was
plated on separate round bottom 96-well tissue culture plates.
A further 100 µl of appropriate media supplemented with TiO2

was added to achieve the indicated final concentrations. TiO2

at the different final concentrations in media alone was used as
background controls. Plates were incubated at 37◦C aerobically
on a shaker (Ratek, 70 rpm) for either 24, 48, or 72 h.

Biofilm Formation Assay From Colonic

Commensal Bacteria
Two hundred microliters of colon homogenates were cultured
in quadruplicates in flat bottom 96-well-plates containing
supplemented tryptic soy broth [sTSY: 30 g/L tryptic soy broth
(Oxoid) with 5 g/L yeast extract, 5% L-cysteine, 50 mg/L
hemin and 1 mg/L medanione (all from Sigma-Aldrich) to yield
0.05 mg/µl (w/v)] for 24 h, aerobically at 37◦C at 70 rpm.
Samples were diluted 1:100 in fresh sTSY containing TiO2 at
indicated doses and incubated for 5 days. After planktonic cell
removal, biofilm was stained with crystal violet (CV). Briefly,
plates were washed 3 times with water, air dried and stained
with 1% CV (Sigma-Aldrich) for 30min. After 4 washes in
water and air drying, 95% ethanol was added for 15min.
Absorbance was recorded at 595 nm on a microplate reader
(Tecan Infinite M1000).

Resazurin Viability Assay
Biofilm formation was also quantified based on Resazurin
viability assay as previously described (27). Briefly, culture media
was removed and wells washed once with phosphate-buffered
saline (PBS). Then, media with 10% Resazurin (Sigma-Aldrich)
was added to each well. The plates were incubated in the
dark at 37◦C and fluorescence intensity measured every 15min
(excitation 570 nm, emission 585 nm). TiO2 only controls were
used to subtract background.

Bacteria 16S rRNA Gene Amplicon
Sequencing and Bioinformatics
DNA from fecal samples or entire contents of small intestine
lumen were extracted by mechanical disruption using a
Fastprep (MP Biomedicals) using autoclaved glass beads (G8772
and G1145; Sigma-Aldrich) in lysis buffer [500mM NaCl,
50mM Tris-HCl (pH 8), 50mM EDTA, 4% SDS] followed
by 15min incubation at 95◦C. DNA was precipitated in 10M
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FIGURE 1 | Impact of TiO2 on colonic microbiota composition. (A–D) Diversity of colonic microbiota composition of mice administered 0, 2, 10, or 50mg TiO2/kg

BW/day in drinking water was determined by (A) Shannon index, (B) Inverse Simpson’s index, (C) richness, and (D) evenness (n = 10 mice per group from 2 cages of

5 mice). (E) Canonical correspondence analysis ordination of Bray-Curtis dissimilarity of colonic microbiota compositions of mice administered 0, 2, 10, or 50mg

TiO2/kg BW/day in drinking water. Ordination was constrained by dose of TiO2 and the arrows represent the doses of TiO2 driving the differences in microbiota

composition observed. Composition differences between groups were significant as determined by adonis (p = 0.0012 for 0 vs. 2mg TiO2/kg BW/day, p = 0.0006

for 0 vs. 10mg TiO2/kg BW/day and p = 0.0105 for 0 vs. 50mg TiO2/kg BW/day) (n = 10 mice per group from 2 cages of 5 mice). (F–J) Relative abundance of (F)

Parabacteroides (G) Lactobacillus, (H) Allobaculum, (I) Adlercreutzia, and (J) Unclassified Clostridiaceae observed in colonic microbiota of mice administered 0, 2, 10,

or 50mg TiO2/kg BW/day in drinking water. *p < 0.05, **p < 0.01, ***p < 0.005 as determined by one-way ANOVA with post-hoc Tukey’s test on

Hellinger-transformed data (n = 10 mice per group from 2 cages of 5 mice).
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FIGURE 2 | Impact of TiO2 treatment on gut bacterial metabolites. (A,B) Concentrations of (A) the SCFA acetate and (B) TMA were determined NMR on the serum of

mice administered 0, 2, 10, or 50mg TiO2/kg BW/day in drinking water. Data is represented as median ± interquartile range (IQR). *p < 0.05 as determined by

Mann–Whitney U-test (n = 10 mice per group). (C) Concentration of choline was determined by liquid-chromatography mass spectrometry in plasma of fasted mice

treated with 0, 2, 10, or 50mg TiO2/kg BW/day in drinking water. Concentration is represented as area under curve (AUC). Data are represented as median ± IQR.

