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Sarcopenia is defined as the combined loss of skeletal muscle strength, function, and/or

mass with aging. This degenerative loss of muscle mass is associated with poor quality of

life and early mortality humans. The loss of muscle mass occurs due to acute changes in

daily muscle net protein balance (NPB). It is generally believed a poor NPB occurs due to

reduced muscle protein synthetic responses to exercise, dietary amino acid availability,

or an insensitivity of insulin to suppress breakdown. Hence, aging muscles appear to

be resistant to the anabolic action of exercise and protein (amino acids or hormonal)

when compared to their younger counterparts. The mechanisms that underpin anabolic

resistance to anabolic stimuli (protein and resistance exercise) are multifactorial and

may be partly driven by poor lifestyle choices (increased sedentary time and reduced

dietary protein intake) as well as an inherent dysregulated mechanism in old muscles

irrespective of the environmental stimuli. The insulin like growth factor 1 (IGF-1), Akt

/Protein Kinase B and mechanistic target of rapamycin (mTOR) pathway is the primary

driver between mechanical contraction and protein synthesis and may be a site of

dysregulation between old and younger people. Therefore, our review aims to describe

and summarize the differences seen in older muscle in this pathway in response to

resistance exercise (RE) and describe approaches that researchers have sought out to

maximize the response in muscle. Furthermore, this review will present the hypothesis

that inositol hexakisphosphate kinase 1 (IP6K1) may be implicated in IGF-1 signaling

and thus sarcopenia, based on recent evidence that IGF-1 and insulin share some

intracellular bound signaling events and that IP6K1 has been implicated in skeletal muscle

insulin resistance.
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SETTING THE SCENE

Sarcopenia is defined as the combined loss of skeletal muscle mass, function and strength (1)
and it can progress at a rate of approximately 0.8% skeletal muscle loss per year from the 5th
decade in adult life (2). Sarcopenia is diagnosed using a battery of clinical assessments and globally
effects 1 in 10 adults above the age of 60 (3). Given that sarcopenia costs the American Health
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FIGURE 1 | The response of muscle protein synthesis (MPS) and breakdown (MPB) on net protein balance after acute resistance exercise or protein ingestion in

young and aging populations [Adapted from Breen and Phillips (12)]. In the morning after an overnight fast, muscle protein breakdown exceeds muscle protein

synthesis such that net protein balance is negative. After a bout of resistance exercise or the ingestion of protein, young people respond greater in their myofibrillar

protein synthesis response compared to aging people, which is appears to be the major attenuating factor to decreased NPB leading to skeletal muscle protein loss

over time. MPS, Muscle protein synthesis; MPB, Muscle protein breakdown.

Service an estimated $18.5 billion annually (4) and the
United Kingdom’s National Health Service £4592 for 11% of the
total aging population which costs £2.5 billion annually (5), it is
important that we develop a greater understanding of the cellular
pathways that drive this disease and how interventions such
as exercise and dietary protein are used to delay this processes
implicated in its progression.

Human skeletal muscle is of high plasticity and is in a constant
state of remodeling. Skeletal muscle remodeling occurs due to
the dynamic balance between muscle protein synthesis (MPS)
and muscle protein breakdown rates (MPB). The daily difference
betweenMPS andMPB defines net protein balance (NPB), which
is a key regulator of overall skeletal muscle mass. A positive
NPB is generally indicative of a positive remodeling response that
can be hypertrophic [i.e., increase fiber cross sectional area (6)]
or non-hypertrophic [i.e., increased metabolic quality (7, 8)] in
nature, whereas a reduced NPB reflects an overt phenotype being
negative by inducing a loss of muscle mass or poor metabolic

Abbreviations: IP6K1, Inositol hexakisphosphate kinase 1; IGF-1, Insulin like

growth factor-1; Akt, Protein kinase B; mTOR, Mechanistic target of rapamycin;

mTORC1, Mechanistic target of rapamycin complex 1; SIRT1, Sirtuin 1; AMPK,

5′ AMP-activated protein kinase; Peroxisome proliferator-activated receptor-γ

coactivator, PGC-1α; Nuclear factor kappa-light-chain-enhancer of activated B

cells, NF-kB; PB, Net protein balance; RE, Resistance exercise; MPS, Muscle

protein synthesis; MPB, Muscle protein balance; CSA, Cross sectional area; IGFR,

Insulin like growth factor receptor; ECM, Extracellular matrix; IGFBP, Insulin like

growth factor binding proteinsl PH, Pleckstrin homology; P13K, Phosphoinositide

3-kinase; PA, Phosphotadic acid; PDK1, Phosphoinositide-dependent kinase-1;

