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The mammalian circadian clock drives the temporal coordination in cellular homeostasis

and it leads the day-night fluctuation of physiological functions, such as sleep/wake

cycle, hormonal secretion, and body temperature. The mammalian circadian clock

system in the body is classified hierarchically into two classes, the central clock in

the suprachiasmatic nucleus (SCN) of the hypothalamus and the peripheral clocks in

peripheral tissues such as the intestine and liver, as well as other brain areas outside

the SCN. The circadian rhythm of various tissue-specific functions is mainly controlled

by each peripheral clock and partially by the central clock as well. The digestive,

absorptive, and metabolic capacities of nutrients also show the day-night variations

in several peripheral tissues such as small intestine and liver. It is therefore indicated

that the bioavailability or metabolic capacity of nutrients depends on the time of day.

In fact, the postprandial response of blood triacylglycerol to a specific diet and glucose

tolerance exhibit clear time-of-day effects. Meal frequency and distribution within a day

are highly related to metabolic functions, and optimal time-restricted feeding has the

potential to prevent several metabolic dysfunctions. In this review, we summarize the

time-of-day-dependent postprandial response of macronutrients to each meal and the

involvement of circadian clock system in the time-of-day effect. Furthermore, the chronic

beneficial and adverse effects of meal time and eating pattern on metabolism and its

related diseases are discussed. Finally, we discuss the timing-dependent effects of

exercise on the day-night variation of exercise performance and therapeutic potential

of time-controlled-exercise for promoting general health.

Keywords: circadian rhythm, chrono nutrition, chrono exercise, time-restricted feeding, meal pattern

INTRODUCTION

Several human physiological functions such as sleep/wake cycle, blood pressure, hormone
secretion, body temperature, and physical activity exhibit around 24 h cycles called circadian
rhythm. The anticipated diurnal change of a physiological function is also observed prior to the
diurnal changes in environmental conditions such as light/dark cycle and temperature changes
due to the rotation of the earth. This anticipative adaptation is driven by a circadian clock system
existing in several tissues. The mammalian circadian clock system has an established hierarchy to
distinguish between a central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and
peripheral clocks in peripheral tissues including liver, lung, kidney, skeletal muscle and adipose
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tissue, as well as brain areas outside the SCN (1). The photic
signal transmitted from the retina to SCN entrains the central
clock, or master pace maker, that provides temporal cues to
circadian clocks in the whole body. The temporal information of
the central clock is transmitted to the peripheral clocks via neural
and endocrine pathways, such as the sympathetic nervous system
and glucocorticoid signaling (2, 3). The peripheral clocks are
entrained by not only a light-induced signaling from the SCN but
also other stimuli such as feeding, exercise, and stress in a SCN-
independent manner (4–7). Nutrients entrain peripheral clocks
(e.g., liver) via the activation of transcriptional and translational
regulation of molecular clocks (see below) [for review, see (7,
8)]. For example, the ingestion of carbohydrate increases the
insulin secretion, following the activation of the transcription
and translation of clock genes and proteins (especially Period2),
via the activation of insulin signaling (9, 10). Likewise, exercise
entrains the circadian clocks in the peripheral tissues such as
muscle, liver and lung via the sympathetic nervous system and
glucocorticoid signaling (11, 12). These effects of nutrient and
exercise on circadian clock are observed not only in rodents, but
also in humans (13, 14).

