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Carnosine is an abundant histidine-containing dipeptide in human skeletal muscle and

formed by beta-alanine and L-histidine. It performs various physiological roles during

exercise and has attracted strong interest in recent years with numerous investigations

focused on increasing its intramuscular content to optimize its potential ergogenic

benefits. Oral beta-alanine ingestion increases muscle carnosine content although large

variation in response to supplementation exists and the amount of ingested beta-alanine

converted into muscle carnosine appears to be low. Understanding of carnosine and

beta-alanine metabolism and the factors that influence muscle carnosine synthesis

with supplementation may provide insight into how beta-alanine supplementation may

be optimized. Herein we discuss modifiable factors that may further enhance the

increase of muscle carnosine in response to beta-alanine supplementation including, (i)

dose; (ii) duration; (iii) beta-alanine formulation; (iv) dietary influences; (v) exercise; and

(vi) co-supplementation with other substances. The aim of this narrative review is to

outline the processes involved in muscle carnosine metabolism, discuss theoretical and

mechanistic modifiable factors which may optimize the muscle carnosine response to

beta-alanine supplementation and to make recommendations to guide future research.

Keywords: optimizing supplementation, muscle carnosine content, metabolism, buffering, modifying factors

INTRODUCTION

Carnosine is a histidine-containing dipeptide formed by beta-alanine (BA) and L-histidine that is
abundant in human skeletal muscle (1). It performs a number of roles which may impact exercise
such as antioxidant activity (2–5), antiglycation effects (6), enhanced calcium sensitivity (7, 8), and
hydrogen ion (H+) buffering (9–11). In particular, the biological function of carnosine as a muscle
buffer makes it an interesting compound for high-intensity exercise since performance during this
type of activitymay be influenced byH+ accumulation and can be improved by increasing buffering
capacity (12). Accordingly, carnosine continues to attract interest due to its potential ergogenic
benefits, with numerous investigations specifically focused on increasing its intramuscular content
to optimize performance (13).

Beta-alanine is a non-proteogenic amino acid and the limiting factor for carnosine formation
in the skeletal muscle (1). Chronic supplementation of BA between 4 and 24 weeks appears to
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be safe (14, 15) and can increase skeletal muscle carnosine
content by up to 200% (16). Strong evidence supports the
ergogenic role of BA supplementation for high-intensity exercise
with meta-analytical data demonstrating its efficacy, particular
during exercise 30 s to 10min in duration (13). Despite
growing evidence supporting the use of BA to enhance exercise
performance, the individual response of muscle carnosine to
supplementation is highly variable (16) and the amount of
ingested BA converted into muscle carnosine appears to be
low (17–19). Little is known about modifiable factors that may
potentially influence the response of muscle carnosine content to
BA supplementation. These factors include dose, duration, meal
co-ingestion, co-supplementation with other compounds, and
exercise. Enhanced understanding of these factors is of interest
to athletes, support staff and researchers, as greater increases in
muscle carnosine are associated with greater improvements in
exercise capacity (16, 20). The aim of this narrative review is to
outline the processes involved in muscle carnosine metabolism,
discuss theoretical andmechanistic modifiable factors whichmay
optimize the muscle carnosine response to BA supplementation,
and to make recommendations to guide future research in
this area.

MUSCLE CARNOSINE METABOLISM

Carnosine homeostasis is dependent on its synthesis from,
and degradation to, its constituent amino acids. Carnosine is
synthesized from BA and L-histidine in a reaction catalyzed by
the non-specific enzyme carnosine synthase (CARNS), an enzyme
located in skeletal muscle (21). Importantly, beta-alanine has
a high affinity (Km, 1.0–2.3mM) for carnosine synthase (22)
along with a low muscle content (∼0.2 mmol·kg−1ww) (23);
histidine, on the other hand, is found in high concentration
in muscle (∼0.4 mmol·kg−1ww) (24) but has a low Km

(16.8µM) for carnosine synthase (25). These data indicate
that BA is the rate-limiting amino acid to muscle carnosine
synthesis, a finding that is corroborated by supplementation
studies that show that BA alone is similarly effective at
increasing muscle carnosine content, than an equivalent dose
of BA delivered in carnosine (which comprises both BA and
histidine) (1).