*p < 0.05 as determined by Mann–Whitney U-test (n = 10 mice per group). **p < 0.01.

ammonium acetate and isopropanol and washed with 80%
ethanol. Protein and RNA were removed using the QIAamp
DNA stool Minikit (Qiagen) following the manufacturer’s
instructions. DNA samples were amplified across the V3-
V4 region (Q5 polymerase; New England Biolabs) with
these primers F: 5′-ACTCCTACGGGAGGCAGCAG-3′; R:
5′-GGACTACHVGGGTWTCTAAT-3′ and sequenced on an
Illumina Miseq (2 × 300 bp). Data analysis was performed
using QIIME 1.9.1 (28) using default parameters as described
previously (29). Briefly, demultiplexed paired end data were
quality filtered and paired using the Fastq-join algorithm with no
errors allowed. Operational taxonomic units (OTUs) were picked
using 97% similarity with UCLUST, and taxonomy was assigned
with Greengenes database. The resulting OTU table was filtered
by removing OTUs with <0.01% sequences and those relating to
Cyanobacteria or Chloroplast. Further analysis was performed
with R software (3.4.2). For statistical analysis, abundance
data was transformed using the Hellinger method. Differences
between treatment groups were determined by adonis (vegan
2.5-2) with 9999 permutations, alpha 0.05 and with the phyloseq
package 1.25.2 (30) and Calypso 8.78 (31).

Statistics
Mann–Whitney U-test was used for analysis of the differences
between the mean of groups and Wilcoxon paired test for
paired samples. For microbiota data, significant differences in
the relative abundance of genus between treatment groups were
determined by one-way ANOVA with post-hoc Tukey’s test.
Differences in overall microbial community between treatment
groups were determined by adonis. p < 0.05 were considered
statistically significant.

RESULTS

Characterization of Food Grade TiO2 (E171)
We employed dynamic light scattering (DLS) to determine the
hydrodynamic size of the E171 product used in this study. DLS

revealed that the TiO2 nanoparticles dispersed in drinking water
(5 mg/ml, pH 7.8) have an average hydrodynamic diameter of
367 nm, a polydispersity index of 0.258 and a zeta potential of
−23.0mV (±4.5mV). We also employed nanoparticle tracking
analysis (NTA) and scanning electron microscopy (SEM) to
further investigate the size and shape of the TiO2 nanoparticles
dispersed in drinking water. NTA (Supplementary Figure 1A)
showed that the TiO2 nanoparticles are roughly spherical in
shape and range in diameter from 28 to 1,158 nm. On a
number basis, the particle size distribution has a mean of
202 nm and a mode of 138 nm and, on a weight basis, the
particle size distribution has a mean of 363 nm and a mode
of 428 nm. The average particle diameter determined by NTA
on a weight basis (363 nm) is in good agreement with that
determined by DLS (367 nm). SEM (Supplementary Figure 1B)
confirmed that the TiO2 nanoparticles are roughly spherical
in shape and revealed that they can be classified into
essentially four groups (based on diameter)−300, 150–200,
100, and 30–50 nm—which is consistent with the particle
size distribution (on a number basis) obtained by NTA. TiO2
was predominantly in anatase form as per manufacturer’s
description. This was verified using X-ray powder diffraction
(data not shown).