The molecular mechanisms of circadian clock systems in
mammals have been investigated since the discovery of Clock
gene (Circadian locomotor output cycles kaput) in 1997 (15).
Several core clock genes have been identified in mammals,
including Bmal1 (Brain and muscle ARNT-like 1), Clock, Per1
(Period1), Per2, Cry1 (Cryptochrome1), and Cry2. These genes
interact with each other via transcriptional and translational
negative feedback loops to exhibit a 24 h cycle (Figure 1). The
heterodimer of CLOCK and BMAL1 works as transcriptional
factors and has a basic helix-loop-helix PAS domain. The binding
of this heterodimer to an E-box binding element in the promoter
regions of Pers and Crys activates the transcription of these
genes (16). The translated PER1/2 proteins are phosphorylated
by CKIε/δ (Casein kinase Iε/δ) in the cytoplasm (17). The
phosphorylated PER1/2 proteins are unstable and are degraded
by the ubiquitination-proteasome pathway (18, 19). Similar
degradation is seen in the CRY1/2 proteins due to ubiquitination
systems via FBXL3 (F-box and leucine rich repeat protein 3) (20).
The CRY1/2 and PER1/2 proteins in the cytoplasm promotes
the formation of PERs/CRYs/CKIε/δ complex. This complex then
transfers to the nucleus and suppresses the transcription induced
by the heterodimer of CLOCK and BMAL1. The transcription of
Clock and Bmal1 is negatively and positively controlled by REV-
ERBs (nuclear receptor subfamily 1, group D) and RORs (RAR-
related orphan receptor), respectively via binding to a ROR-
responsive element (21, 22). Similarly, Pers and Crys, the Rev-erbs
and Rors genes are also the target of the BMAL1 and CLOCK
complex (21, 22). The BMAL1/CLOCK complex temporally
controls the transcription of other genes, which are called
clock-controlled genes (CCGs), such as Dbp (D-site of albumin
promoter binding protein) and Pparα (Peroxisome proliferator
activated receptor α) via binding to respective responsive element
sequences (23–25). This negative feedback loop of clock genes
exists in nearly all tissues in mammals.

Circadian transcriptomics revealed that the expression of
rhythmic genes occurs in a tissue-specific manner (26, 27).

Through the analysis of mice with tissue-specific clock gene
mutations, the importance of peripheral clocks in tissue-
specific functions is being revealed (28, 29). Especially, nutrient
metabolism exhibits a clear day-night variation in tissues with
high metabolic activity, such as liver, muscle and adipose tissue,
where its diurnal change is directly regulated by an intrinsic
clock (30–34). From these results, it is thought that one of
the major roles of the peripheral clock is to prepare for the
transition from the rest phase to the active phase, and responding
to high energy demand (26, 30, 31, 35). Considering that the
metabolic process of each nutrient is diurnally controlled, it is
expected that the postprandial response of metabolic functions
depends on the feeding time. Also, fuel selection in a skeletal
muscle during exercise depends not only on the nutritional state,
but also on the time of day (36, 37). Additionally, some of
exercise-regulated factors such as AMPK (AMP-activated protein
kinase) are temporally activated by circadian clocks (38). In this
review, we discuss the time-dependent physiological response to
nutrients and a role of circadian clock in these time-dependent
effects. Finally, we also summarize the time-dependent effects of
exercise on physiological functions and athletic performance.

TIME-OF-DAY-DEPENDENT
POSTPRANDIAL RESPONSE OF
MACRONUTRIENTS

Generally, we take meals three times a day. Although there are
many reports focusing on the postprandial metabolic response
to a single meal, it is rare that the research focuses on the
comparison between metabolic responses to breakfast, lunch,
and dinner. In this section, we review the time-of-day effects on
the postprandial metabolic responses of macronutrients and the
influence of circadian rhythm to these time-of-day effects.

Lipid Metabolism
It is observed that the postprandial triacylglycerol (TG) response
is dependent on the eating time. Sopowski et al. investigated
the blood TG response to identical high-fat meal consumed
during the daytime (13:30) and the night time (01:30) in healthy
men and women. They reported higher and longer postprandial
elevation of TG at the night time than that at daytime (39).
The meal-time-specific postprandial response of blood TG is also
different between breakfast and lunch, and the increasing of TG
levels after lunch is ∼2-fold less than that after breakfast in men
(40). A weak postprandial response to lunch is also exhibited
when breakfast had been skipped, suggesting that the endogenous
circadian rhythm is involved in the differential effects observed
after breakfast vs. lunch and dinner. In addition, addition of
stable-isotope-labeled palmitic acid to the test meal was used to
distinguish between the meal-derived TG and endogenous TG.
The postprandial labeled-palmitic-acid level was not changed
between breakfast and lunch, suggesting that the lower response
of blood TG level after lunch involves fatty acids derived
from endogenous sources but not the meal itself (40). Insulin
suppresses the release of free fatty acids from adipose tissue (41).
Considering that the change of insulin level also depends on