PIP3, Phosphatidylinositol 3,4,5-trisphosphate; PIP2, Phosphatidylinositol (4,5)-

bisphosphate; mTORC2, Mechanistic target of rapamycin complex 2; IRS1,

Insulin receptor substrate 1; GLUT-1, Glucose transporter-1; GLUT-4, Glucose

transporter-4; TSC, Tuberous sclerosis complex; p70s6k, Ribosomal protein S6

kinase beta-1; 4E-BP1, 4E Binding protein 1; FSR, Fractional synthesis rate; IRM, 1

Repetition maximum; IP6, Inositol hexophosphate; IP7, Inositol pyrophosphate;

TNP, N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine; HIIT, High intensity

interval training.

quality (9). Changes in MPB are small in normal aging, whilst
changes inMPS seem to be larger in amplitude andmore obvious
in response to the main anabolic stimuli to muscle tissue. As
such, the measurement of MPS is the primary focus in human
metabolic research (10).

Protein ingestion stimulates an increase in MPS; however, a
decrease in habitual physical activity, which is often observed
with aging and/or injury, can induce anabolic resistance of MPS
to protein ingestion (11) (Figure 1). For example, 7 days of
unilateral leg immobilization in young men caused significant
decreases in quadriceps cross sectional area (CSA) compared to
the control limb and leucine supplementation did not reduce the
loss in CSA (13). Similarly, 14 days immobilization in young men
caused decreased CSA and an amino acid infusion in varying
doses showed decreased post prandial MPS in the immobilized
leg vs. the control limb (14). To reach the same myofibrillar
protein synthetic response in muscle, older individuals need
to consume more relative amounts of protein than younger
individuals. In vivo, the stimulation of myofibrillar protein
synthesis rates is dependent on intracellular molecular signaling
pathways that become activated in response to extracellular cues.
The mTOR complex 1 (mTORC1) pathway appears to play
an important role in stimulating postprandial / post-exercise
myofibrillar protein synthesis rates (15), and activation of this
pathway can occur in two ways; firstly, through mechanical
contraction (i.e., resistance exercise) which causes a release of
skeletal muscle IGF-1 (8) and secondly via amino acid/protein
intake (16). Furthermore, resistance exercise (RE) plus protein
ingestion increases mTORC1 phosphorylation to a greater extent
than protein or RE alone (17, 18), and likely intracellular
redistribution of mTORC1 toward the sarcolemma as well (19).

As humans age, the muscle’s ability to respond to both exercise
and dietary protein diminishes leading to reduced NPB, and
particularly in the myofibrillar protein fraction (11, 20, 21).
The insulin like growth factor 1 (IGF-1), Akt/Protein Kinase
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B–mTOR pathway is acutely stimulated to promote ribosomal
biogenesis and translation to form new myofibril proteins using
these elongated ribosomes across the mRNA, which allows
for the remodeling of skeletal muscle (22, 23). This occurs
through amino acid sensed stimulation of phosphatidylinositol 3-
phosphate (PtdIns3P) and localization of mTOR to the lysosome
surface where mTOR positive lysosomes can translocate to the
cell periphery which creates the most anabolic environment for
myofibrillar remodeling (24).

Inositol hexakisphosphate kinase 1 (IP6K1) has recently been
shown to inhibit Akt308 activity in IGF-1 stimulated hepatic cell
lines (25) as well as skeletal muscle contraction having the ability
to reverse this negative effect by reducing IP6K1 content (26).
Normal IGF-1 signaling and Akt activity are vital for maintaining
anabolic sensitivity (27). Taken together, it is hypothesized that
IP6K1 may have a role in the onset of sarcopenia, and this review
aims to discuss the possible role it has in anabolic resistance in
aging skeletal muscle. Moreover, this review will describe and
explain the molecular regulation of MPS and the role of RE
and dietary protein has on the Akt-mTOR pathway in anabolic
resistant, aging muscle.