Impact of Oral Administration of Food
Grade TiO2 on Gut Microbiota Composition
We first determined whether exposure to TiO2 over a
range of physiologically relevant doses impacted gut bacterial
communities in vivo. To achieve this, mice were administered
TiO2 via drinking water at doses of either 0, 2, 10, or
50mg TiO2/kg BW/day for 3 weeks. Sequencing of the
16S rRNA gene from fecal samples revealed that TiO2 had
limited effects on bacterial diversity as determined by Inverse
Simpson and Shannon analyses (Figures 1A,B) nor bacterial
richness (Figure 1C), evenness (Figure 1D) or Faith’s diversity
(Supplementary Figure 2A) at these doses. However, there
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FIGURE 3 | TiO2 triggers biofilm formation by commensal bacteria. (A,B) The clustering effect of TiO2 on (A) E. coli and (B) E. faecalis in vitro was visualized by

Nanolive imaging in the presence of 0, 0.5, 1, or 50µg/ml TiO2 after 24 h incubation. False-coloring was applied to images based on refractive index, where black

represents the refractive index of TiO2 and green represents bacteria. (C) Schematic representation of biofilm formation assay and resazurin viability assay to assess

biofilm formation in vitro. (D,E) The ability of E. faecalis and E. coli to form biofilm in vitro in the presence of 0, 2, 10, or 50µg/ml TiO2 in culture (24 and 72 h,

respectively) was assessed by the resazurin viability assay (n = 8 replicates). (F) Colonic bacteria were isolated and biofilm formation assessed in the presence of 0, 2,

10, or 50µg/ml TiO2 in culture after 5 days (n = 6 mice per group). Data are represented as median ± IQR. *p < 0.05, **p < 0.01; ***p < 0.001 as determined by

Wilcoxon paired test compared to non-treated group.

was still a trend toward decrease in mice treated with
physiological doses of TiO2 (2 and 10mg TiO2/kg BW/day).
On the other hand, both weighted (Supplementary Figure 2B)
and unweighted UniFrac (Supplementary Figure 2C) principal
coordinate analysis (PCoA) showed some clustering of bacterial
composition in control vs. TiO2 treated mice. To test this
further, we performed canonical correspondence analysis (CCA)

constrained to the 4 distinct TiO2 concentrations used, which
revealed significant clustering in bacterial composition driven by
2mg TiO2/kg BW/day (p = 0.0011) and 50mg TiO2/kg BW/day
(p = 0.0123) TiO2 treatment (Figure 1E). We also performed
CCA with TiO2 as a continuous variable, which reveals a
dose dependent effect of TiO2 on microbiota composition
(Supplementary Figure 2D). Treatment with TiO2 significantly
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FIGURE 4 | TiO2 impairs colonic epithelial function. (A–D) The impact of TiO2

on colonic epithelial function was determined by comparison of gene

expression of key markers (A) Muc2, (B) Tjp1, (C) Defb3, and (D) Gzmb in

colonic tissue of mice administered 0, 2, 10, or 50mg TiO2/kg BW/day in

drinking water (n = 5–8 mice per group). Data are represented as median ±

IQR. *p < 0.05, **p < 0.01 as determined by Mann–Whitney U-test.

affected gut microbiota composition independently of the cage
effect (with overall treatment effect: F-value = 8.2407, R2 =

0.31644, Df = 3, p < 0.001 and impact of treatment corrected
for the cage effect: F-value= 5.8511, R2 = 0.2996, Df = 3,
p < 0.001 both by adonis). We then determined the impact of
TiO2 at deeper levels and found significant changes at the genus
level. Parabacteroides were significantly elevated in TiO2 treated
mice, at a dose of 50mg TiO2/kg BW/day (Figure 1F) while
Lactobacillus and Allobaculum were significantly elevated at all
doses tested (Figures 1G,H). On the other hand, Adlercreutzia
(Figure 1I) and Unclassified Clostridiaceae (Figure 1J) were
significantly decreased in the groups treated with TiO2 at the
doses of 10 and 50mg TiO2/kg BW/dayrelative to the untreated
group. These results suggest that TiO2 had a minor impact
on microbiota composition in vivo, while affecting few taxa
at the genus level. The gut microbiota composition in the
small intestine was also analyzed to determine whether TiO2