Frontiers in Nutrition | www.frontiersin.org 2 February 2020 | Volume 7 | Article 18

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Aoyama and Shibata Circadian Rhythms and Physiological Responses

FIGURE 1 | Transcriptional and translational negative feedback loop of core molecular clocks in mammals. The heterodimer of CLOCK and BMAL1 activates the

transcription of Crys, Pers, Rors, Rev-erbs, and Ccgs. The translated and phosphorylated PERIODs and CRYs form a complex along with CKIε/δ and then this

complex is translocated into the nucleus to inhibit its own transcription induced by the heterodimer of CLOCK and BMAL1 (blue lines). A part of phosphorylated CRYs

and PERIODs is degraded via ubiquitin-proteasome pathways. The translated REV-ERBs and RORs inhibits and activates the transcription of Bmal1 and Clock genes

via binding to RORE, respectively (green lines). The rhythmic expression of Ccgs results in oscillation of several physiological functions (Crys, Cryptochrome1/2; Pers,

Period1/2; Rors, Retinoid-related orphan receptors; Rev-erbs, reverse-Erb receptors; Ccgs, Clock-controlled genes; CKIε/δ, Casein kinase 1ε/δ; RORE, retinoic acid

receptor response element).

the meal time, it is suggested that the lower elevation of TG
after lunch could be dependent on insulin levels. The day-night
variation of postprandial TG levels is reported in studies carried
out on animal models, and the higher response of postprandial
TG at the rest phase compared with the active phase is attributed
to lower uptake of fatty acids into skeletal muscles and brown
adipose tissues (42). This study reported that the postprandial

day-night variations are not observed in SCN lesioned rats.

Furthermore, lipid utilization is also directly regulated by the
intrinsic muscle clock (43). Thus, it suggests that the circadian-
clock-driven day-night variation of lipid uptake and utilization
is related to the difference of postprandial TG response among
meals. Recently, it was observed that the preventive effects of fish
oil on hepatic steatosis and hyperlipidemia depend on feeding
time in mice (44). In this study, Oishi et al. developed and
used the two-meals-per-day feeding model. The blood levels of

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)
are higher in themice fed with a fish oil during the time of activity
onset compared with that during the onset of inactive phase,
suggesting that feeding-time dependent therapeutic effects of fish
oil rely on the temporal capacity of intestinal absorption of DHA
and EPA.

Glucose Metabolism
Like the effects observed on blood TG levels, the postprandial
glucose levels exhibit a time-of-day-dependent response tomeals.
Glucose tolerance is higher in the morning than in the evening,
in humans (37). It is known that the difference of glucose
tolerance between the morning and evening is due to the
temporal regulation of glucose utilization and pancreatic β

cell function (see below). In fact, the dysregulation of glucose
metabolism is observed in the whole-body or liver-, muscle-,
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or pancreatic βcell-specific clock gene mutant mice (30, 32, 33,
45, 46). In pancreatic β cells, a circadian clock controls the
rhythmic transcription of insulin-secretion-related genes, and
the decrease of a nutrient-induced insulin secretion is observed in
the pancreatic β-cell-specific Bmal1 knock out mice (45). Glucose
uptake and utilization in peripheral tissues such as liver and
skeletal muscle are differentially regulated (30, 32). For example,
the murine muscle clock temporally regulates glucose uptake
into skeletal muscle via the recruitment of GLUT4 (glucose
transporter 4) to the plasma membrane and increased expression
of glycolytic genes. Considering that this temporally regulated
surge is observed prior to the active phase, it is thought that the
muscle clock has a role in preparation for high energy demand
at the beginning of active phase. In addition to animal studies,
Morris et al. reported that the human intrinsic circadian system
affects day-night variation of glucose tolerance and insulin-
secretion by the use of circadian alignment and misalignment
protocols (47). The magnitude of its effect is larger than effect of
behavioral rhythm such as sleep/wake cycle and fasting/feeding
cycle in humans. In addition, circadian misalignment between
endogenous and behavioral rhythms also exacerbates glucose
tolerance in shift workers (48), thus highlighting the importance
of alignment between both rhythms for prevention of diabetes in
shift-workers. Thus, the diurnal variation of glucose tolerance is
regulated by both endogenous and behavioral rhythms, and the
molecular clock in peripheral tissues drives endogenous rhythms
such as glucose uptake and insulin secretion.