MOLECULAR REGULATION OF MUSCLE
PROTEIN SYNTHESIS (MPS) IN RESPONSE
TO EXERCISE AND NUTRITION

MPS is regulated by an intrinsic cell signaling response which
is activated by various external cues, such as dietary amino
acids and RE. These cues drive the molecular regulation that
augments MPS rates which facilitates the protein remodeling
response in skeletal muscle, which is generally considered to
be a hypertrophic response when studied during recovery from
RE. The muscle protein remodeling response after endurance
exercise is likely more aimed at non-hypertrophic remodeling.
What is noteworthy is that it is still unclear how different anabolic
signaling pathways coordinate the synthesis of specific muscle
protein sub-fractions such as myofibrillar or mitochondrial
proteins throughout the postprandial or post-exercise period.
In addition, the time course of activation for these signaling
transduction pathways is still unclear. The signaling response to
RE and protein is described in detail below both in healthy and
anabolic resistant phenotypes.

INSULIN LIKE GROWTH FACTOR-1
ACTIVATION

IGF-1, owing its name to high homogeneity to insulin, is a
small peptide structurally bound by 70 amino acids (28). It is
secreted by many tissues including the liver and skeletal muscle.
Once IGF-1 enters the blood stream, there is not a specific
tissue target (adipose, skeletal muscle, brain, cardiac muscle)
although it is agreed that IGF-1 secreted from the liver (the largest
contributor to circulating IGF-1), will not act on those tissues
that have capabilities of producing the hormone themselves, such
as skeletal muscle (29–33). At rest, circulating IGF-1 is relatively
stable and young adults have significantly greater concentrations

compared to older individuals (34). It has recently been
suggested that large, but transient, increases in exercise-induced
plasma IGF-1 concentrations are not required for activation of
intracellular muscle signaling and the subsequent skeletal muscle
adaptive response (35, 36). For example, Morton et al. (35)
observed no relationship between circulating anabolic hormones
(IGF-1) in plasma and strength gains in resistance trained young
men after 12 weeks of low or high load RE. This suggests that
intrinsic secretion of muscle IGF-1, not circulating plasma IGF-
1, is a key determinant for switching on anabolic pathways (37).
This is supported by Morton et al. (37) who suggested muscle
androgen receptor content and not circulating hormones was
associated with changes in lean body mass following 12 weeks
of RE in previously trained men. In muscle, IGF-1 is stimulated
by mechanical loading and contraction to which IGF receptor
(IGFR) is activated in the cell to allow for membrane bound
protein signaling pathways to become active. IGF-1 is secreted
frommuscle fibers into the extracellularmatrix (ECM) to which it
is bound by IGF binding proteins (IGFBPs). Given, the half-life of
IGF-1 is just 5–10 min (38), these pools of IGFBPs must be local
to the ECM (39–41). Upon binding to IGFBPs, IGF-1 activates its
receptor to which intracellular signaling processes driving MPS
can occur.

IGF-1 enters the cell via IGFR, it triggers phosphoinositide
3-kinase (P13-K) to generate hosphatidylinositol
(4, 5)-bisphosphate (PIP2), leading to the production of
hosphatidylinositol 3,4,5-trisphosphate (PIP3) (27, 42, 43). PIP3
is then free to bind to phosphoinositide-dependent kinase-1
(PDK1) which binds to the pleskstrin homology (PH) domain of
Akt, allowing for translocation to the cell membrane preceding
phosphorylation at Akt308 (27, 43).

AKT-MTOR SIGNALING IN RESPONSE TO
PROTEIN AND RESISTANCE EXERCISE

Akt is a threonine and serine protein kinase which has
three isoforms; Akt1, Akt2, and Akt3 (44). Akt1 has been
linked to cell survival and may inhibit apoptosis (45). The
same isoform is also implicated in MPS (46). Akt2 is the
predominant form present in skeletal muscle and is heavily
involved in glucose uptake and MPS via Akt308 and Akt473