Carnosinase is a hydrolytic enzyme found in serum and
tissue (26) that actively degrades carnosine into its constituent
amino acids (27). Serum carnosinase (also known as carnosinase-
1) is highly specific for carnosine while carnosinase found in
tissue (also known as carnosine-2) has a broader substrate
specificity (28). Despite its presence in skeletal muscle as
a cytosolic non-specific dipeptidase, carnosinase-2 functions
optimally at pH 9.5 (26, 29) which is far in excess of the
pH 7.4 typically encountered in human muscle meaning it has
little influence in muscle. The presence of carnosinase in the
gastrointestinal tract (30) means that some ingested carnosine,
or histidine containing dipeptide analogs such as anserine or
balenine (28), may be hydrolysed to BA and histidine before
reaching the blood stream. Nonetheless, most carnosine will
reach the blood stream where carnosinase-1 is highly present and

active in humans, meaning that the carnosine that reaches the
bloodstream is immediately hydrolysed into BA and histidine.
Indeed, very little carnosine is found in human blood (31)
and carnosinase activity is considered the main determinant of
circulating carnosine levels following dietary carnosine ingestion
(32). The constituent amino acids can then be transported to the
muscle (Figure 1).

The uptake of BA into muscle is primarily mediated
by TauT, a specific β-amino acid transport protein also
responsible for the uptake of taurine into muscle that is
dependent upon stoichiometric concentrations of both Na+

and Cl− in a 2:1:1 (Na+:Cl−:β-amino acid) ratio (33). The
BA transporter TauT into muscle cells has a Km of 40µM
(34) which is relatively high compared to the <0.5µM of
BA typically found in blood (1) meaning that circulating
levels must be increased to augment transport into muscle.
Another transporter, PAT1, also transports BA into muscle
although its contribution appears minimal compared to TauT
(35). For these reasons, it is commonly accepted that the
transport of BA into muscle is predominantly determined
by the TauT transporter. While several non-specific peptide
transporters (PEPT1, PEPT2, PHT1, PHT2) exist which can
transport carnosine and its methylated analogs, only PHT1 is
found in abundance in human skeletal muscle and PEPT2 to a
lesser extent (35).

Endogenous production of BA is low and occurs primarily
inside the liver through the degradation of uracil (36). For this
reason, dietary sources of histidine containing dipeptides (e.g.,
carnosine, anserine, balenine) such as meat, fish, and poultry
[e.g., 200 g chicken breast contains ∼800mg of BA (1)] may
be a determinant of muscle carnosine content (37). In support
of this, vegetarians, whose only source of BA is endogenous
production, have significantly lower muscle carnosine content
compared to their omnivorous counterparts (38). However,
omnivores who were put on a 6-month vegetarian diet did
not reduce their muscle carnosine stores, suggesting carnosine
homeostasis is tightly regulated and not entirely dependent on
dietary intake (39). Nonetheless, it is unquestionable that BA
intakes in excess of dietary intake are required to elicit significant
carnosine increases (39), meaning supplementation with BA is
the most effective and practical means by which to increase
muscle carnosine content.

THE INFLUENCE OF BETA-ALANINE
SUPPLEMENTATION ON MUSCLE
CARNOSINE METABOLISM

The first study to show that BA could increase the intramuscular
carnosine pool measured a +40–60% increase in carnosine
content of the m. vastus lateralis (1), as measured by high-
performance liquid chromatography (HPLC) of muscle biopsy
samples. Numerous studies have corroborated these findings
using HPLC (16, 20, 23, 24, 40) and proton magnetic resonance
spectroscopy (1H-MRS) (41–46). Almost all individuals across
these independent studies showed increases in muscle carnosine
following a period of BA supplementation although there is a
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FIGURE 1 | Metabolism of muscle carnosine. Created with BioRender.