Amino Acid Metabolism
There have been studies focused on the feeding-time-dependent
postprandial response of amino acids and peptides and the
diurnal absorptive capacity of these nutrients. In the small
intestine of rodents, the absorption of some amino acids and
peptides was activated in the early active phase rather than in the
early rest phase (49). H+-coupled peptide transporter (PEPT1)
is localized at the apical membrane of intestinal epithelial cells
and has major role for di- or tri-peptide transportation in the
small intestine. Pan et al. reported that the absorption of glycyl-
sarcosine, which is one of the substrates of PEPT1, depends
on the administration time in rodents (49). The blood glycyl-
sarcosine level is higher after its administration in the early
active phase than that in the early rest phase (49). In addition,
the PEPT1 mRNA and protein levels in the rat duodenum
and jejunum exhibit day-night variation and are elevated before
active phase (49, 50). The pattern of day-night variations of
PEPT1 level is associated with the diurnal pattern of glycyl-
sarcosine uptake in the duodenum (49), suggesting that the
diurnal variation of PEPT1 levels is involved in the time-
dependent absorption of peptides in small intestines. Pan et
al. also reported that another PEPT1’s substrate, the antibiotic
ceftibuten, is absorbed in a time-dependent manner in rodents
(51). The time-dependent absorption and the diurnal rhythm
of PEPT1 level are not observed under the fasting condition,
suggesting that feeding cycle is important for the time-dependent
effect. In fact, time-restricted-feeding led to a shift in the phase of
diurnal PEPT1 level in the duodenum of rats (52). Albumin D
site-binding protein (DBP) is one of the clock-controlled genes
and its transcription is activated by the heterodimer of BMAL1

and CLOCK and suppressed by PERs and CRYs (53). In addition,
DBP activates the transcription of several genes including Pers
via DBP binding site and the expression of target genes shows the
diurnal rhythmic pattern (53). Pept1 has a DBP binding site in its
promotor region. A luciferase assay designed using the promotor
region of Pept1 showed that DBP activates PEPT1 promotor
activity (54). Okamura et al. reported that bile-acid-regulated
PPARα activity leads to the diurnal expression of Ppet1 in the
intestinal cells of mice (55). The feeding-fasting cycle induced the
day-night variation of cholic acid in the intestinal epithelial cells.
Cholic acid decreases the Pept1 levels before active phase, which
corresponds to the peak time of Pept1 expression, but not before
rest phase, which is its trough time. The cholic-acid-dependent
regulation of Pept1 expression is suppressed by knockdown of
PPARα. In addition, time-dependent absorption of carnosine,
which is one of the substrates of PEPT1, is also not observed
in PPARα-null mice. These reports suggest that absorption of
peptides in small intestine exhibits diurnal variation via the DBP-
and PPARα-mediated circadian control of PEPT1 expression.
In recent years, time-dependent intestinal absorption of amino
acids has been reported (56, 57). Jando et al. reported that
isoleucine absorption is higher in the active phase than in
the rest phase, although the protein levels of intestinal amino
acid transporter B0AT1 in the rat intestine are not changed
between the two time points (57). This study suggested that
circadian expression and/or post-transcriptional modulation of
other amino acids transporters is involved in the time-dependent
intestinal isoleucine absorption. The branched-chain amino
acids, such as leucine, valine, and isoleucine, are absorbed via
LAT4 (SLC43A2), a basolateral neutral amino acid transporter
(58). LAT4 phosphorylation at Ser274 is higher at the beginning
of the rest phase than at the beginning of the active phase in
mice (56). LAT4 shows high activity under dephosphorylated
condition, suggesting that post-translational modulation such as
phosphorylation could be involved in the time-dependent amino
acid absorption. In studies involving human subjects, comparing
the postprandial response between morning and evening using
metabolomics, revealed that 16 amino acids such as arginine and
leucine were detected at higher levels in blood in the morning
than in the evening (59). These data suggest that the postprandial
amino acids response in humans depends on the feeding time.

