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Wheat is a major cereal crop providing energy and nutrients to the billions of people

around the world. Gluten is a structural protein in wheat, that is necessary for its dough

making properties, but it is responsible for imparting certain intolerances among some

individuals, which are part of this review. Most important among these intolerances is

celiac disease, that is gluten triggered T-cell mediated autoimmune enteropathy and

results in villous atrophy, inflammation and damage to intestinal lining in genetically

liable individuals containing human leukocyte antigen DQ2/DQ8 molecules on antigen

presenting cells. Celiac disease occurs due to presence of celiac disease eliciting

epitopes in gluten, particularly highly immunogenic alpha-gliadins. Another gluten related

disorder is non-celiac gluten-sensitivity in which innate immune-response occurs in

patients along with gastrointestinal and non-gastrointestinal symptoms, that disappear

upon removal of gluten from the diet. In wheat allergy, either IgE or non-IgE mediated

immune response occurs in individuals after inhalation or ingestion of wheat. Following

a life-long gluten-free diet by celiac disease and non-celiac gluten-sensitivity patients is

very challenging as none of wheat cultivar or related species stands safe for consumption.

Hence, different molecular biology, genetic engineering, breeding, microbial, enzymatic,

and chemical strategies have been worked upon to reduce the celiac disease epitopes

and the gluten content in wheat. Currently, only 8.4% of total population is affected by

wheat-related issues, while rest of population remains safe and should not remove wheat

from the diet, based on false media coverage.
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INTRODUCTION

Cereal crops are recognized as a major food source for mankind. Wheat, rice and barley are some
of the major cereal crops grown worldwide. Cereals are staple food for human nutrition and are
considered as a major source of calories for human (1). The dietary components in cereals such as
lipids, carbohydrates and proteins, play an instrumental role in processing and nutritional quality
for food and feed. Among cereals, wheat is one of the major staple crops across the world and
is unique due to its special bread-making properties. The estimated global wheat production for
2016 was 749.46 million metric tons (2). Furthermore, the global demand of wheat has increased
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incredibly after industrialization and urbanization due to its
bread making properties and ability of being processed into
different food products (3). The most commonly used wheat
types are durum or tetraploid wheat (A and B genome) and
hexaploid wheat (A, B, and D genome). Many species of wheat
together make up the genus Triticum, amongst which the most
widely used and grown is the hexaploid wheat (Triticum aestivum
L. AABBDD) (4).

Wheat seed storage proteins are very important in
determining the end products as they impart viscoelasticity
and extensibility to dough which enables formation of a wide
range of products such as bread, pasta, noodles, cakes, and
pastries (3, 5). Seed storage proteins constitute about 8–15
percent of total flour weight and can be classified into albumins,
globulins, gliadins, and glutenins on the basis of their solubility.
Of these fractions, gliadins and glutenins constitute the gluten
proteins and are stored together with starch in endosperm of
the seed. Both gliadins and glutenins are involved in building
the gluten polymer and determining bread-making properties
of wheat (6). But, gluten present in wheat is the major factor
responsible for causing certain disorders and allergies in some
individuals. A wide variety of people are incapable to tolerate
wheat consumption due to harmful immune response to
gluten proteins present in wheat. Hence, despite of such large
consumption of wheat worldwide, there are cases reported
which show intolerance toward it (7). The most common
wheat-related disorders associated with gluten ingestion are
celiac disease (CD) and non-celiac gluten-sensitivity (NCGS),
which result in impaired quality of life and significant morbidity
in individuals (8). Wheat allergy is another condition arising
from contact, inhalation or ingestion of wheat and is associated
with gluten, other wheat proteins and carbohydrates present
in wheat particularly fermentable, oligo, di, monosaccharides,
and polyols (FODMAPs). Specific clinical manifestations can
be observed in each of these disorders with some peculiar
immunogenic pathways involved in their development (9).
Adherence to gluten free foods is the only available remedy for
patients with CD and NCGS. This manuscript provides detailed
insight into the pathogenesis and mechanisms of gluten related
disorders, particularly CD along with NCGS and wheat allergy;
and different strategies to lower down wheat toxicity and gluten
content in wheat.

COMPONENTS OF WHEAT INVOLVED IN
INTOLERANCE

Different components of wheat which are responsible for eliciting
immune response and gastrointestinal symptoms in certain
individuals are:

Gluten
Gluten is themain storage protein found in wheat, rye and barley;
and is important for dough formation (10). Gluten is classified
as: (a) high molecular weight glutenin subunits (HMWGS); (b)
low molecular weight glutenin subunits (LMWGS); (c) the S-
poor prolamins (omega [ω]-gliadins); and (d) S-rich prolamins

which include alpha (α), beta (β), and gamma (γ) gliadins (11–
13). Gluten composition varies between both species as well
as cultivars.

Glutens contain high contents of proline-rich polypeptide
residues which make them resistant to proteolytic degradation
by gastric, pancreatic, and intestinal juices containing digestive
proteases (8, 14–17). When these proteins are consumed
by genetically susceptible individuals, a cascade of immune
reactions is triggered, which result in damage to the intestinal
lining resulting in CD. Gluten is also responsible for causing
other wheat related disorders such as NCGS, wheat allergy and
contact urticaria (8, 9). The most widely prevalent of all is CD.

α-Amylase/Trypsin Inhibitors (ATIs) and
Lectins
ATIs and lectins comprise of 2–4% of total proteins in modern
hexaploid wheat. Wheat ATIs are disulphide linked, compact
albumin proteins found in the endosperm of plant seeds
and are resistant to degradation by the proteases (18). These
proteins regulate starch metabolism during seed development
and germination, and aid in providing defense to plants against
parasites and insects (19, 20). ATIs have recently been implicated
in wheat sensitivity. ATIs trigger innate immune response by
activating toll-like receptor (TLR) 4 on myeloid cells and antigen
presenting cells such as monocytes, macrophages, and dendritic
cells in intestinal mucosa to produce inflammatory response
by producing cytokines and chemokines, viz. interleukin (IL)-
8, tumor necrosis factor (TNF)-α, or monocyte chemotactic
protein-1 (21). Once antigen presenting cells are activated by
ATIs, they migrate to peripheral lymph nodes and further
enhance the ongoing immune response (22). ATIs mainly
produce non-intestinal symptoms in NCGS (23–25) and also
act as primary allergens in Baker’s asthma (18). Experimental
evidences show that ATIs serve as adjuvants in intestinal
inflammatory diseases in mice (26).

Lectins are carbohydrate-binding proteins present in plants
that provide defense to plants against pathogens (27, 28). Wheat
germ agglutinin is a specific type of lectin which is described
extensively in the literature for inducing adverse health effects.
It binds to gut epithelium, damages intestinal cells, and results in
reduced absorption of nutrients in the gut (29, 30).

FODMAPs
FODMAPs are short-chain carbohydrates comprising of fructans
and galacto-oligosaccharides, and are present naturally in many
foods in various forms viz. lactose in milk, free fructose in fruits
like pears and apples, fructans in wheat and onions, galacto-
oligosaccharides in legumes and sugar polyols viz. sorbitol and
mannitol in stone fruit, some vegetables, and fermented foods
(31). In wheat, FODMAPs viz. fructans, galacto-oligosaccharides,
and mannitol are present. Human body, lacks enzymes for
the breakdown of FODMAPs and hence these get absorbed
slowly in the small intestine and pass undigested to reach large
intestine where these are rapidly fermented by gut bacteria which
produce gas and cause intestinal walls to stretch (32, 33). In most
people, this process is asymptomatic, but in patients with irritable
bowel syndrome and inflammatory bowel disease, this process
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is problematic and can produce various symptoms including
flatulence, bloating, stomach pain, constipation, or diarrhea (34–
36). Biesiekierski et al. (29) observed that removal of dietary
FODMAPs caused improvement in gastrointestinal symptoms in
37 people with NCGS and irritable bowel syndrome.

WHEAT RELATED DISORDERS

Wheat is the most important cereal crop worldwide and has been
used as an important staple crop for centuries but in certain
individuals and genetically predisposed people, it causes certain
disorders and conditions arising mainly from the gluten fraction
[Figure 1; (37)]. CD is caused by gluten proteins specifically
gliadins but the problem lies not just with gluten protein but
with other non-prolamins components of wheat as well which
results in the onset of some other conditions as well (38).
These include NCGS in which patients experience symptoms
similar to CD but these get resolved when gluten is removed
from the diet. However, patients do not test positive for CD
(39). Other non-celiac wheat response is wheat allergy, which
includes Baker’s asthma, a respiratory allergic response caused
by exposure to wheat flour dust (40–42); food allergy which
is IgE-mediated immune response caused by wheat ingestion;
and wheat-dependent exercise-induced anaphylaxis (WDEIA)
which is exercise induced wheat allergic response (30). The most
common wheat related disorders are:

CD
CD is a chronic immune-mediated enteropathy of the small
intestine that develops in genetically susceptible individuals by
exposure to gluten proteins found in certain cereals viz. wheat,
rye and barley (43, 44). All these are close relatives of wheat,
while distantly related species do not elicit CD. There are
controversial studies related to involvement of oats in causing
CD (45–48). Though oats do not contain gluten, these contain
a small percentage (10–15% total protein content) of similar

proline rich storage proteins called “avenins.” Few CD epitopes
with different structures have been identified in oats which may
cause intolerance in some individuals at low intensity (49, 50).
But more serious problem is the production of pure oats free
from gluten containing cereals in a conventional production
chain as there are high chances of contamination with wheat, rye
and barley during seed sowing, cultivation, harvesting, milling,
and processing of oats (51). Figure 2 shows various gluten-rich
cereals capable of eliciting CD immunogenicity in patients. Both
glutenins and gliadins have certain amino acid sequences that act
as epitopes for CD (52) and are termed as immunogenic peptides,
antigenic peptides, T-cell epitopes, CD eliciting epitopes, or toxic
peptides (53). These CD eliciting peptides resist degradation in
gastrointestinal tract due to high content of amino acids viz.
proline and glutamine.