large variability in the magnitude of this response, both between
and within studies. Data from our laboratory has shownmaximal
absolute increases of between +17 to +41 mmol·kg−1dm
(+59 to +200%), highlighting the range of change between
individuals. Variable responses are likely due to a combination
of modifiable (i.e., dose, duration, co-supplementation, etc.) and
non-modifiable (i.e., age, gender, disease) factors, although herein
we will focus on the modifiable factors through which individuals
might optimize muscle carnosine loading. Surprisingly, despite
consistent and large increases in different muscle groups with
BA supplementation, evidence suggests actual incorporation of
BA into muscle carnosine is low. The amount of BA ingested
that is converted into muscle carnosine is only about 3–
6% (17–19), meaning that upwards of 90% of ingested BA
is directed toward other physiological outcomes, which may
include transamination and oxidation (47), while small amounts
(∼3%) are also lost via the urine (1). Understanding of the
primarymechanisms by which increased BA availability increases
muscle carnosine content is an essential step to see if its
incorporation into muscle can optimized, while determination
of the importance of these alternative pathways through which
the majority of BA is metabolized may provide further scope
for investigation.

It appears reasonable to expect that any changes in muscle
carnosine content would be paralleled by changes in the
proteins involved in its metabolism. Everaert et al. (35) showed
upregulation of several genes encoding proteins and enzymes
involved in carnosine homeostasis in response to 8 weeks of
BA supplementation in mice. Specifically, gene expression for
the enzymes relating to BA transport into muscle (TauT),
synthesis of muscle carnosine (CARNS), and the deamination
of BA (ABAT) increased expression, suggesting an important
role for these proteins in increasing muscle carnosine content.
The only study to measure changes in gene expression with BA
supplementation in humans showed a chronic downregulation
of TauT during 24-weeks of supplementation at 6.4 g·day−1,
but no change in any other genes (16). It currently remains
unclear why these two studies showed such contrasting results
in gene expression following BA supplementation, particularly
in reference to TauT. A key difference may be the timing of
muscle sampling as it is unclear when dissection of the mice
was performed relative to the last BA dose (35) while the human
samples were always taken at least 4 h after the last ingested
dose of BA. The time course response of carnosine-related
gene expression following acute BA supplementation should be
determined to further understand these findings since a single
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end-point biopsy following an intervention can influence the
inferences made (48).

Muscle carnosine loading is most pronounced during the
initial weeks of supplementation, after which increases in
muscle carnosine content appear to slow. This is certainly
true of the first vs. subsequent 12 days of supplementation
(40), and the first 4 weeks compared to the remaining 20
weeks of supplementation (16). This slowing may be due to
a decreased transport of BA into muscle, suggested by the
downregulation of TauT gene expression (16). Despite this
and as reported previously, intramuscular carnosine levels
follow a progressive increase as long as supplementation
continues whereby reported intramuscular carnosine content
was greater after 20 and 24 weeks of supplementation when
compared to 8 weeks of supplementation (16). In fact,
several individuals showed substantial increases (> +6
mmol·kg−1dm) in the final 4 weeks of supplementation
and it is likely that further increases in carnosine would
have occurred if supplementation had continued. It
seems possible, therefore, that TauT downregulation may
attenuate the rate of carnosine synthesis in response
to continued supplementation, but it does not block
it completely. Further work should determine the true
contribution of TauT to muscle carnosine increases with
BA supplementation.

Beta-alanine can be transaminated into malonate semi-
aldehyde by the enzymes GABA-T and AGXT2 for further
metabolism within the citric acid cycle; these enzymes are
highly expressed in kidney and liver of mice, but exhibit low
expression in muscle (47). Low dietary intake of BA (0.1% BA
in drinking water) in mice did not increase circulating BA or
muscle histidine-containing dipeptide content (47), although
when this low BA dose was provided alongside simultaneous
inhibition of these BA transaminating enzymes, this led to
increased circulating BA, and histidine-containing dipeptide
content was increased in muscle and heart. These data suggest
that low doses of BA may be entirely transaminated by highly
active transaminating enzymes, leading to minimal to no changes
in circulating BA or muscle histidine-containing dipeptide
content, but should saturation of these enzymes occur, significant
increases in the tissue concentrations of histidine-containing
dipeptides can occur. The authors suggest that saturation of these
enzymes is unlikely to occur with normal human dietary patterns,
perhaps explaining the relative stability of muscle carnosine over
time (42). It is possible however, that acute dietary ingestion
via meat or fish may be sufficient to saturate these enzymes,
since omnivores have higher muscle carnosine content than
vegetarians (38). Certainly, it appears more than likely that under
conditions of excess BA availability, such as supplementation,
enzyme saturation occurs leading to increased circulating levels
of BA and eventual uptake into skeletal muscle resulting in
elevated intramuscular carnosine content. Since doses of BA as
low as 1.6 g·day−1 lead to increases in muscle carnosine content
(46), the likelihood that BA supplementation at these doses
do indeed saturate these transaminating enzymes is high. The
relevance of these alternate pathways of BA transamination may
be an avenue of interest for further investigation.