EFFECTS OF TIME-RESTRICTED-FEEDING

The feeding activity of a rodent is rhythmic and occurs mainly
during the active phase, especially in the early active phase.
The perturbations of feeding rhythm relate to the metabolic
dysfunctions, leading to the onset of obesity, diabetes and
lipidosis (60–63). Feeding a high-fat diet dampens the diurnal
feeding/fasting cycle, resulting in more food intake during the
inactive phase (64). The restriction of feeding time prevents
the high-fat diet induced metabolic disorders, such as excessive
body weight gain, glucose intolerance, hepatic steatosis, and
inflammation (65, 66). Considering that the time-restricted
feeding (TRF) also protects against the high-fat-diet-induced
dampening of clock genes such as Per2, Bmal1, Rev-erbα,
and Cry1 in the liver (65), it is contemplated that the TRF
prevents several metabolic dysfunctions via a rescue of rhythmic
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peripheral clock gene expression. However, the preventive effects
of the TRF are also observed without changes of locomotor
activity or calorie intake, in mice lacking a circadian clock,
such as whole-bodyCry1/2 double knockout, liver-specific Bmal1
or Rev-erbα/β knockout mice (67). Transcriptomic analysis of
different mouse lines reveals that the transcripts to observed to
be oscillating in the wild type mice under the TRF are mostly
unaffected in the clock gene deficient mice under the TRF, thus
suggesting that one of the main effects of TRF in clock gene
deficient mice is maintaining basal level of gene expression rather
than the temporal control of expression. In addition to gene
expression profile, Chaix et al. discuss the possibility that the TRF
may regulate a temporal post-translational modification because
the TRF drives the oscillation of post-translational modification
with greater amplitudes rather than those of transcripts and
metabolites (68). Contrary to these studies, some reports showed
that TRF had no effect on body weight loss in rodents (69–71).
For example, TRF (12 h feeding window) during the light or dark
phase did not change the body weight as compared to ad libitum
feeding in rats (70, 71). Although the reason for these conflicting
results is unclear, it is possible that the effects of TRF on body
weight loss may depend on the periods of feeding window and
diet composition in animal studies. In fact, the beneficial effects
of TRF on body weight loss were especially observed in the case
of high-fat diet feeding or under the shorter feeding windows
(<8 h) (72). The preventive effect of TRF due to a reduction of
meal frequency or a shortened feeding window is also observed in
human studies (36, 73, 74). Sutton et al. reported the strict early-
time-restricted feeding (6 h feeding window, with dinner time
before 1500 h) for 5 weeks improves the insulin sensitivity and
β cell function, blood pressure, and oxidative stress in prediabetic
men (75).