CD represents a chronic inflammatory condition affecting
small intestine and jejunum, resulting in villous atrophy in
intestine. The villi in small intestine get flattened and the
surface area for nutrient absorption is highly reduced which
leads to malnutrition, vitamin and mineral deficiencies and
other gastrointestinal symptoms such as abdominal discomfort,
bloating, loose bowel movements, and nausea (54, 55). Untreated
patients develop risk of some chronic conditions and non-
gastrointestinal symptoms such as anemia, osteoporosis, fatigue,
infertility, eczema, and refractory CD which is associated
with developing lymphoma (44, 56). Symptoms of CD are
highly variable and may occur at any age. Diseases like type
I diabetes, Hashimoto’s thyroiditis, Grave’s disease, Sjogren’s

syndrome, Down syndrome, Turner syndrome, primary biliary

cirrhosis, and neurologic disorders like unexplained peripheral
neuropathy, epilepsy, and ataxia are also sometimes associated
with CD (57–63).

The global prevalence of CD was found to be 1.4% in 275,818
individuals studied using serological antibodies. According to
biopsy based analysis, its prevalence was found to be 0.7% in
∼1,40,000 individuals studied (53). In different countries, the

FIGURE 1 | Immune reactions involved in wheat related disorders.
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FIGURE 2 | Classification of monocots and their CD eliciting potential. Gluten rich cereals viz. wheat, rye, and barley belonging to family Triticeae and containing

CD-eliciting epitopes (pink boxes). Some cereals like oat are susceptible for eliciting CD (yellow box) whereas, many other cereals are safe for CD patients (blue boxes).

range of disease varied as 0.5% in Africa and North America,
0.4% in South America, 0.6% in Asia, and 0.8% in Europe. The
prevalence of disease varies with age, sex and presence of other
autoimmune disorders (53). Currently, adhering to gluten free
foods is the only option for individuals with CD (37, 64, 65).

CD Epitopes
CD eliciting epitopic sequences of glutens from hexaploid
bread wheat (T. aestivum L.) are present in mainly six
loci, with Gli-A1, Gli-B1, and Gli-D1 located on short arms
of group 1 chromosomes (1AS, 1BS, and 1DS) and Gli-
A2, Gli-B2, and Gli-D2 on the short arms of group 6
chromosomes (6AS, 6BS, and 6DS) [Figure 3; (11, 66)].
Gli-1 loci contain genes coding for γ, ω, or δ gliadins,
whereas, Gli-2 loci contain genes coding for α-gliadins (66–
68). HMWGS are encoded by three homoeologous loci
(Glu-A1, Glu-B1, and Glu-D1) on the long arms of group
1 chromosomes, while LMWGS are encoded by Glu-A3,
Glu-B3, and Glu-D3 loci on the short arms of group 1
chromosomes [Figure 3; (68, 69)].

Till date many T-cell epitopes have been studied for
inducing immunogenicity of CD. Both glutenins and
gliadins are responsible for this disease. The major epitopes
from wheat responsible for eliciting CD immunogenicity
are listed in Table 1. All three α/β, ω and γ-gliadins are
immunogenic for CD (52) but the 33-mer peptide sequence
(LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF) of α-
gliadins is found to be the most potent stimulator of T-cells

and is the most immunogenic amongst all (52, 72, 73). The
high importance of the 33-mer sequence in CD is evident by
the production of two monoclonal antibodies (A1 and G12)
against it (74). This 33-mer peptide fragment of gliadin α2
(57–67, 69–90) contains 6 partially overlapping copies of three
highly immunogenic T cell epitopes, viz. PFPQPQLPY (DQ2.5-
glia-α1a, 1 copy), PYPQPQLPY (DQ2.5-glia-α1b, 2 copies),
and PQPQLPYPQ (DQ2.5-glia-α2, 3 copies) (70, 75, 76). The
33-mer sequence is rich in proline and glutamine residues and
is a stimulator of T-cells after deamidation by the enzyme tissue
transglutaminase (TG2) (77).

Estimated copy number of α-gliadins ranges from 25 to 150
copies per haploid genome and consists of a highly diverse and
complex gene family (78). α-gliadins from D-genome (specified
by Gli-D2) are the most immunogenic while those from B-
genome (specified by Gli-B2) are least immunogenic as these
contain very few CD epitopes (44, 71, 79–82). After α-gliadins,
γ-gliadins are found to be most immunogenic and their copy
number ranges from 15 to 40 (83). HMWGS and LMWGS
also contain CD epitopes but in less amount and present low
immunogenicity (44, 71). Also, single or multiple amino acid
substitutions in natural epitopic sequences result in the lack of
immunogenicity. For example, proline to serine substitution in
epitope core position p3 or p8, or proline to alanine substitution
in epitope core position p5 in PFPQPQLPY sequence of DQ2.5
Gli-α1a resulted in lack of T-cell stimulation and reduced
immunogenicity. Similarly, serine to phenylalanine substitution
at p3, or glutamine to arginine substitution at p5 inQGSFQPSQQ
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FIGURE 3 | Gliadin and glutenin loci in Triticum aestivum (AABBDD), 2n = 6x = 42. The Gli-A1, Gli-B1, and Gli-D1 are located on the short arm of homoeologous

group −1 chromosomes and comprise mainly of ω and γ-gliadins, while Gli-A2, Gli-B2, and Gli-D2 are located on short arm of group −6 chromosomes and comprise

mainly of α-gliadins. HMWGS viz. Glu-A1, Glu-B1, and Glu-D1 are located on long arm of group −1 chromosomes, whereas, LMWGS viz. Glu-A3, Glu-B3, and

Glu-D3 are located on the short arm of group −1 chromosomes. Gli, gliadin; Glu, glutenin.

sequence of DQ8.5 Gli-α1 completely removed the immunogenic
potential of the epitope (84).

Mechanism of CD Toxicity
CD is an auto-immune disorder and its pathogenicity results
from the interaction of gluten with genetic and environmental
factors which initiate an immune response in the body. At genetic
level, CD occurs in genetically predisposed individuals carrying
specific major histocompatibility complex haplotype DQ2 or
DQ8 in Human Leukocyte Antigen (HLA) in certain individuals
(54, 85–87). In a study by Ciccocioppo et al. (88), it was found that
gluten peptides involved in CD were able to specifically stimulate
HLA-DQ2 or HLA-DQ8-restricted T-cell clones isolated from
jejunal mucosa or peripheral blood of celiac patients. The
HLA-DQ2 and HLA-DQ8 are cell surface receptors located on
antigen presenting cells and contain positively charged pockets
with a preference for binding negatively charged particles; and
thus, have a strong binding affinity to these negatively charged
gluten molecules (89). Over 95% of the affected CD patients
express HLA-DQ2 molecules and the remaining express HLA-
DQ8 (90, 91). Further in a process of CD, zonulin, a human
protein and a modulator of intestinal tight junctions is involved
in a reversible regulation of intestinal permeability (92). Its
upregulation due to gluten exposure disrupts the integrity of
tight junctions between epithelial cells of small intestine and
increases the paracellular movement of protease resistant gluten
fragments (93, 94). As a result, the undigested gluten peptide
fragments pass through epithelial barrier of small intestine and
enter lamina propria where these are deaminated by the enzyme
tissue transglutaminase (TG2) which converts glutamine to
glutamate thereby imparting negative charge to gluten fragments
(95). Further, the activity of the enzyme TG2 is dependent

on spacing between glutamine and proline. Glutamine in the
sequence QXP is modified by the enzyme but in the sequence
QXXP and QP it remains unmodified (X= any amino acid) (96).
Deamination of gluten peptides by TG2 is the key pathogenic
event that increases gliadin immunogenicity in CD and enhances
the severity of disease (97). TG2 plays an important role in
CD pathogenesis and anti-TG2 antibodies are used as the
markers for CD diagnosis (95). The enzyme TG2 is located
on the brush border epithelia of the small intestine or in
extracellular space of sub-epithelial region (98). TG2 exists in
inactivated form under normal oxidative conditions; but gets
activated extracellularly under reducing conditions created by
inflammatory response during CD (99). The negatively charged
peptides produced through deamination by TG2 bind to the
positively charged amino acids onHLA-DQ2 andDQ8molecules
and trigger adaptive as well as innate immune response in CD
patients (88, 100). Adaptive immune response begins with the
presentation of undigested gluten peptides by HLA molecules
on antigen presenting cells to CD4+ T-cells in lamina propria.
The recognition and binding of T-cell receptors to specific HLA-
gliadin complexes lead to the production of high levels of pro-
inflammatory cytokines dominated mainly by interferon (IFN)-
γ (65, 101, 102). These cytokines either induce T-helper 1 cells
to produce IL-15 and IL-21 which result in the activation of
cytotoxic CD8+ intra epithelial lymphocytes (IELs) and promote
CD8+ T-cell cytotoxic activity and contributes to intestinal
lesions, inflammation and intestinal mucosal damage (95, 103)
or T-helper 2 cells to cause B-lymphocytes differentiation for
the secretion of anti-gliadin, anti-TG2, and anti-endomysium
(EM) antibodies which are considered as the key characteristics
of active CD (65, 104). An increased density of CD8+ IELs is
also considered as an important characteristic of CD (90, 105).
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TABLE 1 | Major epitopes from wheat prolamines involved in CD immunogenicity.