might have a greater effect here than in the colon. Bacterial
diversity indices (Richness, evenness, Shannon, Inverse Simpson
and Faith’s diversity) were not significantly affected at doses
of 10 and 50mg TiO2/kg BW/day (Supplementary Figure 2E),
although these trended toward decrease with increasing dose
of TiO2. Unlike in the colon, TiO2 did not significantly
alter the small intestine bacterial composition (p > 0.05 by
adonis) and weighted and unweighted UniFrac PCoA analysis

revealed no obvious clustering (Supplementary Figures 2F,G).
Overall, TiO2 did not appear to dramatically impact on
small intestinal microbiota composition. We also performed
co-occurrence analysis by examining microbial interactions
from mice treated with either 0, 2, 10, or 50mg TiO2/kg
BW/day. We found that certain genera are consistently
associated with each other regardless of TiO2 treatment
(Ruminococcus, Desulfovibrio, and Oscillospira are positively
connected). Increasing TiO2 intake, especially at the dose of 10
and 50 mg/kg BW/day resulted in more significant connections
within the network, as well as increased number of genera
with significant contributions. For example, while Akkermansia
was not significantly involved in the microbial network of
mice administered 0, 2, or 10mg TiO2/kg BW/day, it is
involved at a dose of 50 mg/kg involving numerous co-exclusion
relationships. These co-occurrence graphs are presented in
Supplementary Figures 2H–K. These results were verified using
the deblur pipeline (32) which resolves amplicon sequencesmuch
more accurately (Supplementary Figures 3A–F).

Food Grade TiO2 Modulates Commensal
Bacterial Activity
We and others have shown that gut bacterial metabolites
such as SCFAs can have a dramatic impact on host immune
function and disease development (1–5, 33, 34). Mice treated
with 50mg TiO2/kg BW/day had a significant decrease in the
SCFA, acetate, in the plasma, suggesting a possible impact of
TiO2 on host-bacterial interaction (Figure 2A). Such effects on
bacterial metabolites were not limited to SCFAs as TMA, a
bacterial product associated with development of atherosclerosis
(35), was increased at doses of 10 and 50mg TiO2/kg BW/day
(Figure 2B). TMA is a product of conversion of choline, which
was also found to be decreased at 50mg TiO2/kg BW/day
(Figure 2C), suggesting that increased TMA was not due to a
change in the substrate availability but potentially changes in
bacterial activity.

Food Grade TiO2 Promotes the Cluster of
Commensal Bacteria and
Biofilm Formation
Bacteria also communicate with the host via direct interactions.
Studies have shown that attachment of biofilm on the colonic
epithelium was correlated with colorectal cancer, a disease
in which TiO2 has aggravating effects (36). To explore the
possibility that TiO2 might promote biofilm formation, we
incubated two types of commensal bacteria, E. coli and E.
faecalis, in the presence of TiO2. Nanolive imaging revealed
the clustering effect of TiO2 on both E. coli (Figure 3A) and E.
faecalis (Figure 3B) in vitro in a dose dependent manner. To
determine whether the cluster of bacteria was due to biofilm
formation, we performed in vitro culture of either E. faecalis or
E. coli in the presence of 2, 10, or 50µg/ml of TiO2 for 24 or
72 h, respectively. Using the resazurin viability assay (Figure 3C),
we found that TiO2 treatment significantly increased biofilm
formation in both subsets of bacteria (Figures 3D,E) but
not in Staphylococcus epidermidis, a strain known for its
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FIGURE 5 | TiO2 promotes colonic inflammation. (A–D) Proportion of the colonic immune subsets (A) neutrophils (B) dendritic cells, (C) macrophages, and (D)

monocytes in mice administered 0, 2, 10, or 50mg TiO2/kg BW/day in drinking water, were determined by flow cytometric analysis (n = 8–10 mice per group). (E–G)

Expression of genes encoding for (E) IL-10, (F) IL-6, and (G) TNF-α was determined by qPCR from colonic tissue of mice treated with 0, 2, 10, or 50mg TiO2/kg

BW/day in drinking water (n = 10 mice per group). (H) (Left—images) H&E stained colonic tissue section was evaluated for crypt length changes in 0 vs. 50mg

TiO2/kg BW/day. Representative histology images are shown for each group, black lines represent representative crypt length measurements (n = 5 mice per group).