(47) whilst Akt3 is vital for brain development and cell death
(48). Diez et al. (49) described the activity of specific isoforms
on Akt308 phosphorylation and despite Akt1 resulting in over
half of total Akt expression, inhibition of Akt1 and Akt3
through use of shRNA techniques had no significant effect on
total phosphorylated Akt308. In contrast to the little effect of
Akt1 and Akt3 inhibition had on total phosphorylated Akt308,
inhibition of Akt2 was related to reduction in total Akt and
phosphorylated Akt308 in all conditions respective to control.
Mutant mice lacking the Akt2 gene have significantly reduced
total and phosphorylated Akt compared to mice lacking the Akt3
gene (49). Furthermore, Akt2 mutants had impaired glucose
homeostasis, and growth deficiencies which may have been
partially due to significantly blunted Ribosomal protein S6
kinase beta-1 (p70s6k) phosphorylation. Akt activation by mTOR
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complex 2 (mTORC2) uses PIP3, the product of P13K, to bind to
the pleskstrin homology (PH) domain of mSin1 which localized
mTORC2 to the cell membrane and relieves inhibition of mTOR
which allows for Akt473 phosphorylation (50). Phosphorylation
of both serine threonine residues are vital for maximal Akt
activity and disruption of either site will have a knock-on effect
downstream (51). In healthy phenotype, this mechanism occurs
quickly and of high magnitude in response to RE (52) whilst
this response is blunted in metabolically unhealthy or aging (53).
Interference at any stage of this sequential reaction can have a
profound effect on downstream signaling and metabolism. For
example, inhibition of insulin receptor substrate 1 (IRS-1) in
genetically modified mice had little effect on muscle atrophy,
however when IGFR and IRS-1 are both disrupted, mice showed
marked atrophy but had good glucose tolerance, measured by
intravenous glucose tolerance test in gastrocnemius and soleus
muscle whichmay have been due to increased glucose transporter
1 (GLUT-1) and glucose transporter 4 (GLUT-4) (42).

Downstream, Akt308 activatesmTOR complex 1 (mTORC1) at
mTOR2448 via the tuberous sclerosis complex (TSC). The TSC is
phosphorylated by Akt which then disassociates the TSC from
the small GTPase Ras homolog enriched in brain (Rheb) to
localize to the lysosome where Rheb and mTORC1 can interact
and phosphorylate mTORC1 (54). Similar to Akt, mTOR is a
serine/threonine kinase and is made up of 5 components; Raptor,
mLST, mTOR, PRAS40, and Deptor. All five of these components
play a key role in mTORC1 signaling that subsequently results in
MPS via downstream protein phosphorylation. Following RE and
dietary protein ingestion, mTORC1 activity is upregulated which
allows for subsequentmembrane bound proteins to increaseMPS
(55). Phosphorylation and activity of mTORC1 at mTOR2448 and
mTOR2481 are directly correlated with MPS (17, 56). mTORC2481

is a marker of intact mTORC2 and phosphorylation of this
site is an indicator that the actin cytoskeleton and Akt473

are metabolically active (57). RE and dietary protein ingestion
actively promotes skeletal muscle remodeling, at least partly,
through acute activation of the Akt-mTORC1 pathway, which
prevent MPB pathways such as autophagy (8, 27, 58, 59). Acute
increases in Akt-mTORC1 signaling increase MPS to prevent
breakdown in skeletal muscle, albeit MPS blunted in older
humans compared to younger counterparts (8, 59). However, it
has been established that targeted exercise prescription aimed
at encouraging the recruitment of type II muscle fibers with
the more volume (6 sets > 3 sets) can restore the post-exercise
MPS response to a more youthful-state (60). To prevent negative
protein balance and therefore muscle atrophy, RE and increased
protein intake can be used as a tool to prevent progressive loss of
muscle mass and function in aging adults (12, 21).

Downstream of mTORC1, two key proteins are activated
to regulate muscle mass. Previous efforts have shown that
mTORC1 signaling to p70s6k and 4E-BP1 are both required for an
optimal amount and quality of muscle mass during hypertrophic
remodeling (61). In particular, 4E-BP1 phosphorylation can
support hypertrophy, but without p70s6k phosphorylation the
quality of muscle is poor and leads to impaired force production
due to formation of protein aggregates (61). In humans, it was
demonstrated that p70s6k phosphorylation 6 h post exercise is a

strong predictor of skeletal muscle mass using a small sample
size, which suggested that disruption of these anabolic signaling
proteins can have a profound effect on muscle plasticity (62).
However, Mitchell et al. (63) showed that the predictive nature
of p70s6k phosphorylation immediately resistance exercise for
muscle mass gain is less apparent when using a larger sample
size. Such a finding is consistent with the heterogeneity of
skeletal muscle adaptive potential in humans (64, 65), and re-
underlines the challenges associated with emphasizing the value
of a single point snapshot of phosphorylation after exercise as
the “holy grail” in terms of predicting the extent of skeletal
muscle adaptations with progressive resistance exercise training
in humans.