S.No. Epitope Protein source HLA-complex Peptide sequence

1. Gli-α1a α-gliadins HLA-DQ2.5 PFPQPQLPY

2. Gli-α1b α-gliadins HLA-DQ2.5 PYPQPQLPY

3. Gli-α2 α-gliadins HLA-DQ2.5 PQPQLPYPQ

4. Gli-α3 α-gliadins HLA-DQ2.5 FRPQQPYPQ

5. Gli-γ1 γ-gliadins HLA-DQ2.5 PQQSFPQQQ

6. Gli-γ2 γ-gliadins HLA-DQ2.5 QPQQPAQL

7. Glia-γ3 γ-gliadins HLA-DQ2.5 QQPQQPYPQ

8. Glia-γ4a γ-gliadins HLA-DQ2.5 SQPQQQFPQ

9. Glia-γ4b γ-gliadins HLA-DQ2.5 PQPQQQFPQ

10. Glia-γ4c γ-gliadins HLA-DQ2.5 QQPQQPFPQ

11. Glia-γ4d γ-gliadins HLA-DQ2.5 PQPQQPFCQ

12. Glia-γ5 γ-gliadins HLA-DQ2.5 QQPFPQQPQ

13. Glia-ω1 ω-gliadins HLA-DQ2.5 PFPQPQQPF

14. Glia-ω2 ω-gliadins HLA-DQ2.5 PQPQQPFPW

15. Glut-L1 LMW-glutenins HLA-DQ2.5 PFSQQQQPV

16. Glut-L2 LMW-glutenins HLA-DQ2.5 FSQQQQSPF

17. Glut-L1 LMW-glutenins HLA-DQ2.2 PFSQQQQPV

18. Gli-α1 α-gliadins HLA-DQ8 QGSFQPSQQ

19. Glia-γ1a γ-gliadins HLA-DQ8 QQPQQPFPQ

20. Glia-γ1b γ-gliadins HLA-DQ8 QQPQQPYPQ

21. Glut-H1 HMW-glutenins HLA-DQ8 QGYYPTSPQ

22. Gli-α1 α-gliadins HLA-DQ8.5 QGSFQPSQQ

23. Gli-γ1 γ-gliadins HLA-DQ8.5 PQQSFPQQQ

24. Glut-H1 HMW-glutenins HLA-DQ8.5 QGYYPTSPQ

Table adapted from Sollid et al. (70) and Shewry and Tatham (71). Table shows different

CD-eliciting epitopes from α, γ , ω gliadins; LMWGS and HMWGS capable of eliciting

T-cell mediated immune response in CD patients. Amino acids shown in bold in peptide

sequences depict glutamine residues targeted for deamination by the enzyme T2G. Gli-α,

α gliadin; Gliγ , γ gliadin; Gli-ω, ω gliadin; Glut-L, LMWGS; Glu-H, HMWGS.

These immune responses disappear when gluten is excluded from
the diet (65). Some gliadin peptides bind to TLR2 receptors
which result in increased IL-1 production, through the mediation
of MyD88, a key protein responsible for mediating the release
of zonulin in response to gluten ingestion (106). Recently it
has been claimed that the presence of HLA is not the only
factor responsible for the onset of CD (107). The genome-wide
association studies have identified 39 non-HLA loci affecting
CD (108).

Several environmental factors also influence the occurrence
of CD. Feeding patterns in the first year of life and the
time at which gluten intake is initiated during infancy also
determines the susceptibility to disease (64, 105). The initial
intake of gluten before 4 months of age contributes to disease
susceptibility whereas administration of gluten after 7 months
denotes marginal risk to disease. Gluten intake along with
breast feeding in infants reduces the risk of the disease (109).
Again, this factor is just one aspect that can contribute to celiac
susceptibility. Some recent studies have claimed that the potential
viral infections caused by rotavirus might play an important role
in the activation of this disease (110). The individuals having CD

are found to have rotavirus infection but there is no confirmed
proof for this aspect.

Diagnosis of CD
CD enteropathy occurs in 1.4% of population but remains
undiagnosed in most of the cases despite having evidence of
increasing rates of diagnosis (111). Various methods for the
diagnosis of CD and other wheat related disorders are given in
Figure 4. Study by Jansen et al. (112) showed that in a population
of around 4,500 children aged around 6 years, 61% had sub-
clinical CD when screened with TG2 IgA antibody. At this
time, there are no confined tests that can precisely confirm the
cause and occurrence of disease. Since there are so many factors
controlling the occurrence of disease, there is a need for the
standard test for its confirmation. Most physicians these days rely
upon serological tests using specific antibodies or prefer the use of
biopsies for checking the intestinal damage caused by the disease.
Flow cytometric analysis of IELs is very helpful for the diagnosis
of CD in few cases where serological tests and duodenal biopsies
do not work (113).

Serological testing is performed using anti-gliadin or anti-
deaminated gliadin antibodies, anti-TG2 antibodies and anti-
EM antibodies (114–119). Serological testing is performed on
patients with some specific symptoms which include chronic
diarrhea resulting in malabsorption of nutrients, iron deficiency
anemia and deficiency of folates, vitamin E, D, K which
result in apparent weight loss, osteoporosis, hypocalcemia, and
unexplained elevation of transaminases (65, 118, 120–122).

In a study done using deaminated antibodies, it was found that
anti-deaminated gliadin antibodies are better than conventional
gliadin antibodies (123). The next in the list are TG2 specific
antibodies which are found in serum as IgA and IgG isotypes, and
are autoantigens for CD (124). Assaying for TG2-specific IgA is
the most common clinical practice used in case of CD because
of its highest specificity and sensitivity among all other methods
(65, 125, 126). The sensitivity of these antibodies was tested on
both humans as well as guinea pigs. Human TG2 antibodies were
diagnosed in 64 out of 65 patients as compared to 58 out of 65
patients in case of guinea pigs. Hence, human TG2 antibodies
are a better way to diagnose CD as compared to any other
method (125). The next are anti-EM antibodies which were first
studied onmonkey esophagus. These antibodies react with EM of
smooth muscles (127, 128). The specificity and sensitivity of IgA
antibodies are 99 and 95%, respectively. A positive result of IgA
EM antibodies is an indication of non-atrophic intestinal lesions
(116). Prior to these serological methods, detection of only
histological changes in small intestinal such as villous atrophy
and presence of inflammatory markers were considered essential
for the diagnosis of CD.

Genetic testing for CD follows the procedure for HLA-typing,
but this test has low specificity. Determination of HLA-DQ2 and
HLA-DQ8 types is useful along with histological findings (129).
HLA-DQ2 andHLA-DQ8molecules are associated with∼95 and
5% CD patients, respectively (59).

Serological testing by the use of anti-gliadin antibodies, TG2
or EM specific antibodies along with HLA-typing sometimes
may not be successful and it cannot be considered as the
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FIGURE 4 | Diagnosis of wheat related disorders in patients. Figure shows different parameters for diagnosis of CD, NCGS, and wheat allergy. CD patients are

confirmed on the basis of serological tests which include the detection of anti-gladin, anti-T2G, and anti-EM antibodies in the blood serum of patients. CD can be

further confirmed by positive genetic testing for HLA DQ2/DQ8 heterodimers and MARSH type 3–4 on the basis of duodenal biopsy. Wheat allergy is detected on the

basis of presence of IgE antibodies in the blood serum of patients and confirmed on the basis of positive skin prick test. NCGS is detected on the basis of negative

serological tests for CD in patients showing gluten sensitivity, gastrointestinal symptoms and MARSH type 0–1. NCGS in patients is further confirmed by observing

improvement in symptoms upon intake of gluten-free diet. If symptoms reappear upon gluten challenge, then NCGS is confirmed.

confirmatory test. Individuals who are positive for serological

testing are further confirmed with the help of biopsy. Sero-

negative individuals also have to undergo biopsy if they have signs
and symptoms highly suspicious for CD as none of the available
serological tests have the sensitivity of 100% (130). Duodenal
biopsy is the most preferred choice for the diagnosis of CD (131).
The histological analysis of disease is performed using Mucosal
Algorithmic Rules for Scoring Histology (MARSH) classification
as discussed further. Endoscopic observation includes scalloping,
fissuring, and the reduced villi folds in intestine. The pathologic

lesion is a characteristic feature of disease. It is characterized
by flat intestinal mucosa with infiltration of lymphocytes. Other
symptoms include crypt hyperplasia and villous atrophy. Patient
may suffer from anemia due to malabsorption (132). Sometimes
due to poor results of both serological tests and biopsy, esophago
gastro-duodenoscopy is done in CD subjects (116).

MARSH classification for histological diagnosis of CD
The recognition of histopathology of CD is done using MARSH
classification system which describes the stages of damage
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TABLE 2 | Modern MARSH classification system.