(Right—Graph) Quantification of colonic crypt length in untreated mice vs. mice treated with 50mg TiO2/kg BW/day. Data are represented as median ± IQR. *p <

0.05, **p < 0.01 as determined by Mann–Whitney U-test. ***p < 0.001.
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FIGURE 6 | TiO2 treatment results in adaptive immune cell infiltration into the colon. (A) Proportion of colonic CD8+ T cells was quantified by flow cytometric analysis

on mice treated with 0, 2, 10, or 50mg TiO2/kg BW/day in drinking water (left); representative gating is shown (right) (n = 5 mice per group). (B) Expression of the

gene encoding for IFN-γ was determined by qPCR on colon tissue of mice treated with 0, 2, 10, or 50mg TiO2/kg BW/day in drinking water (n = 6–8 mice per

group). (C) Proportion of IL-17A producing CD4T cells from the colon was determined by flow cytometric analysis on mice treated with 0, 2, 10, or 50mg TiO2/kg

BW/day in drinking water (left); representative gating is shown (right) (n = 5 mice per group). (D) Expression of the gene encoding for IL-17A was determined by qPCR

on colon tissue of mice treated with 0, 2, 10, or 50mg TiO2/kg BW/day in drinking water (n = 6–8 mice per group). (E) Proportion of colonic regulatory T cells was

determined by flow cytometric analysis on mice treated with 0, 2, 10, or 50mg TiO2/kg BW/day in drinking water (left); representative gating is shown (right) (n = 8

mice per group). (F) Expression of the gene encoding for TGF-beta was determined by qPCR on colon tissue of mice treated with 0, 2, 10 or 50mg TiO2/kg BW/day

in drinking water (n = 6–8 mice per group). Data are represented as median ± IQR. **p < 0.01, ****p < 0.001 as determined by Mann–Whitney U-test.
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inability to form biofilm (Supplementary Figure 4). We
confirmed by confocal microscopy that TiO2 treatment
increased biofilm formation in both E. coli and E. faecalis
(Supplementary Figure 5). To determine whether such effects
were applicable to bacteria in the complex environment of the
gut microbiota, we incubated commensal bacteria derived from
mouse colons anaerobically for 5 days with doses of 2, 10, and
50µg/ml of TiO2. Both the doses of 10 and 50µg/ml TiO2

significantly promoted biofilm formation by commensal bacteria
(Figure 3F). These data highlight that TiO2 can affect the
spatial organization of the gut microbiota and thus its potential
interaction with the host.

TiO2 Affects Colonic Epithelial Function
While the impact of biofilm formation on the host is unclear,
impaired mucus production has been correlated with the
presence of bacterial biofilms (11). To determine whether TiO2

might impact the mucus layer, we examined colonic Muc2
gene expression in the colon. We found that both 10 and
50mg TiO2/kg BW/day decreased Muc2 expression, suggesting
a detrimental impact of TiO2 on the mucus layer (Figure 4A).
While biofilm formation has been reported in colitis and
colorectal cancer (36), these diseases have also been linked to
increased gut permeability (37). To test whether TiO2 affects gut
permeability, we studied the expression of Tjp1 (encoding for
zonula occludens 1), which was unchanged by TiO2 treatment
(Figure 4B), suggesting no impact of TiO2 on gut permeability.
The other major mechanism of bacterial exclusion is through
the release of antimicrobial peptides. Beta defensin is expressed
predominantly in the colon and we found that Defb3 (encoding
for beta-defensin-3) was elevated by treatment at doses of both
10 and 50mg TiO2/kg BW/day (Figure 4C). Expressions of
other antimicrobial peptides such as granzyme B (Figure 4D),
cathelin-related antimicrobial peptide (CRAMP), regenerating
islet-derived protein 3 gamma (REG3 gamma) and p-lysozyme
(PLYz) (Supplementary Figure 6) were unchanged. Therefore,
TiO2 treatment impairs the expression of key colonic epithelial
factors involved in gut homeostasis.