It is currently unknown to what extent the acute plasma
BA response to supplementation is related to chronic changes
of carnosine in muscle when BA is ingested over an extended
period. It could be hypothesized that greater increases in
circulating BA may be due to lower transamination and, thus,
may result in larger increases in muscle carnosine content.
Supporting this, the carnosine and anserine concentration of
murine skeletal and heart muscle appears dependent upon
the circulating availability of BA (47). In humans, Stautemas
et al. (49) showed a large inter-individual variability in the
pharmacokinetic plasma BA profile following an acute absolute
1,400mg dose of BA. Importantly, the high variability in plasma
BA was not reduced after a dose relative to body mass. It is
known that the time course plasma profile following an acute
dose of BA appears stable throughout a period of chronic
supplementation (1). Unfortunately, neither of these studies
related chronic changes in muscle carnosine to the acute plasma
BA profile, which may provide answers as to the importance of
this initial acute plasma response to predict chronic changes and
may direct future research in the area.

MODIFIABLE FACTORS INFLUENCING
THE INCREASES IN MUSCLE CARNOSINE
CONTENT WITH BETA-ALANINE
SUPPLEMENTATION

Dose and Duration
The largest contributing factors to changes in muscle carnosine
content appear to be the daily dose provided and the duration
of supplementation. Doubling of the BA dose (12 vs. 6 g·day−1)
halves the time taken to reach the same increases in the m.
vastus lateralis (50). Similarly, Stellingwerff et al. (46) showed
two-fold greater increases in carnosine of the tibilias anterior and
gastrocnemius at a higher dose of 3.2 compared to 1.6 g·day−1 of
BA for 4 weeks. Moreover, when supplementation was continued
at 1.6 g·day−1 in both groups up to 8 weeks, muscle carnosine
also continued to increase. Thus, there is strong evidence to
show that a higher dose and/or longer supplementation period
leads to greater accumulation of muscle carnosine. The muscle
carnosine response to supplementation was initially proposed to
be linearly related to the total amount of BA consumed (51).
However, although doubling the dose appears to double the
increases in muscle carnosine content during the first 2–4 weeks
of supplementation (46, 50), a higher dose taken for a longer
period (6.4 g·day−1 for 24 weeks) shows a slowing over time (16),
suggesting this response is not linear.

Spelnikov and Harris (52) proposed a mathematical model
describing the kinetics of carnosine accumulation in human
skeletal muscle based on its rate of synthesis and decay. Using
existing data, the model estimates that the rate of synthesis of
carnosine in human skeletal muscle is constant over time for
any given dose of BA, but that the rate of decay will change
according to first-order kinetics (52). The washout of muscle
carnosine has been shown to occur over several weeks to months
before returning to similar pre-supplementation levels when
supplementation ceases (42, 46), and could occur due to a
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number of reasons including transmembrane leakage and the
formation of adducts with carbonyl groups, reactive oxygen
species and reactive nitrogen species (5, 28). Based upon these
parameters, the time course model of muscle carnosine changes
predicts that with any BA dose, saturation for that specific
dose will occur over time with continual supplementation. It
must be noted that this model is currently speculative and the
dose that will cause absolute saturation of carnosine in muscle
is unknown; there are no known reports of muscle carnosine
saturation in humans. Although the model predicts that a certain
level of saturation will occur according to the continuation
of supplementation at any specific dose, the first weeks of
supplementation appear most susceptible to increases in muscle
carnosine content (16) and thus the period most likely to be
amenable to optimisation in BA supplementation.