MARSH grade Significance IEL count/100

enterocytes

(duodenum)

IEL count/100

enterocytes

(jejunum)

MARSH type 0 Normal villi, Normal

crypt hyperplasia

<30 <40

MARSH type I Lymphocytic infiltration

of villous epithelial layer

>30 >40

MARSH type II Lymphocytosis along

with crypt hyperplasia

and high mitotic

activity. Villous height/

crypt ratio decreases

below normal value of

3–5

>30 >40

MARSH type IIIa Partial villous atrophy

with villi height/crypt

ratio <1

>30 >40

MARSH type IIIb Subtotal villous atrophy >30 >40

MARSH type IIIc Total villous atrophy

with no distinguishable

digitations

>30 >40

MARSH type IV Describes a rare

histologic finding of a

flat atrophic mucosa

which signifies

irreversible injury

caused by chronic

inflammation

>30 >40

Table adapted from Siriweera et al. (134) and Pena (135). Table shows the MARSH

classification system for the detection of CD in patients on the basis of duodenal biopsy.

MARSH type 0 represents villi of the normal healthy individual with IEL count of <30

per 100 enterocytes in duodenum as well as jejunum; whereas, increased MARSH type

represents increased intestinal and villi damage. MARSH type IV represents completely

damaged and eroded flat villi in patients. CD patients have MARSH type III or IV. IEL, intra

epithelial lymphocytes; MARSH; Mucosal Algorithmic Rules for Scoring Histology.

in the small intestine and abnormalities in celiac mucosa
during the progression of CD as seen under the microscope.
MARSH classification system is useful because it avoids the
misinterpretation of histo-pathological results of duodenum and
hence, increases the sensitivity of the system (133). The modern
MARSH classification system is given in Table 2.

In this classification system, a five-point scoring system is
given by Catassi and Fasano (136), which is called 4 out of 5 rule
system. Individuals who satisfy any four of these are considered
to be susceptible for CD. But this criterion is not widely used by
clinicians since the gain in sensitivity in this case is at the cost of
its specificity. According to this, the five points are (i) symptoms
of CD such as diarrhea, weight loss and iron deficiency anemia,
(ii) positive CD serologies at high titer, (iii) presence of a DQ2 or
DQ8 haplotype, (iv) characteristic histopathologic findings, and
(v) serological or histological response to the gluten-free diet.

Strategies for Lowering Down CD Epitopes
Following a life-long gluten-free diet is very difficult for CD
patients. As a result, different strategies and therapies have been
being discovered and explored to reduce the potential toxicity
of gluten in CD (137). CD epitopes present in wheat can be

lowered through various molecular biology, biotechnology, plant
breeding, microbial, enzymatic, nano-technology, chemical, and
pharmaceutical approaches (137–142).

Gene silencing by RNA-interference (RNAi) technology has
been adopted for the successful down-regulation of α, γ,
ω gliadins, and HMWGS in different studies (17, 143–146).
Other non-transgenic approaches for lowering gluten epitopes
in wheat include engineering gliadin epitopes in wheat with
CRISPR/Cas9 (147); creating wheat deletion lines lacking α-
gliadins on short arm of 6D chromosome (148–150); and wheat
deletion lines lacking ω, γ gliadins, and LMWGS on short arm of
chromosome 1D (151). Breeding hexaploid wheat varieties with
less immunogenic wild relative of wheat Agropyron elongatum
resulted in a significant reduction in immunogenic α-gliadin
epitopes in subsequent generations (152, 153). In another study
by Vita et al. (154), the ω-secalin gene encoding decapeptide
QQPQRPQQPF from wheat-rye 1BL.1RS translocation line
prevented K562 cells agglutination and mucosal cell immune
activation in the presence of toxic gliadin epitopes. Another
approach used in the reduction of CD-eliciting immunogenic
gluten epitopes in wheat involves the use of microorganisms
for the gluten hydrolysis, which occurs due to the presence
of enzyme prolyl endopeptidases. Different microorganisms
such as Aspergillus niger, Flavobacterium meningosepticum,
Sphingomonas capsulate, and Myxococcus Xanthus have been
used for gluten hydrolysis (155, 156).

The most widely reported strategy in lowering CD
pathogenicity involves the use of probiotics which grow
optimally under the pH range present in gastrointestinal tract
and exert protective effects on gut mucosa and microbiota
(157–159). Some probiotics have the potential to digest gluten
polypeptides or help in their alteration or breakdown into
simpler non-immunogenic peptides. The commercialized
probiotic preparation VSL#3 comprising of consortium of
eight bacterial strains (Bifidobacterium breve, B. longum, B.
infantis, Lactobacillus plantarum, L. acidophilus, L. casei, L.
delbruecki subsp. bulgaricus, and Streptococcus thermophilus)
(160) was found to hydrolyze gliadin epitopes in wheat flour
including immunogenic 33-mer peptide sequence during
prolonged fermentation (161, 162). Smecuol et al. (163) observed
that probiotic administration of B. infantis Natren Life Start
superstrain in CD patients resulted in the marked improvement
in digestion and reduction in constipation after 3 weeks from
the beginning of treatment. Other examples of the use of
probiotic strains for protecting epithelial cells of small intestine
against cellular damage and reducing the levels of inflammatory
cytokines have been given in Table 3.

Use of therapeutic vaccine “NexVax2” developed by the
biotechnology firm “ImmuSanT” is at the clinical trials stage.
The vaccine consists of three gluten peptides and is supposed
to induce tolerogenic response in CD patients by building up
resistance against gluten peptides (175). “NexVax2” has recently
been granted Fast Track designation by the U.S. Food and Drug
Administration on January 2, 2019 (207). Other methods include
use of gluten sequestering polymers such as poly (hydroxyethyl
methacrylate-co-styrene sulfonate) (172, 173) and ascorbyl
palmitate (174) which sequester gluten peptides and reduce
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TABLE 3 | Strategies for lowering celiac disease epitopes.

S.No. Approach Target Features Remarks References

(A) Genetic Modification

1. RNAi Prolamins: α, γ, ω

gliadins

90% reduction in prolamins Gene silencing (17)

2. RNAi HLA DQ2-α-II,

DQ2-γ-VII, DQ8-α-I

and DQ8-γ-I

86.5% reduction in ω, α genes and 74% reduction

in γ-gliadin gene promoter

Gene silencing (143)

3. RNAi All gliadin proteins Use of specific inverted repeat sequences and

hairpin construct

Gene silencing (144)

4. RNAi α-gliadins Specific genetic deletion of storage protein fraction Gene silencing (145)

5. RNAi HMW-glutenins Reduced HMW-glutenin content in wheat Gene silencing (146)

(B) Non-transgenic

1. CRISPR/Cas9 Gliadin proteins,

particularly α-gliadins

Mutant lines had reduced gliadin contents Reduction in α-gliadins (147)

2. Breeding Gliadin proteins,

particularly α-gliadins

Breeding wheat with CD specific non-immunogenic

wild relatives of wheat

Reduction in α-gliadin

epitopes

(152, 153)

3. Wheat deletion lines ω, γ gliadins, and

LMW-glutenins on

short arm of

chromosome 1D

Reduced ω, γ gliadins, and LMW-glutenins in wheat Reduction in

CD-eliciting epitopes

(151)

4. Wheat deletion lines α-gliadins on short arm

of chromosome 6D

Reduced α-gliadins in wheat Reduction in

CD-eliciting epitopes

(148)

5. Wheat deletion lines Mutant line lacking

Gli-D2

Reduced α-gliadins in wheat Reduction in

CD-eliciting epitopes

(150)

6. Wheat deletion lines α-gliadins on short arm

of chromosome-6

Reduced α-gliadins in wheat Reduction in

CD-eliciting epitopes

(149)

(C) Microbial degradation

1. Aspergillus niger,

Flavobacterium

meningosepticum,

Sphingomonas

capsulate, and

Myxococcus xanthus

Gluten Reduction by gluten hydrolysis through enzyme

prolyl endopeptidases

Reduction in gluten

content

(155, 156)

(D) Probiotics supplementation

1. Lactobacillus

sanfranciscensis

LS40 and LS41 and

L. plantarum CF1

Improved nutritional content by increasing availability

of free Ca, Mg and Zn in gluten-free bread

Enhanced nutrient

absorption

(164)

2. VSL#3 Gluten Digestion of proline-rich gluten peptides through

bacterial proteases

Reduction in gluten

content

(161, 162)

3. L. acidophilus, L.

sanfranciscensis

Gluten Degradation of ω-gliadins and HMW-glutenins Reduction in gluten

content

(165)

4. Bifidobacterium

bifidum CECT 7365

Gut mucosa Exerted protective effect on gut mucosa by

increasing production of MCP-1 and TIMP-1

Beneficial to gut

mucosa

(157)

5. B. bifidum IATA-ES2,

B. longum ATCC

15707

Gut Health Reduced levels of IL-12 and IFN-secretion in CaCo2

cell cultures

Reduction in CD

immunogenicity

(166)

6. B. longum CECT

7347, B. bifidum

CECT 7365

Gut Health Reduced TNF-α and IFN-γ and increased

IL-10 production

Reduction in CD

immunogenicity

(167)

7. B. breve B632, BR03 Gut Health Restored normal gut microflora in 40 children

suffering from CD

Reduction in CD

immunogenicity

(158)

8. B. lactis Gut Health Prevented cellular damage of epithelial cells by

preserving tight junctions

Reduction in CD

immunogenicity

(168)

9. Bifidobacterium spp. Gut Health Reduced inflammatory response in CaCo-2 cells by

lowering the production of IL-1β, NF-kappaB,

and TNF-α

Reduction in CD

immunogenicity

(169)

(Continued)
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TABLE 3 | Continued