TiO2 Contributes to Increased Colonic
Macrophages and Associated Cytokines
Decreased Muc2 has been correlated with inflammation
and MUC2 deficiency leads to spontaneous colitis (38).
To test whether TiO2 might affect innate immune
cells in the colon, we studied myeloid immune cell
populations by flow cytometry. While neutrophils
(CD45+Ly6g+CD11b+) (Figure 5A) and dendritic cells
(CD45+I-ab+Ly6g−F4/80−CD11c+) were unchanged
(Figure 5B), macrophages (CD45+F4/80+CD8−Ly6g−I-
ab+CD11b+ CD103−) were significantly increased by TiO2

at 10 and 50mg TiO2/kg BW/day (Figure 5C). This change
was not due to an increased recruitment of total monocytes
(CD45+CD8−Ly6G−Ly6C+CD11b+I-ab−) (Figure 5D),
suggesting a potential in situ proliferation of macrophages
(gating strategies shown in Supplementary Figure 7). Colonic
macrophages are a major source of IL-6, TNF-alpha and IL-10,
cytokines, which were also upregulated in the colon of TiO2

treated mice (Figures 5E–G). We also observed a significant
reduction in colonic crypt length by histological analysis of mice
treated with 50mg TiO2/kg BW/day (Figure 5H) while colon
length was unchanged (data not shown). Thus, TiO2 treatment
triggers changes in the colonic myeloid compartment as well as
structural changes in the colon.

TiO2 Promotes Increased CD8+ T Cell
Infiltration in the Colon and Increased
Inflammatory Cytokines
Other cell subsets can produce TNF-alpha, particularly CD8+ T
cells (39). By flow cytometry analysis, we found that CD8+ T
cells were significantly increased from 10mg TiO2/kg BW/day
treatment (Figure 6A), as was expression of interferon-gamma
in this cell subset (Figure 6B). Increased proportions of both
macrophages and CD8+ T cells suggest a state of colonic
inflammation in TiO2 treated mice which is consistent with
the increased proportion of colonic Th17 cells (p = 0.0556)
(Figure 6C) as well as significantly increased expression of IL-
17A (Figure 6D). On the other hand, neither regulatory T cells
(Figure 6E) nor TGF-beta (Figure 6F) were affected by TiO2

treatment. Gating strategies for flow cytometry analysis are
shown in Supplementary Figure 8. These findings show that
TiO2 treatment impairs immune homeostasis in the colon and
promotes an inflammatory environment.

DISCUSSION

The ubiquitous use and daily consumption of TiO2 by the general
population warrants investigation into its potential impact on
health. After only a few weeks of daily TiO2 consumption, we
observed that colonic homeostasis was significantly impaired
in mice. While TiO2 impacted bacterial function by causing
changes in bacterial metabolites (acetate and TMA) and by
promoting biofilm formation by commensal bacteria, TiO2 had
minimal impact on gut microbiota composition. One of the
major mechanisms of physical separation between host and gut
bacteria was impaired by TiO2, as shown by decreased Muc2
expression and increased Defb3 expression in colonic epithelial
cells. We also observed increased macrophages, CD8+ T cells
and Th17T cells as well as increased inflammatory cytokines
in the colon. This increased inflammation was associated with
decreased colonic crypt length, as reported in inflammatory
bowel diseases (40). Disruption of gut homeostasis due to chronic
exposure to TiO2 may thus prime the host for conditions such as
inflammatory bowel diseases or colorectal cancer.