CAUSES OF ANABOLIC RESISTANCE

There are several factors likely contributing toward the anabolic
resistance of aging muscles to RE or protein ingestion (66),
many of which have been highlighted above, including elevated
mTORC1 phosphorylation in the post absorptive state (67). This
systemic activation of mTORC1 in the post absorptive state
inhibits autophagy in muscle, a protein breakdown pathway,
which leads to the build-up of excess, unused ribosomes that
have been synthesized as a result of mTORC1 phosphorylation
and ultimately leading to reduced structural integrity of the ECM
of muscle which causes insulin resistance (68, 69). It is thought
that this is due to an insensitivity to anabolic stimuli whereby
mTORC1 is elevated at rest and causing a systematic upregulation
of MPS, similar to insulin resistance (67). A similar adaptation
is seen in obese muscle that is resistant to anabolic stimuli
(70); therefore, this suggests that a major difference between
unhealthy and healthy muscle is post absorptive mTORC1
activity. TSC1 deficient mice, showing prolonged and chronic
elevated mTORC1, developed late onset myopathy, showed
vacuolated and basophilic fibers, intracellular inclusions, and
abnormally large myonuclei. Furthermore, extracellular binding
proteins were impaired in TSC1 deficient mice which may be an
attenuating factor to myopathy. In older adults after an acute
bout of RE, p70s6k and 4E-BP1 do not increase to the same
magnitude as young people (53). This decreased activation of key
proteins may be caused by upstream signaling pathways being
disrupted, however is it not possible to turnover new proteins
without a distinct activation of p70s6k and 4E-BP1. Drummond
et al. (53) saw increases in 4E-BP1 phosphorylation at 1 and 6 h in
young men however the increase was maintained for only 1 h in
older adults. Kumar et al. (21) saw a similar effect in response to
several different bouts of RE in a scaled protocol for one rep max
percentage, older individuals had a significantly reduced FSR at
all intensities compared to young and this response was coupled
with a decreased p70s6k phosphorylation. With the evidence
above in mind, it is clear that elevated post absorptive mTORC1
activity is a negative adaptation, however the reasons to which
this occurs are currently not known.

Recently a NAD+ dependent deacetylase called Sirtuin 1
(SIRT1) has gained some attention due to its emerging role
in increased cell longevity (71). This protein is implicated in
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a number of pathways including cellular energy production,
mitochondrial biogenesis via AMPK and PGC-1α while reducing
inflammation through the inhibition of NF-kB (71–73). SIRT1
acts negatively on Akt and mTORC1 in the basal state, a
finding previously shown to be a major attenuating factor to the
normal response to anabolic stimuli (70). Furthermore, aging is
associated with an increase in SIRT1 muscle content, however
anabolic resistant skeletal muscle in aging populations display
less SIRT1 vs. active counterparts, a finding that may contribute
to increased post-absorptive Akt-mTORC1 activity (74, 75).
Furthermore, caloric restriction also appears to increase SIRT1
muscle content, adding support for the combination of caloric
restriction, RE, and leucine rich protein sources as a strategy for
improving anabolic resistance in aging populations (71).

Habitual diet must be considered as a potential attenuating
factor of sarcopenia given the reduced response older adults
have to protein ingestion and the profound effect this has on
skeletal muscle remodeling. Mediterranean diets rich in protein,
fats and vegetables have been shown to reduce the risk of
sarcopenia through its anti-inflammatory effects and high anti-
oxidant content (76). Some research suggests that individuals
consuming a diet high in protein also present with increased
serum IGF-1 concentrations (77, 78). Yet more recently, older
adults consuming a protein rich diet (1.4 g/kg/day) showed no
difference in circulating IGF-1 levels vs. a low protein group
(0.8 g/kg/day) (79). Whilst older adults clearly require greater
quantities of protein to gain the desired MPS response, the
evidence suggests that the IGF-1 pathway is not responsive to
their habitual diet. A recent study on old mice (26 months old)
suggested that increased expression of local skeletal muscle IGF-
1 isoforms (IGF-1 Ea and IGF-1 Eb) counteracted sarcopenia,
which included increased SIRT1 muscle content, autophagy
and PGC-1α, without inducing any negative effects in other

tissues compared to wild type mice (80). No study to the
authors knowledge has investigated the local skeletal muscle
isoforms of IGF-1 and the effect of acute or habitual diet on its
concentration and secretion, and therefore requires exploration.
Yet, as previously discussed, local skeletal muscle IGF-1 seems to
play an important factor to skeletal muscle remodeling and that
this effect is greater that any contribution to IGF-1 produced and
secreted by other tissue types.