S.No. Approach Target Features Remarks References

10. B. longum CECT

7347

Gut Health Increased villus width, enterocyte height & IL-10

levels; reduced gut mucosal inflammation in

animal model

Reduction in CD

immunogenicity

(170)

11. B. infantis Natren Life

Start (NLS)

Gut Health Improvement in digestive symptoms in CD patients Reduction in CD

immunogenicity

(163)

12. L. casei ATCC 9595 Gut Health Reduced TNF-α in HLA-DQ8 transgenic mice Reduction in CD

immunogenicity

(171)

(E) Gluten sequestering polymers

1. Poly (hydroxyethyl

methacrylate-co-

styrene sulfonate)

(P[HEMA-co-SS])

Gluten Sequesters gluten in small intestine, decreases

formation of CD-eliciting gluten peptides and

reduces the severity of immune response

Prediction* (172, 173)

2. Ascorbyl palmitate Gluten Decreases gliadin availability and deamination

by TG2

Prediction* (174)

(F) Vaccination

1. Nex Vax® Vaccine

(ImmusanT,

Cambridge, USA)

HLA-DQ2 Builds up resistance against gluten peptides Clinical Trial (175)

(G) Enzymatic

1. Prolylendopeptidase

from Flavobacterium

meningosepticum

Gluten Detoxifying immunogenic peptides Reduction in gluten

content

(176)

2. Cysteine proteinase

EP-B2 from barley

Gluten Gluten hydrolysis and degradation to small

non-immunogenic peptides

Reduction in gluten

content

(177, 178)

3. ALV003 (Alvine

Pharmaceuticals, San

Carlos, CA, USA),

consisting of barley

cysteine proteinase

EP-B2 and

Sphingomonas

capsulate PEP

Gluten Drug reduced gliadin-induced T-cell response and

harmful effect on intestinal epithelial cells in patients

with CD

Clinical Trial (179, 180)

4. A. niger

prolyl-endopeptidase

(AnPEP) and

amaranth flour blend

(AFB)

Gluten Reduction in immunoreactive gluten content in

wheat dough

Reduction in gluten

content

(181)

5. AnPEP Gluten Production of gluten free foods below 20mg

gluten/kg food

Reduction in gluten

content

(182)

6. AnPEP Gluten Degradation of ω-gliadins and HMW-glutenins Reduction in gluten

content

(165)

7. AnPEP Gluten Enzyme degraded the immunogenic proline-rich

residues in gluten peptides of wheat flour by 40%

Reduction in gluten

content

(183)

8. Engineered

endopeptidase

(Kuma030)

Gluten Reduced gliadin content of foods below threshold

value of 20 mg/kg

Reduction in gluten

content

(184)

9. Proteolytic enzymes

from Nepenthes spp.

Gluten Low gliadin content due to gliadin digestion and

reduced IELs

Reduction in gluten

content

(185)

(H) Anti-inflammatory drugs

1. Glucocorticoids-

Prednisone,

Fluticasone

propionate

B and T-cell

proliferation

Improvement in weight, sugar absorption, small

intestinal enzymatic activity and intestinal histology

in CD patients and reduction in lymphokine levels

Prediction* (186, 187)

2. Anti-interferon-γ

(infliximab,

certolizumab and

adalimumab) and Anti

TNF-α (itolizumab)

Targets activation of

metalloproteine-ases

(MMPs)

MMPs induces pre-inflammatory response, blocking

them reduces inflammation

Prediction* (188–190)

(Continued)
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TABLE 3 | Continued

S.No. Approach Target Features Remarks References

3. Anti-interleukin 15 Cytotoxic T

lymphocytes

Reduction in intestinal damage caused by T-cells in

mouse models

Prediction* (175)

4. Interleukin 10 Gliadin induced T-cell

activation

IL-10 used for treatment of Th1 mediated

autoimmune disorders

Prediction* (191)

(I) Modified Gluten

1. Genetically modified

gluten

Gluten Reduction in T-cell activation; Transamidation by

attaching lysine methyl ester to glutamine residue

of α-gliadin

Prediction* (192)

2. Chemo-enzymatic-

Microbial

transglutaminase

Glutamine in gluten

proteins

Transamidation of glutamine with n-butylamine

under reducing conditions

Prediction* (193)

3. Enzymatic-Microbial

Chymotrypsin and

transglutaminase

Gluten proteins Transpeptidation reaction-Binding of valine or lysine

to gluten proteins

Prediction* (194)

(J) Transglutaminase inhibitors

1. Cystamine and

cysteamine

Cystamine oxidizes two

vicinal cysteine

residues on TG2,

whereas, cysteamine

acts as competitive

inhibitor for

transamidation

reactions catalyzed by

TG2

Can reduce the activity of TG2 Prediction* (195)

2. Inhibitor Zed1227 Reduce the activity of TG2 Prediction* (196)

3. Reversible

T2G inhibitors:

• Synthetic polymer

poly

(hydroxymethyl

methacrylate- co-

styrene sulfonate)

• Anti-gliadinIgY

• Dihydroisoxazo-les

• Cinnamoytriazo-le

• Aryl β-

aminoethyl ketones

Covalent modification

of enzyme

GTP and GDP are mostly used to inhibit TG Prediction* (192, 197)

(K) Others

1. Modulation of tight

junctions by AT1001

peptide, Larazotide

acetate from Vibrio

cholera

Zonulin Antagonizes zonulin activity and prevents opening

of intestinal epithelial tight junctions. Inhibits

paracellular movements of gluten peptides across

tight junctions in intestine

Prediction* (198–200)

2. Blocking HLADQ2 or

HLADQ8 by HLA

blockers

HLADQ2/ HLADQ8 To avoid presentation of gliadin peptides by

antigen-presenting cells to CD4+ T cells

Prediction* (138)

3.Blocking of

Interleukin-15
(a)

Anti-IL-15

monoclonal

antibodies

IL-15 Neutralizes enterocyte apoptosis and

down-regulates adaptive immune response in

lamina propria

Prediction* (138, 201, 202)

(b) AMG 714 (Anti-IL-15

monoclonal)

IL-15 Reduces immune response to gluten intake Clinical Trial: Phase 2 (203)

4. Antagonist of

ω-secalin gene

(Decapeptide

QQPQRPQQPF)

K562(S) cells Prevents agglutination of k562 cells and hence

preventing cell mucosa immune activation

Prediction* (154)

5. Tolerogenic

nanoparticles

Antigen presentation

w/o co-stimulation on

synthetic antigen

presenting cell.

Anti-FAS ligand

antibody delivers

apoptotic signal

Direct action on effector T cells; inhibition of CD4+

and CD8+ T-cell activation

Prediction* (204–206)

*Predictions represent results based on experimental lab studies and no clinical trials.
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their availability for subsequent immunogenic reactions. Chemo-
enzymatic-microbial transglutaminase (193) and enzymatic-
microbial chymotrypsin and transglutaminase (194) have also
been used to lower gluten content in wheat flour. Various
enzymes used for gluten hydrolysis involve prolylendopeptidase
from F. meningosepticum (176), cysteine proteinase EP-B2 from
barley (177, 178), ALV003 (Alvine Pharmaceuticals, San Carlos,
CA, USA), consisting of barley cysteine proteinase EP-B2 and
S. capsulate prolyl endoprotease (179, 180, 208), A. niger
prolyl endoprotease (AnPEP) (165, 182, 183), and engineered
endopeptidase (Kuma030) (184).

Other strategies involve modulation of tight junctions by
targeting zonulins (198–200); blocking of IL-15 using anti-
IL monoclonal antibodies (138, 201–203), blocking HLADQ2
or HLADQ8 by HLA blockers (138), use of genetically-
modified gluten with modified glutamine residues (192), use
of transglutaminase inhibitors (192, 195–197) and use of
tolerogenic nanoparticles (204–206). Use of anti-inflammatory
drugs (186, 187), anti-IFN-γ, anti-TNF-α (188–190), and anti-IL-
15 agents (175) have also been suggested in reducing CD toxicity.

Many among these approaches are just hypotheses or
predictions based on experimental data or some are at clinical
trial levels. Also, none of these technologies ensure complete
removal of CD-eliciting gluten epitopes from wheat and its
safe consumption to avoid immunogenic response, but a good
amount of research is being done in various spheres to find out
promising strategies and alternatives to make gluten free foods in
near future. Various strategies for lowering CD epitopes in wheat
are given in Table 3.

Effect of Lowering CD Epitopes on Bread Quality
Gluten is a structural protein in wheat and is essential for
dough making and preparing good quality baked products.
Therefore, obtaining wheat varieties with reduced CD epitopes is
a technological challenge due to the inability of gluten free flours
to form dough with desired strength and visco-elastic properties
(209). Furthermore, the baking and bread-making qualities of
such flours may get adversely affected.

In a study by Van den Broeck et al. (148), altered dough
mixing properties and dough rheology were observed in the
hexaploid wheat cv. Chinese Spring deletion lines which were
found to be less immunogenic as a result of missing short
arm of chromosome 6D containing α-gliadin genes. The dough
had reduced elasticity and higher stiffness. In contrast, the
technological properties of wheat were retained in the deletion
lines of wheat created by removing ω, γ-gliadins and LMWGS
from the short arm chromosome 1D. Similarly, Piston et al.
(210) found that no major effect on dough gluten strength
was observed when γ-gliadins in bread wheat were down-
regulated. In another study, Van den Broeck et al. (151) found
increased dough elasticity and deteriorated dough quality in
wheat having a reduced number of T-cell stimulatory epitopes
(ω, γ-gliadins, and LMWGS) in short arm of chromosome 1D.
Gil-Humanes et al. (211) reported that down-regulation of CD
eliciting gliadin epitopes in different bread wheat varieties by
RNAi provided flours with increased stability, different texture,
less extensibility and less stickiness in comparison to dough from

wild wheat. In a recent study by Zhang et al. (146), the silencing
of HMWGS in wheat through RNAi and post-transcriptional
gene silencing significantly reduced dough properties, wet gluten
content, sedimentation value, and stability time of flour.