Beta-Alanine Formulation
Current recommendations for beta-alanine ingestion is for it
to be taken in staggered doses of 800–1,600mg every 3–4 h
over the day in order to reduce the incidence and severity of
paraesthesia, an uncomfortable tingling sensation on the skin
that can last up to an hour (1). Although the exact cause
of paresthesia is unknown, it is thought to be due to BA
activated strychnine-sensitive glycine receptor sites, associated
with glutamate sensitive N-methyl-D-aspartate receptors in the
brain and central nervous system (53) and the mas-related
gene family of G protein coupled receptors, which are triggered
by interactions with BA (54). Given that the development of
paresthesia is closely related to the time-to-peak beta-alanine
concentration in blood following ingestion (1), sustained-release
BA formulations have been developed to avoid this side-
effect. Such sustained-release formulations directly reduce the
symptoms of paresthesia and allow greater single tolerable doses
of BA, which in turn will allow larger daily doses. This can lead
to greater increases in muscle carnosine in the initial period of
supplementation due to higher daily doses (24, 50). In support of
this, symptoms of paresthesia while ingesting individual doses of
4 g of BA in sustained-release form were not different from those
experienced with 2 g doses (50), meaning greater daily doses
could be ingested without further discomfort leading to larger
gains in muscle carnosine.

A study by Decombaz et al. (55) showed that ingestion of
1.6 g of BA in slow-release tablets resulted in slower absorption
kinetics and improved whole body retention of BA, as measured
by urinary excretion of BA, compared to the same dose
in aqueous solution. Greater retention of BA suggests that
supplementation in a sustained-release format might lead to
greater increases in muscle carnosine compared to an instant
release (e.g., powder) formulation, although the authors did
not measure muscle carnosine in this study. Stegen et al. (19)
did not show any differences in muscle carnosine increases
in the m. gastrocnemius and m. soleus between individuals
supplementing with 4.8 g·day−1 powder or sustained-released
BA for 5 weeks. Varanoske et al. (24) compared sustained-release
and rapid-release formulations of BA, providing volunteers
with 6 g·day−1 for 28 days. Muscle carnosine content was

significantly increased in the group consuming the sustained-
release formulation while, perhaps surprisingly, no significant
changes were shown with rapid-release supplementation despite
a ∼38% increase. However, the ∼16% difference in elevation of
muscle carnosine between the two formulations did not reach
statistical significance, perhaps due to the small sample size or
the short supplementation period. In fact, forward projecting
the increases in muscle carnosine using a mathematical model
(52) suggested that large differences would be found between
formulations within 100 days of supplementation. However,
these data are highly speculative and can only be proven
with further research. As it stands, there is some evidence
to suggest that supplementation with slow-release BA may
enhance muscle carnosine increases relative to an instant-
release formulation although this is more likely due to an
increased tolerance allowing greater daily doses without the
incidence of uncomfortable side-effects. More long-term studies
are warranted to evaluate whether the same daily dose in
different formulations leads to distinct increases in muscle
carnosine content.

Dietary Influences
The timing of ingestion is considered an important factor which
may affect the efficacy of many dietary supplements (56, 57).
Since BA is ingested at several timepoints throughout the day,
it could be important to determine whether the timing of
supplementation may influence the subsequent increased in
muscle carnosine, particularly around meals and training. It has
been suggested that co-ingestion of BA with carbohydrates or
a carbohydrate-rich meal may lead to greater muscle carnosine
increases than ingesting BA between meals (19) because the
carbohydrate-mediated release of insulin upregulates the activity
and content of the sarcolemmal Na+/K+-ATPase pumps (58, 59).
Since the BA transporter TauT is dependent on sodium and
chloride co-transport (34), muscle BA uptake and subsequently
carnosine synthesis may be increased due to the action of insulin.
In support of this theory, it is well-established that creatine
uptake into muscle, which is also sodium-dependent, can be
heightened when supplementation occurs alongside the intake of
high glycaemic index carbohydrates (60, 61).