Consumption of TiO2 had no impact on microbiota diversity
in either the small intestine or colon. Using a constrained
analysis, we found that microbiota composition in the small
intestine was unchanged while some colonic microbiota changes
were driven by 2 and 50mg TiO2/kg BW/day. However, only
a few taxa at the genus level were significantly altered in
the colon, suggesting that TiO2 consumption is associated
with minor changes in bacterial communities. Similarly, TiO2

might not dramatically reshape the human microbiota in vivo
which would confirm previous in vitro findings in a model
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of simplified human microbiota (41, 42). However, treatment
with TiO2 over a longer period of time, as previously done
by treating mice for 12 weeks with emulsifiers polysorbate-80
(P80) and carboxylmethyl cellulose (CMC), might have a more
dramatic impact (43).

The impact of TiO2 on gut microbiota at the genus level
shared some similarities with this study on emulsifiers in
which mice treated with CMC had a significant increase
in Lactobacillus and Allobacullum (43). The increase in
Lactobacillus is particularly interesting as these bacteria are a
major biofilm producer, suggesting that TiO2 might favor the
growth of biofilm producing bacteria. Another study suggests
that TiO2 may enhance the growth of Lactobacillus (44). Previous
studies have shown that TiO2 could either bind onto the surface
of bacteria or bacteria could uptake TiO2 (45), which might
trigger a defense mechanism contributing to biofilm formation as
we observed in vitro. We also found that TiO2 mediated changes
in the gut environment, such as decreased Muc2 expression,
which have been shown to favor biofilm formation. Since
bacterially derived SCFAs have been shown to promote mucus
layer thickness, decreased acetate at the dose of TiO2 of 50mg
TiO2/kg BW/day could partially explained changes in mucus
gene expression in mice treated at this dose of TiO2. TiO2 might
also directly affect the function of mucus-producing goblet cells,
as a previous report suggests an efficient uptake of TiO2 by
goblet cells in vitro (46). The mucus layer is an efficient physical
barrier preventing bacterial attachment to the epithelium and so
its impairment by TiO2 might thus favor bacterial attachment
and biofilm formation in the gut. Similarly, emulsifiers have
been shown to decrease the mucus layer leading to closer
contact between commensal bacteria and the epithelium (43).
However, whether emulsifiers might favor biofilm formation is
unknown. While we did not observe any impact of TiO2 on gut
permeability related genes, Defb3 was upregulated which might
be a compensatory mechanism to control the interaction with the
commensal bacteria.

In the colonic lamina propria, we observed a significant
impact of TiO2 on both innate and adaptive immune cells
with increased macrophages, Th17 and CD8+ T cells. This
proinflammatory effect of TiO2 is confirmed by changes in the
cytokine environment with increased IL-6, IL-17, and TNF-alpha
gene expression as well as decreased colonic crypt length. The
later has also been reported in rats treated for 100 days with
10mg TiO2/kg BW/day (19). Our findings suggest that some of
the changes induced by TiO2 occur after as little as 30 days of
daily TiO2 treatment.

In summary, our findings demonstrate that TiO2 profoundly
affects gut homeostasis in mice and that such changes can
occur over a period of time significantly shorter than the
exposure typical for the human population. These changes
were most significant at the highest dose of 50mg TiO2/kg
BW/day, but still significant at the physiological doses of 2 and
10mg TiO2/kg BW/day. The pro-inflammatory environment
and biofilm formation induced by TiO2 predispose the host to
conditions such as inflammatory bowel diseases and colorectal
cancer, both of which have been shown to be aggravated by TiO2

(19, 20). The reduced SCFA production at the highest dose of
TiO2 has profound health implications as acetate has been shown

to provide protection from colitis, colorectal cancer, food allergy,
asthma and type 1 diabetes (2–5).

Finally, this work highlights the need for further research
into how TiO2, on its own and in combination with other
food additives, affects human health. Such research would better
inform the regulation of food additives such TiO2 and thus
potentially reduce the incidence of non-communicable diseases
associated with the western lifestyle.
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