NCGS
In 1978, Ellis and Linaker (212) described a case with diarrhea
and abdominal pain in the absence of CD (without any
histological duodenal lesions or damage in the lining of small
intestine) that improved with the elimination of gluten from
the diet. Similarly, Cooper et al. (213) observed abdominal
pain, diarrhea, and normal duodenal histology in patients. Their
condition improved with intake of diet free from gluten but
symptoms reoccurred following the gluten challenge. Since then,
the terminology, NCGS is used where intestinal permeability and
adaptive immune system have a less pronounced role than in
CD (214).

NCGS is caused by gluten and carbohydrates present in
wheat mainly the FODMAPs, ATIs and wheat-germ agglutinin
(117, 215, 216). ATIs are capable of triggering TLR 4 present
on myeloid cells, leading to the release of proinflammatory
cytokines (21). The major symptoms in NCGS patients include
abdominal bloating and pain in the upper or lower abdomen,
diarrhea, nausea, aphthous stomatitis, and changing bowel
habits. Other non-gastrointestinal symptoms include foggy
mind, fatigue, tiredness, lack of well-being, headache, depression,
anxiety, joint/muscle pain, numbness in legs or arms, and skin
rash/dermatitis (214, 217, 218). These symptoms disappear when
gluten is removed from the diet (219) and overlap with those of
irritable bowel syndrome (220). Some of these symptoms are also
present in CD but both these conditions differ in their genetics
and immunological responses. NCGS can be separated from CD
in terms of HLA index, specific immunological response; and the
structure and function of small intestinal mucosa (221, 222). The
differences between CD, NCGS and wheat allergy are given in
Table 4.

Pathogenesis of NCGS
Although CD and NCGS share a common feature of gluten
sensitivity; they differ with respect to immune response
initiated during their onset. Unlike CD, NCGS is not related
to autoimmune process involving adaptive immune response
leading to intestinal epithelial cell damage (223). Many studies
have thrown light on the underlying mechanisms involved in
the pathogenesis NCGS but no confirmed mechanisms are
still known. Sapone et al. (224) observed normal intestinal
permeability and increased levels of IELα, IELβ, and TLR-
2 expression in 26 NCGS patients in comparison to CD
patients and controls. Different studies have shown the
involvement of only intestinal innate immune system in
NCGS as evident by the increase in TLR2, TNF-α, IL-
8, and IL-12 expression (21, 225, 226). However, in some
studies, an increase in anti-gliadin Ig antibodies and IFN-
γ expression has also been observed (227–229). Uhde et al.
(230) showed that individuals with NCGS displayed increased
serum levels of intestinal fatty acid and lipopolysaccharide-
binding proteins along with elevated levels of soluble cluster
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TABLE 4 | Differences between CD, NCGS, and wheat allergy.

Terms CD NCGS Wheat allergy

Definition Autoimmune disorder due to

intolerance to gluten proteins

Disorder due to gluten proteins, FODMAPS in

food, ATIs in wheat. Different from CD and

wheat allergy

Allergic reaction to wheat containing foods

through food ingestion, contact, inhalation

of flour dust

Reaction time Slow (30min to 24 h) Slow (several hours) Immediate

Epidemiology Affects roughly 1% of population Affects 0.6–6% of population 0.5–9% in children, 0.2–1% in adults

Antigen Gliadins from gluten Gluten proteins, ATIs, FODMAPS ATIs, Gliadins, Peroxidase, Thiol reductase

Immune response activation Both innate and adaptive immune

response

Innate immune response IgE mediated immune response

Deamination by enzyme T2G No such involvement of enzyme studies till date

Activation of inflammatory cytokines

like IFN-γ

No such activation

Hallmark Lymphocytic duodenosis Functional dyspepsia, Lymphocytic duodenosis

in some cases only

Type I and Type IV hypersensitivity

IEL levels increased->25/100

enterocytes

In Functional dyspepsia, no increase in IELs but

increase in duodenal eosinophils

HLA genotyping (HLA DQ2

and DQ-8)

Present in 95% of patients Present/absent, 50% of patients Not used

Serological analysis

Anti-T2G antibody Positive Negative No need

Anti-EM antibody Positive Negative No need

Anti-gliadin antibody Positive Positive No need

Anti-deaminated gliadin

peptide

Positive Negative No need

Ig E antibodies No need No need Positive (Wheat specific IgE)

Histological response Villous atrophy with crypt hyperplasia Mildly inflamed mucosa, activated circulating

basophils

None

Duodenal biopsy Positive, MARSH type 3 Negative, MARSH type 0 or 1 No need

IBS indication Absent/ less prevalent than NCGS Overlapping with IBS, with 48% of patients

affected

Absent

Skin Prick test No need No need Positive

Symptoms

Intestinal

Chronic diarrhea, weight fluctuation,

weakness, fatty stools, abdominal

bloating

Diarrhea, weight loss, gas Diarrhea and vomiting immediately after

wheat ingestion

Extra-intestinal Infertility, thyroiditis, muscle cramps,

delayed growth, iron deficiency

anemia

Glossitis, leg and arm numbness, headache,

anemia, dermatitis, tiredness, foggy mind,

depression, anxiety

Exercise induced anaphylaxis, Atopic

dermatitis, Urticaria, Chronic asthma and

rhinitis.

GFD Effective control Partially effective Partially effective

Overlap with other

autoimmune illness

Increased prevalence

Type I diabetes-5%

Autoimmune thyroiditis-19%

Not so common

Type I diabetes-not found

Autoimmune thyroiditis-1.3%

–

Treatment Following GFD Avoidance of gluten, FODMAPS in diet (Gluten

challenge)

Avoidance of wheat (contact, ingestion,

inhalation)

of differentiation 14 (CD14), all of which declined in response
to the elimination of gluten from food. Carroccio et al. (227)
reported basophil activation in 66% of patients with NCGS and
found it to be associated with intraepithelial lymphocytosis of
duodenum and infiltration of eosinophils in duodenum and
colon. Some NCGS patients showed increased TLR2 levels
in comparison to CD, and had dysbiosis similar to that
observed in inflammatory bowel disease (231). Furthermore,
in a study by Junker et al. (21), it was observed that
wheat ATIs act as triggers of the innate immune response
in intestinal monocytes, macrophages and dendritic cells by
activating the TLR4-MD2-CD14 complex and eliciting the
release of proinflammatory cytokines in cells from celiac and
non-celiac patients.

Diagnostic Parameters for NCGS
At present, there are no known specific serological markers for
NCGS. Unlike CD, diagnosis of NCGS is not dependent on
the patient’s response to different antibodies or biopsy analyses.
Only anti-gliadin antibody can be used to test NCGS, while anti-
TG2 and anti-EM antibodies are found to be negative in these
patients (232, 233). Various studies have reported that 25–50% of
NCGS patients have serum anti-gliadin antibodies, mainly IgG
(225, 227, 234). Volta et al. (235) reported an increase in the
levels of IgG antibodies specific to gliadins in NCGS patients.
NCGS is diagnosed clinically on the basis of response to gluten
free food, followed by gluten challenge (214, 236, 237). In a study
by Catassi et al. (236), NCGS specific symptoms disappeared in
patients after the removal of gluten from the diet and reappeared
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during oral gluten challenge performed after at least 3 weeks of
gluten-free food in a double-blind placebo experiment. Gluten
challenge is generally initiated once the patient’s symptoms are
reasonably under good control. The clinical response after gluten
challenge might be variable but usually overlaps with symptoms
of CD to a large degree (225, 238). Histological findings indicate
duodenal biopsy to be between MARSH type 0-1 and there is
also infiltration of CD3+ IELs (ranging from 25 to 40 IELs per
100 enterocytes) but not to an extent as seen in CD patients.
Moreover, some levels of circulating basophils are also present
(224, 227, 238–240). Verdu et al. (241) carried out a study
on gluten sensitive transgenic mice with HLA-DQ8 genes and
found that gliadin exposure resulted in the activation of innate
immunity without any intestinal atrophy in these mice. However,
Bucci et al. (242) carried out studies on NCGS patients and found
that gliadin exposure did not result in the activation of mucosal
inflammation or basophil production.

Wheat Allergy
Wheat allergy is characterized by IgE and non-IgE mediated
immune response resulting in allergic reaction in certain
individuals upon the uptake, contact, or inhalation of foods
containing wheat (243, 244). IgE mediated allergic responses
occur immediately after food consumption, are food-specific and
reproducible (245) and result from the release of histamine,
platelets activator factor, and leukotrienes from mast cells and
basophils (246, 247). These allergic reactions can affect skin,
respiratory or gastrointestinal tract and are characterized by TH2
lymphocytic inflammation which leads to the production of IL-
4, IL-5, and IL-13; and causes B cells to produce IgE antibodies
specific to certain foods (215, 248, 249). Genetic characteristics of
individuals as well as environmental factors play an important
role in the onset of such immune response (250, 251). Non-
IgE mediated allergic responses are characterized by chronic
infiltration of eosinophils and lymphocytes in the gastrointestinal
tract. Different types of wheat allergies include:

Food Allergy
Food allergy is caused by the intake of wheat which triggers
the IgE mediated immune response in certain individuals.
Different components of wheat can cause food allergy, viz.,
ATIs, non-specific lipid transfer protein, gliadins, and LMWGS
(40, 252, 253). Food allergy results in the development of different
symptoms in patients, viz. urticaria, stomach cramps, asthma,
allergic rhinitis, abdominal pain, vomiting and atopic dermatitis
(42, 254). Remedy for food allergy includes the avoidance of
wheat in the diet.