As mentioned before, food intake is one of the major non-
photic entraining impulses in peripheral clocks in the peripheral
tissue such as liver and adipose tissue, while it does not entrain
a central clock in the SCN (7). Shift of calorie intake time to
the sleep-phase induces desynchronization between peripheral
and central clocks (76). In other words, the disturbance
between fasting/feeding cycle and sleep/wake cycle leads to
the disconnection between the central and peripheral clocks,
resulting in induction of several metabolic dysfunctions (60, 61,
77–80) (Figure 2). For example, the larger food consumption
at night or the delayed onset of feeding time due to breakfast
skipping, is related to body weight gain and insulin sensitivity
in humans (77, 78, 81–85). The adverse effects of rest-phase-
feeding are observed in experimental animal models and it has
been shown that the rest-phase-feeding-induced weight gain is
induced without any change of locomotor activity and food
intake (60). Additionally, some researchers have developed two-
or three-meals-per-day-feeding models in rodents (meals in
the early, middle, late active phase are defined as breakfast,
lunch and dinner, respectively) to imitate general human meal
pattern (86–88). The breakfast skipping rats had larger weight
gain when compared with the dinner skipping rats (88). Larger
weight gain is also observed in the delayed breakfast model
without a change of total food intake (87). Also, Wu et al.
showed that the beneficial effects of calorie restriction depends

on which meal you restrict the calories from Wu et al. (88).
Greater weight loss, circumference reduction, insulin sensitivity
index, and triglyceride levels are observed in obese women who
restricted calories from dinner compared to those who restricted
it from breakfast (89). It suggests that consuming high calorie
meal during the night induces the dysfunctions of lipid and
glucose metabolisms even if the feeding window is shortened, like
in time-restricted feeding.

In recent years, it is known that the feeding in the rest phase
affects not only metabolic diseases but also other functions.
Muscle mass is decreased by the rest phase feeding via the
inactivation of IGF-1 signaling (90). The murine muscle growth
and protein synthesis are down-regulated byTRF in the rest
phase compared with the TRF in the active phase (91). In the
murine skin, the rest-phase-TRF shifts the phase and reduces
the amplitude of clock genes, leading to the dysregulation of
the diurnal sensitivity of UVB-induced DNA damage and a key
DNA-repair-related gene (92). On the other hand, the diurnal
regulation of DNA synthesis is not affected by TRF. Thus, the
rest-phase-TRF leads to the mismatch of temporal regulations
between DNA synthesis and repair, resulting in the increased
sensitivity to UVB-induced DNA damage. In summary, TRF
during the optimal time, to avoid the sleep phase, could be
effective for the maintenance of several biological functions,
while TRF during the sleep phase might attenuate muscle and
skin functions as compared to TRF during the active phase.

TIME-OF-DAY-DEPENDENT
PHYSIOLOGICAL RESPONSES TO
EXERCISE

Diurnal Variation of Physical Performance
Athletic performance such as muscle strength and endurance
exhibits day-night variations (93–95). Generally, the human
athletic performance is low in the morning and its peak time is
late afternoon (93–95). Its diurnal change is closely related with
the change of body temperature (96, 97). A hot environment
blunts the day-night variation of muscle performance, such as
muscle force, power, and contractility, thus it is thought that the
body temperature partially contributes to the diurnal variation
of physical performance (98). The circadian clock drives the
oscillation of various physiological functions including body
temperature (99). In addition to the body temperature, the
diurnal pattern of human physical performance is also changed
by chronotype, and its amplitude is greater in the evening type
persons with a lower performance in the morning (100). The
chronotype-specific day-night pattern is also observed in the
swimming performance (101). Endurance exercise capacity is
changed in mice with some clock gene deletions, such as Rev-
erbα and Cry1/2 (102, 103), suggesting the regulation of exercise
performance by circadian molecular clock. In fact, Ezagouri
et al. report that the diurnal variation of exercise capacity in
mice relies on the clock proteins PER1/2 and they discover 5-
aminoimidazole-4-carboxamide ribonucleotide (ZMP), which is
AMPK activator, as a key factor to induce the time-specific effects
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FIGURE 2 | Mechanistic insight into the effects of time-restricted-feeding during active or sleep phase. Upper left panel: In standard-diet-fed mice, timing of the

entrainment cues between feeding cycle and central clock is matched for peripheral clocks. Upper right panel: High-fat-diet not only induced metabolic dysfunction

due to a high calorie but also arrhythmic feeding cycle. This dysregulation of feeding cycle attenuates the feeding-induced-entrainment of peripheral clocks. Lower left

panel: TRF during active phase rescues the attenuation of peripheral clock functions due to perturbation of feeding cycle. Lower right panel: Although TRF during

sleep phase also entrains peripheral clocks, timing of the entrainment cues between feeding cycle and central clock is mismatched. It is suggested that this mismatch

partially attenuates the beneficial effects of TRF.

of exercise on exercise capacity using both transcriptomic and
metabolomic analyses (104).