COUNTERACTING ANABOLIC
RESISTANCE WITH NUTRITION AND
EXERCISE

With the aim of counteracting anabolic resistance, studies have
investigated how MPS can be maximized in older adults. Moore
et al. (81) compared young and older adults myofibrillar protein
synthetic response to graded intakes of whey protein and it was
suggested that young and older adults could reach a similar
response in their muscle however the quantity of protein required
in g/kg lean body mass (LBM) in a single meal was far greater
[0.6 g/kg LBM vs. 0.25 g/kg LBM (Figure 2)] in the older
population. One explanation for this reduced ability of aging
muscles to “sense” dietary amino acids in circulation is likely
related to impairments in molecular signaling (e.g., decreased
amino acid transports, elevated mTORC1, and IP6K1). Due to
impaired molecular signaling intrinsic to muscle, older adults
require greater amounts of leucine to have a similar response as
younger individuals (81–83). To maximize MPS in aging adults,
Kumar et al. (21) suggested that MPS was at its peak following 6
sets of 8 repetitions at 60% 1RM although this was significantly
less compared to their young counterparts. This is important for
the prescription of exercise protocols in research to ensureMPS is

FIGURE 2 | Normal fluctuations in Muscle Protein Synthesis and Muscle Protein Breakdown rates throughout the day in response to eating a protein containing meal

and the effect this has on net protein balance. Protein Requirements to stimulate myofibrillar protein synthesis rates in young and aging populations are described in

g/kg of lean body mass These protein meal requirements should be spread equally throughout the day (i.e., 4–5 meal times) to facilitate non-hypertrophic protein

remodeling and counterbalance fasting-state protein losses that occurred in between meals (81). MPS, Muscle protein synthesis; MPB, Muscle protein breakdown;

LBM, Lean body mass.
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stimulated optimally and also important for exercise prescription
in older adults aiming to prevent muscle atrophy and improve
muscle function.

In summary, RE and higher protein diets have the ability to
restore the anabolic sensitivity of MPS rates in aging adults, and
either low or high load RE has the ability to stimulate a robust
post-exercise muscle protein synthetic response throughout adult
life. A sedentary lifestyle and reduced protein intake progressively
cause a reduced response to anabolic stimuli (driven by blunted
Akt-mTOR signaling), which leads to the progressive loss of
muscle mass and function over time. Adults should engage with
RE throughout their lives (2–3 times per week), and current
evidence suggests that higher dietary protein intakes (0.6 g/kg
LBM in each meal X 4–5 meal times) combined with modest
caloric restriction is required to support a robust simulation in
postprandial MPS rates and perhaps to maintain muscle mass
and function with age. It is important to note, however, that a
large-scale randomized clinical trial that combines exercise and
protein intake manipulations (from RDA and beyond) is needed
to confirm the value of eating protein in far excess of the RDA to
support a more youthful phenotype with age. In addition, design
of RE programme should consider adherence, motivation and
enjoyment as these are the key factors for long term participation
and ultimately skeletal muscle health.

POSSIBLE MECHANISM OF ANABOLIC
RESISTANCE INVOLVING INOSITOL
HEXAKISPHOSPHATE KINASE 1 (IP6K1)

Inositol hexakisphosphate kinase 1 (IP6K1) is a six carbon
cylitol kinase which has recently been well documented in the
attenuation of insulin resistance and type 2 diabetes (25, 26, 84–
87). IP6K1 synthesizes IP6 to IP7 which binds to the PH domain
of Akt (Figure 3), preventing translocation to the cell membrane
(25). Inhibition of IP6K1 using N2-(m-Trifluorobenzyl), N6-
(p-nitrobenzyl) purine (TNP) prevents diet induced obesity in
mice through increased Akt activity (88). These mice maintained
lean mass and had improved insulin sensitivity, reduced blood
glucose, and insulin. Similarly, in Chakraborty et al. (25) study,
mice that were treated with TNP had similar traits to the above
mice in response to a high fat diet. They had healthy metabolic
parameters (low serum insulin and blood glucose) and increased
energy expenditure compared to wild typemice. Phosphorylation
of Akt308 and p70s6k was increased in TNP treated mice
which increased glucose uptake and reduced fat mass whilst
maintaining lean body mass, therefore having a positive effect
on skeletal muscle remodeling, likely via mTORC1 and p70s6k