WDEIA
WDEIA is a type of food allergy which occurs after wheat
ingestion followed by physical exercise but is not triggered by
wheat ingestion alone. WDEIA was reported only few decades
ago in 1985 (255) and its symptoms include anaphylactic
reactions ranging from urticaria, angioedema, dyspnoea,
hypotension, collapse, and shock. In wheat, ω5-gliadin, and
HMWGS have been reported to be the major allergens that
contribute to WDEIA (256–259). WDEIA is also induced by
non-steroidal anti-inflammatory drugs, alcohol, and infections.

The remedy suggested for this is to avoid having gluten rich diet
before physical exercise (260). The exact mechanism of WDEIA
is still not clear, but exercise enhances gastrointestinal osmolarity
and permeability to allergens, increases blood flow and induces
IgE-mediated mast cell degranulation (261, 262). Increased
temperature also causes phosphorylation of tight junction
proteins which results in increased absorption of allergens due to
mucosal injury (263).

Baker’s Asthma
Baker’s asthma develops after inhalation of allergens, particularly
cereal flour dust present in the work environment and affects
0.03–0.24% of bakery workers, confectioners, pastry factory
workers, and cereal handlers. It is considered one of the most
common types of occupational, cereal-induced allergic asthma
and is mediated by IgE antibodies specific to cereal flour antigens:
mainly proteins from wheat, rye, barley and rice (264–266). The
primary cereal used in bread baking is wheat and it acts as a
major allergen in 60–70% of symptomatic bakers (267). Bakers
develop asthma as well as rhinitis with increased levels of specific
IgE antibodies against flour dust from different sources (268).
Incidences of bronchial hyper-responsiveness are also reported
in bakery workers suffering from Baker’s asthma (269, 270).
Genetic factors also play a significant role in the onset of Baker’s
asthma with respiratory symptoms. In a study by Cho et al.
(271) on Korean bakery workers, TLR4 gene polymorphism was
found to be responsible for allergic sensitization to wheat flour.
Similarly, Hur et al. (272) reported genetic polymorphisms of
β2-adrenergic receptors to be responsible for the development
of Baker’s asthma in the workers exposed to wheat flour. ATIs
along with non-specific lipid transfer protein are the major
components of wheat resulting in the onset of Baker’s asthma (40,
253). Other allergens include wheat peroxidase, thioredoxins,
serine proteinase inhibitor, thaumatin-like proteins, gliadins, and
LMWGS (41, 273–276).

Proper diagnostic measures for Baker’s asthma are not present
till date. The only available method is skin prick test using
commercially available wheat extracts for serological analyses but
this method is less sensitive and non-specific due to different
concentration and composition of antigens in different wheat
extracts, and implementation of non-standardized methods of
preparation (117, 277). Hence, improved and standardized
measures for the diagnosis of Baker’s asthma are required.

IS WHEAT SAFE FOR NON-CELIAC
HEALTHY INDIVIDUALS?

Wheat is the most important cereal crop across the world and
is rich source of variety of nutrients such as carbohydrates,
proteins, fats, dietary fibers, lipids, B vitamins; minerals such as
iron, calcium, zinc, magnesium, sodium, copper, and selenium;
and many phytochemicals such as phenols and flavonoids (3).
Though a number of diseases and conditions arise from wheat
intake in certain individuals who cannot tolerate it but wheat
consumption is safe for a wide percentage of individuals who
can tolerate it. Globally 1.4% of individuals are reported for
CD (53), 0.63–6.0% for NCGS (278), and 0.2–1.0% for wheat
allergy (245, 249). Hence, at maximum, only 8.4% population is
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FIGURE 5 | Percentage of people suffering from gluten-related disorders.

Figure shows that in total 8.4% of people across the globe suffer from

gluten-related disorders and 91.6% of population is safe from these disorders

and is non-susceptible for gluten ingestion.

susceptible to wheat-related disorders and the remaining 91.6%
population remains safe for the intake of wheat and should not
remove it from diet based on false media coverage (Figure 5).

IS THERE DIFFERENCE BETWEEN
DIPLOID, TETRAPLOID, OR HEXAPLOID
WHEAT CULTIVARS IN ELICITING CD?

The diploid wheats (AA, 2n= 14; T. urartu, T. monococcum) and
the tetraploid wheats (AABB, 2n = 28; T. durum, T. turgidum)
were domesticated by man, about 10,000 years ago (279).
Modern bread wheat is allohexaploid (AABBDD, 2n = 42; T.
aestivum) species arising from hybridization between tetraploid
T. turgidum having AB-genome and wild diploid speciesAegilops
tauschii having D genome (280). The introduction of D-genome
in wheat has improved its bread-making properties (281–283). At
genomic level, the genes encoding for immunogenic CD epitopes
are located on the short arm of 6A and 6D chromosomes, while
the short arm of 6B chromosome is mainly non-immunogenic.
The highly immunogenic 33-mer CD epitopic sequence of α-
gliadins is located on the 6D chromosome which can initiate a
very strong immune response (70, 284). The literature suggests
that the hexaploid wheat consists of more immunogenic CD
epitopes and elicits a higher immunogenic response in CD
patients than diploid and tetraploid wheat due to the presence
of highly immunogenic D genome (79). Different studies
have shown that tetraploid wheat are less immunogenic than
hexaploid wheat (285–287). In one study, Schalk et al. (284) did
not detect any 33-mer peptide sequence in two durum wheat
cultivars and two emmer cultivars (genome AABB) by using
liquid chromatography tandem mass spectrometry (LC-MS/MS)
and attributed this to the absence of chromosome 6D. Similarly,
Molberg et al. (288) showed absence of 33-mer peptide sequence
encoded by α-gliadin genes in diploid einkorn (including T.
monococcum, T. uraru, and A. speltoides). Kumar et al. (289)
studied 34 tetraploid and hexaploid wheat varieties for their
gliadin content and immunoreactivity with immunoglobulins
(IgA) of CD and found tetraploid wheat varieties to be less
immunoreactive than hexaploid wheat varieties. Ozuna and

Barro (290) found in their study that durum wheat varieties
tend to have lower gluten protein and CD eliciting epitopes in
comparison to tetraploid and hexaploid wheat varieties.

Studies by De Vincenzi et al. (291); Pizzuti et al. (292),
and Vincentini et al. (293) demonstrated that T. monococcum
was non-immunogenic w.r.t. CD, while others studies showed
that immunogenicity of diploids still exists, but is very less in
comparison to hexaploid wheat varieties (79, 285, 286, 294,
295). On the contrary, in other studies, no difference in the
immunogenic potential of diploid, tetraploid, and hexaploid
wheat was observed (296–298). Ozuna et al. (286) reported A.
tauschii to be highly immunogenic, while Escarnot et al. (295)
showed lower immunogenicity of A. tauschii in comparison
to bread wheat. Vaccino et al. (299) found the presence
of 13 immunogenic CD eliciting peptides sequences in T.
monococcum, thereby indicating that diploid wheat has the
potential to trigger CD.

IS BREEDING RESPONSIBLE IN
INCREASING CD EPITOPES IN WHEAT?

At present, 95% of the wheat grown globally is hexaploid (utilized
in bakery) and the remaining 5% is tetraploid (utilized for pasta
making) (300). Studies have claimed that over the decades, the
genetic improvement of wheat NexVax2 through breeding to
improve yield, plant height, disease resistance, adaptation to
climate changes, and bread-making characteristics by modifying
wheat proteins particularly gluten content, may have led to a
higher immunogenicity of wheat and therefore higher incidences
of CD (279, 301).

Gluten constitutes 60–75% of total wheat proteins and is
highly desirable in the food industry and is mainly responsible
for imparting the desirable strength to the dough and contributes
to its viscoelastic nature (302, 303). In addition, increase in wheat
consumption, use of gluten in food processing, and consumption
of processed foods has been seen over the years (304, 305). The
preference of wheat varieties with higher gluten content has
always been desirable but in spite of being an important wheat
protein, gluten acts as a main source of immunogenic peptides
triggering CD in certain individuals.