The training time within a day affects the day-night variation
of human physical performance (93, 105). As mentioned before,
human muscle power exhibits a diurnal variation, where it is
lower in the morning than in the evening (93, 94). In a human
study, this diurnal variation of the muscle power is blunted by 12
weeks of resistant training in the morning via an enhancement
of muscle power (106). The reduced daily fluctuation of muscle
power due to the exercise training is specific to morning training,

while it is not observed in the evening training (93, 107). On
the other hand, the exercise training in the evening induces
the elevation of muscle performance in the afternoon, thus the
magnitude of diurnal muscle performance change is increased
in humans (107, 108). In summary, a high amplitude of muscle
performance within a day is observed by training in the evening,
while training in the morning decreases amplitude of daily
muscle performance through the enhancement of performance
in the morning (Figure 3). Similarly, in elite college basketball
players, the performance in afternoon is lower during the
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FIGURE 3 | Scheme for effect of training-time on diurnal physical

performance. The muscle performance exhibits diurnal variation with the peak

at afternoon and the trough at morning and night (dotted line). This diurnal

characteristic of muscle performance is changed by training and its effect

depends on the time of day (93). Morning training increases the performance

in morning resulting in the low amplitude (blue line), while evening training

increases it in the evening resulting in the high amplitude (red line).

morning training periods when compared with the afternoon
training period, although the performance in the morning was
not evaluated (109). These observations suggest that similar
response to time-specific training is seen not only in common
people, but also among elite athletes. In addition, it is possible
that these changes of diurnal pattern are linked to competition
ability. The times recorded for 200m swimming trail in the
morning were faster in the subjects who habitually train in the
morning compared with those who train in the evening (101).
From a practical point of view, Chtourou et al. recommend that
the time-controlled training should be adjusted to same time of
competition for exerting the best performance in the competition
(93, 106). However, some reports show no effects of training time
on the day-night variation of muscle performance (110, 111).
It is a possibility that the different training conditions, such as
duration and intensity, and the passive warm-up effect of the
environment may have influenced the results.

Blood Pressure and Blood Circulation
Blood pressure also exhibits a clear circadian rhythm with a
lower blood pressure during the rest phase, increasing around
the time of waking up, and the highest at active phase in
human and rodents (112, 113). The time-dependent hypotensive
effect of exercise was observed a long time ago in humans
(114). Helen et al. reported the time of day effects on the

post-exercise response of blood pressure in normotensive men
(115). Cycling exercise at 60% VO2max in the early morning
(0400 h) induces the transient elevation of blood pressure while
the exercise in the afternoon, evening, and night, do not change
or transiently reduce blood pressure compared with each pre-
exercise condition (115). Although it suggests that the morning
exercise is not better for the reduction of blood pressure, Helen
et al. do not evaluate the blood pressure under the sedentary
conditions at each time point (115). Thus, the possibility remains
that the reducing effect of morning exercise on blood pressure
may be masked by the circadian rising of blood pressure in
the morning, called “morning surge.” De Brito et al. evaluated
the net change of post-exercise blood pressure, with the use
of adjustment by the day-night variation of blood pressure,
under the control sedentary condition in normotensive subjects
(116). In the adjusted conditions, the post-exercise reduction of
blood pressure is observed in both morning and evening, and
its reduction is greater in morning than in the evening (116).
In addition to blood pressure, the exercise-induced reduction
of cardiac output and the weak response of exercise-induced
increased heart rate are observed after morning exercise, while
the sympathovagal balance and lower limb blood flow responses
are increased after evening exercise (116). It suggests that
the greater effect of morning exercise is due to cardiac and
autonomic functions. Recently, it was reported that the responses
of peripheral blood flow and vascular conductance after exercise
are not changed between the morning and evening exercise in
young subjects, suggesting that the time-of-day effects of exercise
on blood pressure and vasodilation are likely reflecting central
rather than peripheral regulation (117). Similarly, the higher
response of blood pressure to cold exposure in hypertensive
adults is reduced by the exercise in the morning but not in the
evening (118), suggesting that the morning exercise promotes the
reactivity of vasodilation.