activity. In the same study, Chakraborty et al. (25) treated mouse
embryonic fibroblasts with 100 mCi[3H]myoinositol for 3 days
to inhibit inositol phosphates before stimulating with or without
IGF-1. Graded concentrations of IGF-1 increased IP7 cell content
in wild type cell lines vs. inositol knockout (-/-inositol) cells. In
the -/-inositol cells, Akt308 and Akt473 activity increased with
IGF-1 administration and more importantly for our hypotheses,
p70s6k activity was increased in the same way. The mTORC1

FIGURE 3 | Schematic diagram illustrating the potential negative role of IP6K1

on Akt translocation to the cell membrane preventing phosphorylation of

Akt308 which may reduce mTORC1. IP6K1 enters the nucleus via PA and it

then synthesizes IP7 from IP6 which prevents Akt from translocating to the cell

membrane and ultimately preventing Akt308 phosphorylation. IGFBP, Insulin

like growth factor binding proteins; IGF-1, Insulin like growth factor-1; IP6K1,

inositol hexakisphosphate kinase 1; IGFR, Insulin like growth factor receptor;

IRS-1, Insulin receptor substrate 1; P13K, phosphoinositide 3-kinase; PIP2,

hosphatidylinositol (4, 5)-bisphosphate; PIP3, hosphatidylinositol

3,4,5-trisphosphate; PDK1, phosphoinositide-dependent kinase-1; Akt,

Protein kinase B; mTORC2, Mechanistic target of rapamycin; PA,

Phosphotadic acid; IP6, inositol hexaphosphate; IP7, Inositol pyrophosphate;

Illustrates contraction of skeletal muscle; Illustrates

binding/translocationto the cell membrane; Illustrates activation;

Illustrates phosphorylation; Illustrates binding to PH domain and

downregulating Akt; Illustrates preventing translocation to cell membrane.

regulators TSC were also phosphorylated in IGF-1 treated -/-
inositol cell lines compared to control which suggests IP6K1
could be implicated in Akt-mTORC1 signaling and therefore
sarcopenia. Given this evidence it is conceivable that IP6K1 may
have a role in the onset of anabolic resistance in aging phenotype
via downregulated Akt, TSC and mTORC1.

Recently, our research group showed that IP6K1 was altered
in adult (47 years ± 3) skeletal muscle in response to exercise
(26). In this case, insulin resistant pre-diabetic individuals, whose
IP6K1 was elevated at basal, were able to decrease the content
in skeletal muscle following an acute high intensity interval
training (HIIT) protocol (26). In this study, a HIIT intervention
was superior compared to a continuous exercise protocol for
increasing Akt308 activity and decreasing IP6K1 content. Given
the findings of Chakraborty et al. (25), Naufahu et al. (26) and
O’Neill et al. (42), it is hypothesized that elevated IP6K1 has
a role in MPS via reduced Akt activity and physical inactivity.
Habitual RE attenuates anabolic sensitivity via increased Akt and
mTOR activity in response to anabolic stimuli (12, 89). Previous
work has highlighted the negative role IP6K1 has on Akt activity
whilst this negative effect is reversed with HIIT (26), thus we
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hypothesize that IP6K1 may be downregulated following RE in
older adults.

To conclude, dysregulated Akt-mTOR signaling in response to
RE and protein intake ingesting a current recommended intake
(15 g per meal or 0.8 g protein/kg/day) is the primary driver
of anabolic resistance and sarcopenia (90). Recent research has
aimed at identifying strategies to maximize the response in the
muscle in older individuals (21, 81), which include 0.6g/kg LBM
protein in each meal and 60% 1RM for 6 sets of 8 repetitions.
Thus far, characteristics of anabolic resistant muscle are known
(i.e., elevated post absorptivemTORC1 phosphorylation, reduced
SIRT1 muscle content, reduced structural integrity via reduced
autophagy, and muscle atrophy); however, it is not clear why

reduced protein intake and exercise cause these characteristics.
With the evidence presented above, it is hypothesized that IP6K1
has a role in this diminished response to anabolic stimuli, similar
to the onset of insulin resistance, and obesity. We are currently
testing this hypothesis in vitro and in vivo at our University of
Roehampton labs with the aim of disseminating our findings over
the next 12 months.
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