To date, only one study has investigated the potential
influence of insulin on muscle carnosine increases with BA
supplementation using a two-part investigation (19). Firstly,
acute determination of whole-body BA retention showed no
difference when BA was ingested in a fasted state or when
co-ingested with two energy-rich carbohydrate bars. In Part
B, participants ingested BA at 3.2 g·day−1 for 6–7 weeks,
separated into two groups who were required to ingest the
supplement with (co-ingestion) meals or between meals. Meal
co-ingestion enhanced muscle carnosine loading in the soleus
muscle, but this result was not mirrored in the gastrocnemius.
Several mechanisms exists that could explain the difference in
muscle carnosine loading between soleus and gastrocnemius,
namely, increased insulin sensitivity in the soleus (62) and a
preferential insulin-induced translocation of Na+/K+-ATPase
subunits in oxidative fibers (e.g., the soleus) over glycolytic
fibers (e.g., the gastrocnemius). Intramuscular Na+-K+-pump
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activity can also be stimulated by caffeine (58), meaning that
co-supplementation of caffeine and BA may enhance muscle
carnosine loading through this mechanism as well. While data
surrounding dietary confounders, such as meal co-ingestion or
caffeine co-supplementation, on the TauT-mediated transport
into muscle and how this may impact intramuscular carnosine
concentrations is lacking, more research in this area may allow
development of supplementation strategies to enhance carnosine
uptake into the skeletal muscle.

Influence of Exercise
Increases in muscle carnosine content have been hypothesized
to be an adaptation to long-term high-intensity training as
demonstrated by higher values in bodybuilders (63) and trained
sprinters (64). It remains unclear whether this is due to genetic
predisposition, an adaptative response to the training stimulus,
or secondary to differences in muscle fiber type composition.
Certainly, a greater number of type II muscle fibers are shown in
resistance and sprint-trained individuals while muscle carnosine
has a higher content in type II glycolytic fibers compared to type
I oxidative fibers (20, 65). These data have also been attributed
to a greater increase of dietary BA (via increased meat intake) or
to chronic steroid use in these populations [the anabolic effect
of androgens may play a role in muscle carnosine metabolism
(35, 66)], although the true effect of these factors remains unclear.
Nonetheless, chronic training is often cited as a determinant of
increased muscle carnosine content (37).

Despite cross-sectional data suggesting an adaptive role of
muscle carnosine in response to training, most short-term (4–16
weeks) exercise training protocols have, however, failed tomodify
intramuscular carnosine content (65–69). Nevertheless, a recent
study demonstrated that, independent of BA supplementation,
12-weeks of high-intensity interval training in vegetarians can
increase muscle carnosine content in the absence of any dietary
BA intake (70). This indicates that an increase in muscle
carnosine synthesis occurred despite no ingestion of BA,meaning
there may have been an increase in endogenous BA production,
although this was notmeasured. Themajor part of these increases
was attributed to an increase in muscle carnosine metabolism,
although it is unclear what the mechanisms are since no changes
in the expression of genes involved in carnosine metabolism
were shown. This may have been due to the timing of muscle
sampling relative to the training sessions; gene expression was
determined from muscle biopsies taken at one timepoint 72
to 96 h following training. The possibility that changes in gene
expression occurred at different time points following exercise
cannot be excluded while replication of these data in omnivorous
individuals is also warranted.

Despite clear evidence that exercise can influence muscle
carnosine homeostasis (70), no study to date has shown
significantly enhanced muscle carnosine loading when BA
supplementation was performed in conjunction with a specific
training program (45, 65, 69, 71). The reasons for these findings
are unclear since none of these studies measured changes in the
enzymes, proteins and transporters involved in muscle carnosine
regulation. Furthermore, differences in exercise intensity and
modality, training duration and dietary habits challenge the

ability to isolate why any given individual study showed no
combined effect of training and BA supplementation on muscle
carnosine increases. Greater increases in muscle carnosine
content were shown in trained vs. untrained muscles following
23 days of supplementation at 6.4 g·day−1 despite the athletes
not being put through a specific training protocol (72). Kayakers
showed more pronounced gains in muscle carnosine in the
deltoid muscle compared to the soleus and gastrocnemius,
whereas the reverse pattern was seen in cyclists. Swimmers,
whose exercise task requires both upper and lower-body training,
had significantly higher increases in carnosine in both the
deltoid and gastrocnemius compared with non-athletes. These
results imply a role of training on muscle carnosine metabolism,
although a lack of gene or protein measurements hinders
mechanistic interpretation of these findings. The authors suggest
an increased delivery of BA to the working muscle cells or a
possible contraction-induced stimulation of the BA transporters
may have contributed to these differences, but data to support
or refute this hypothesis is currently unavailable. Overall, little
is currently known on how exercise may influence muscle
carnosine metabolism. Consequently, more mechanistic studies
are required to determine the effects of both an acute exercise
bout and chronic training on the major regulators of carnosine
content. This will provide information as to whether there is
any physiological relevance to ingesting BA at specific timepoints
relative to exercise training.