Many studies have evaluated the role of breeding on the
immunogenicity of wheat. Kaur et al. (306) studied variation in
CD-eliciting epitopes of α-gliadins protein sequences in Indian
wheat cultivars and found modern varieties (1971–2011) having
a higher amount of intact T-cell stimulatory epitopes than old
wheat varieties (1905–1970) which had comparatively higher
variant epitopes. Van den Broeck et al. (307) analyzed the
potential toxicity of several hexaploid wheat varieties including
36 modern and 50 landraces using Glia-α9 and Glia-α20
antibodies and found higher amounts of Glia-α9 epitopes in
modern varieties. This suggests that modern wheat breeding
practices may have led to a higher number of CD-triggering
epitopes. De Santis et al. (308) explored the effect of breeding
in the twentieth century in Italy and found an increase in
gliadin and glutenin epitopes in modern durum wheat varieties.
However, Kasarda (279) observed that breeding of wheat to
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improve its baking quality and dough strength did not influence
antibody A1-G12 reactivity in old, mid and new wheat varieties
from the 20th and twenty-first centuries in the United States
of America. Also, the comparison of different landraces and
wheat varieties did not show any significant difference in A1-G12
reactivity. But in some other studies, modern wheat varieties were
found to have a reduced number of CD epitopes in comparison
to old wheat varieties or landraces. Ribeiro et al. (298) showed
that T. aestivum spp. vulgare landraces had higher reactivity
to R5 antibody and presented higher amount of potential CD
immunostimulatory epitopes than modern varieties; inferring
that breeding practices were not responsible for the increase in
CD immunostimulatory epitopes. Gelinas and McKinnon (287)
found that the traditional wheat line available in the nineteenth
century showed the highest reactivity to G12 antibody. Similarly,
Schalk et al. (284) found that spelt cultivar Ober-kulmer had the
highest amounts of the 33-mer peptide (523.4µg/g flour), while
other spelt cultivar Franckenkorn (353.9µg/g flour) showed no
significant difference from the common wheat cultivars used in
the study. Similarly, no significant difference was observed in A1-
G12 reactivity of tetraploid and hexaploid wheat varieties in a
study by Escarnot et al. (295). Malalgoda et al. (309) quantified
Glia-α9 and Glia-α20 by mass spectroscopy in 30 wheat varieties
released between 1910 and 2013 in North Dakota but could not
find any trend in the immunogenicity of these wheat varieties.
Some other studies have also reported comparatively higher
toxicity in ancient wheat varieties in comparison to modern
wheat varieties. Prandi et al. (310) analyzed gluten peptides in old
and modern Triticum varieties, using Liquid Chromatography
Mass Spectroscopy (LC-MS) and found a significantly higher
amount of CD-eliciting immunogenic peptides in old varieties
than modern varieties. They concluded that old wheat varieties
have the potential to trigger CD and are thus not safe for
CD patients. Similarly, Gregorini et al. (311) and Colomba and
Gregorini (312) found a higher percentage of immunogenic
α-gliadin epitopes in ancient durum wheat varieties namely
Graziella Ra and Kamut in comparison to modern wheat
varieties and advised CD patients to avoid consuming these
wheat varieties. All these studies suggest that there is no fixed
trend in the results obtained due to immense variation in the
immunogenic potential of different wheat varieties: old, modern
or landraces. Thus wheat breeding did not cause any increase in
CD toxicity (296, 310, 313, 314). This can be attributed to the
fact that the genetic improvement of wheat through breeding
has mainly focused on glutenins, which are mainly responsible
for dough strength and are less immunogenic in comparison
to gliadins. Ozuna and Barro (290) found in their study that
breeding has infact contributed to the decrease in gliadin and
total gluten content but not glutenin content in different wheat
varieties belonging to Triticeae.

GLUTEN FREE DIET (GFD)

At this point of time, therapies for CD patients are non-existent.
The only solution to the problem is a stringent lifelong GFD.
GFD means the absence of gluten or prolamine proteins from

wheat, rye, barley and oats in natural as well as in processed
foods (315–317). The limit of gluten in GFD has been set to 20
ppm by Codex Alimentarius Commission for International Food
Standards of Food and Agriculture Organization of the United
Nations [FAO]/World Health Organization (318). This cut-off
limit is followed in many countries including Spain, Italy, UK,
Canada, and USA but countries like Australia, New Zealand, and
Chile have locally set the cut-off limit to 3 ppm, while Argentina
has set the limit to 10 ppm (319).

In a double blind, placebo controlled study by Catassi et al.
(320), it was observed that significant reduction in intestinal
mucosal villous height/crypt depth ratio occurred upon intake
of 50mg gluten per day for 3 months but in a study by
Lanzini et al. (321), intake of <10mg gluten daily did not cause
any considerable histological changes in the intestinal mucosa.
Laurikka et al. (322) compared gastrointestinal symptoms in
untreated, treated with GFD and healthy controls and observed
higher diarrhea, indigestion, and abdominal pain in untreated
CD patients than those on GFD and controls. Also, a very good
response was observed in patients on GFD during a long-term
follow-up. Akobeng and Thomas (323) observed that GFD with
gluten concentration lower than 20 ppm required an intake of
<50mg gluten daily to ensure adequate safety.

GFD: Challenges
Correct quantification of gluten, its source, and proper labeling
are necessary for the normal health of CD patients. Following
a life-long GFD can be very challenging due to the presence of
small amounts of hidden gluten in processed food products as
contamination of foods is possible at different stages from farm
to fork. Cross-contamination of GFD from gluten based foods
can occur from grains from adjacent fields; harvesting, storing,
and processing grains on shared equipment; making products
on same equipment; food handling by unaware employees in
various restaurants, and lack of awareness among people in
general. Other challenges related to GFD are higher cost, less
palatability, less availability, and less reliability in developing
countries (324–326). Also, the likelihood of low income patients
in developing countries to go on GFD is very low (327). For CD
patients, eating out and traveling are major challenges because of
poor availability of GFD and fear about gluten contamination.
Producing low gluten-immunogenic wheat and food products
will involve a great deal of efforts, as well as scientific and
technological inputs. Educating people about GFD, promoting
research and development for the production of cost-effective
GFD and providing country-wide infrastructure are key steps to
manage CD and gluten intolerance (328–330). This will help CD
patients to follow a life-long GFD and will help to improve their
quality of life.

Methods for Detection of Gluten in Food
The fast growth of CD diagnosis has sparked the investigation
for the reliable methods for gluten estimation. Several methods
have been proposed for gluten estimation in different food and
food products. The most widely utilized method is enzyme-
linked immunosorbent assay (ELISA); developed by utilizing
monoclonal antibodies against toxic gluten peptides. Mainly,
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two monoclonal antibodies based (R5 and G12) ELISA kits are
commercially available (331, 332). ELISA R5 Mendez Method
has been approved by 2015 Codex Alimentarius Commission.
In addition, polyclonal antibodies against gluten peptides have
been prepared for potential use in ELISAs (333). For increasing
the sensitivity of antibody based detection to picogram level,
modifications like adsorption of food sources on small latex
particles, fluorescent labeling, and flow cytometry have been
investigated (334).

LC-MS/MS provides an alternative to ELISA based detection
method. Protein extraction method has critical importance for
efficacy of LC-MS/MS based methods (335, 336). Digestion of
proteins with digestive enzyme or peptic-tryptic/chymotryptic
treatment is required for simulating human gastrointestinal
digestion of wheat products (337). For the adoption of this
technology, the pre-requisite step is the identification of
robust and sensitive CD triggering peptide markers as well as
comprehensive and well-annotated sequence databases. GluPro
V1.0 database of gluten proteins comprises of 630 discrete
and unique full-length protein sequences (338) and is an
alternative to the existing Viridiplantae database. LC-MS/MS has
been documented to distinguish among different cereals and
detect cereal contamination in different commercial flours (335,
339). Reverse phase-high performance liquid chromatography
coupled with matrix-assisted laser desorption ionization time
of flight mass spectrometry has been reported to assess
prolamins from wheat (340). Peptide immobilized pH gradient-
isoelectric focusing separation, coupled with LC-MS/MS, has
been documented for detecting cereal contamination from beer
(341). Two-dimensional electrophoresis and gel-permeation high
performance liquid chromatography with fluorescence detection
have also been reported for the detection of gliadins and glutenins
(342, 343).

In order to increase the speed, sensitivity and decrease the
cost of current methods, viz., ELISA and LC-MS/MS; several
alternative electrochemical immunoassays like electronic tongue
(e-tongue), nanorods, and immunochips have been proposed.
The microfluidic e-tongue capable of detecting as low as
0.005 ppm of gliadin in foodstuffs has been investigated (344).
The competitive and disposable amperometric immunosensor
based on gliadin-functionalized carbon/nanogold screen-printed
electrodes was developed for rapid gluten detection in processed
food samples (345). The gliadin-immunochips, based on
electrochemical impedance spectroscopy transduction method,
capable of detecting 0.5 ppm of gliadin in beers and flours have
been reported (346).

CONCLUSION

Wheat is one of the most important cereals and with the increase
in incidences of wheat related diseases like CD, NCGS, it is
imperative that these challenges are addressed now. Patients
with CD must avoid foods containing gluten and should strictly
follow GFD; patients with wheat allergy should avoid contact
with wheat in any form; and patients with NCGS should also
adhere to GFD. Much research advancements have happened
in the diagnosis of CD and wheat allergy, but not in case of
NCGS. Therefore, it is necessary to understand the underlying
mechanism of pathogenicity in case of NCGS to develop more
sensitive diagnostic markers. The fundamental understanding of
the mechanisms of disease relevant pathways may come from the
analysis of genome and gene expression.

More research and infrastructure are needed for the
development of low-gluten wheat, and ultimately food products.
This also requires changes in industrial food processing methods
because low gluten content in wheat and its products would
be an important trait for its commercialization in future.
Plant breeding and biotechnological approaches could be used
to make CD-safe wheat and food products with reduced
immunogenic gluten fractions. Transferring genes containing
less immunogenic CD epitopes from wild relatives of wheat
to existing high yielding wheat cultivars can be done by using
breeding and biotechnological approaches.

Nevertheless, only a small percentage of global population is
affected by these wheat related disorders, hence, opting for GFD
to improve well-being by the remaining population without any
medical recommendation is an unhealthy option; wheat being a
nutrient and dietary fiber rich cereal.
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