Co-supplementation of Histidine With
Beta-Alanine
Carnosine is formed by BA with L-histidine and is therefore
dependent on the availability of both of these amino acids (28).
Blancquaert et al. (40) showed a significant depletion of muscle
histidine content following 23 days of BA supplementation.
The authors speculated that this reduced muscle histidine
availability could be the reason for an impaired efficiency of
carnosine loading with BA as supplementation is extended over
time (16, 40). While co-supplementation of BA and histidine
in their study did avoid the depletion of muscle histidine
stores, intramuscular carnosine content was unaffected when
compared to supplementation with just BA. These results
corroborated previous findings of Harris et al. (1) that showed
no additive effect of BA and histidine supplementation on
muscle carnosine changes. A number of subsequent studies
reported no influence of BA supplementation on histidine
content, (23, 24, 50), a finding that was since corroborated
by meta-analysis of available data (15). Differences in dietary
intake may explain some of the differences between these
studies since the average American diet generally contains
more protein than the typical Belgian diet (23), although
this remains highly speculative. Currently, evidence suggests
that histidine depletion is not a limiting factor to muscle
carnosine synthesis, meaning co-supplementation of BA with
histidine (or carnosine supplementation) will not further
augment any increases seen in muscle carnosine content.
Regardless, future work should continue to explore the effect of
one’s diet on muscle histidine content and whether prolonged
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supplementation with BA at high doses leads to histidine
depletion in muscle.

CURRENT RECOMMENDATIONS AND
FUTURE INVESTIGATION

Chronic BA supplementation increases the intracellular content
of carnosine in skeletal muscle and can subsequently improve
sports and exercise performance. Current recommendations (13,
15, 73) based upon the available evidence suggest ingesting
3.2 to 6.4 g·day−1 of BA for 4–24 weeks. To avoid the
uncomfortable feeling of paraesthesia, it is recommended to
fraction daily doses into 0.8 and 1.6 g doses at intervals
of 3 to 4 h. Adhering to this supplementation regimen will
minimize side-effects and lead to significant gains in muscle
carnosine content that can benefit exercise performance.
However, since greater increases in muscle carnosine are
associated with greater exercise benefits (16), herein we
have discussed several factors which may optimize the gains
achieved using these current recommendations although further
work is necessary to elucidate the most achievable methods
by which to optimize the muscle carnosine response to
BA supplementation.

Studies have shown that chronic supplementation with BA
may lead to upregulation or downregulation of the genes
associated with carnosine metabolism, although results are
contrasting. It would be of interest to determine what the
acute response (i.e., timecourse) of these transporters, proteins
and enzymes are following a standard BA dose, and whether

these changes reflect or predict the longer-term changes in
muscle carnosine content. In particular, evidence suggests that
the BA transporter TauT likely exerts an important role in
the observed changes during supplementation. Several avenues
exist to test the importance of this transporter including
co-supplementation with taurine [since this downregulates
TauT; (74)] or caffeine, and TauT knockout animal models.
Further investigations should also focus on the independent
influence of insulin and exercise onmuscle carnosinemetabolism
to determine the exact mechanism(s) by which diet and
physical activity may optimize increases in muscle carnosine
content with BA supplementation. Investigation into different
formulations of BA is needed to determine if sustained-
release tablets can enhance muscle carnosine increases with
chronic supplementation. It is also crucial to determine
whether small gains in muscle carnosine content above those
generally shown, induced by manipulation of some of these
modifiable factors, do indeed lead to worthwhile improvements
in performance.

CONCLUSIONS

Several modifiable factors may optimize the muscle carnosine
response to BA supplementation, of which the dose and
duration are the strongest known moderators (Figure 2).
Other factors may optimize increases, particularly during
the initial weeks of supplementation, including supplement
formulation, ingestion timing in relation to meals and
exercise, although stronger evidence to support this is

FIGURE 2 | Factors which may modify the increases in muscle carnosine content with beta-alanine supplementation. Created with BioRender.
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needed. As it stands, more mechanistic work is necessary
to elucidate whether BA supplementation can lead to
greater muscle carnosine gains above those shown with
current recommendations.
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