The chronic anti-hypertensive effects of exercise training in
the morning or evening on blood pressure were observed in anti-
hypertensive-drug-treated men (119). Evening exercise training
for 10 weeks (3 times a week) reduces systolic blood pressure and
diastolic blood pressure during sleep, while their effects are not
observed in morning trained hypertensive men. In contrast to
the beneficial acute effects of morning exercise (116), the chronic
effects of morning exercise are not observed. It is possible that the
effect of anti-hypertensive drug masks the hypotensive effect of
exercise in the morning, because all subjects took medication in
the morning (119). Moreover, the net change of blood pressure
is not evaluated under the adjusted condition described before,
thus it is possible that some effects of morning exercise mask by
the morning surge.

The timing-dependent hypotensive effect of exercise depends
on the circadian characteristic of blood pressure. Park et
al. investigated the hypotensive effect of exercise in the
dipping or non-dipping hypertensive subjects (120). The dipping
hypertensive subjects show a clear circadian rhythm of blood
pressure, while the non-dipping subjects did not show it due to a
less dropping in night-time blood pressure. Themorning exercise
reduces blood pressure with similar efficacy in the dipping and
non-dipping hypertensive subjects. On the other hand, greater

Frontiers in Nutrition | www.frontiersin.org 7 February 2020 | Volume 7 | Article 18

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Aoyama and Shibata Circadian Rhythms and Physiological Responses

reduction of night-time blood pressure due to evening exercise
was observed in non-dipping hypertensive subjects than in cases
of dipping hypertensive subjects. Thus, it suggests that the
timing of exercise is more important for controlling dipping
hypertension rather than for non-dipping hypertension. Based
on this research, it is expected that the evening exercise has
beneficial effects in non-dipping hypertensive men. However,
in a recent human study, exercise at the evening and night-
time (from 1900 to 2200 h) delays the phase of melatonin
metabolites (14), thus it is possible that evening exercise progress
the circadian disturbance of blood pressure via a phase-delay of
circadian rhythm. Further studies are required to evaluate the
effect of exercise both in terms of hypotensive effect and circadian
rhythm is required for the control of circadian blood pressure in
hypertensive subjects.

Muscle Size
The exercise training increases and/or maintains muscle size via
controlling the balance of muscular protein turnover (121, 122).
The combination of endurance and resistance training for 24
weeks induces muscle hypertrophy, and along with training in
the evening leads to larger magnitude in muscle cross sectional
area compared to the same training in the morning in men
(111). Sedliak et al. reported similar effects of the time-of-
day-specific resistance training on muscle mass and power in
men but the results were statistically insignificant (123). These
results suggest that the evening is the optimal timing to promote
training-induced muscle hypertrophy. However, its mechanism
remains unclear. In a recent animal study, it was reported
that the preventive effects of stimulus like a rehabilitation on
muscle atrophy depended on its timing (124). Intermittent
weight-bearing for 4 h prevents the hindlimb-unloading-induced
muscle atrophy and the up-regulation of Atrogin1 expression,
which is one of the muscle catabolic genes (124, 125). These
preventive effects are greater in mice, which perform weight-
bearing in the early active phase compared with weight-bearing
in the late period of active phase (equivalent to evening in
human because mice are nocturnal) (124). In addition, these
preventive effects of weight-bearing at the early active phase are
not observed in the Clockmutant mice, suggesting that the effects
of rehabilitation time is mediated via the circadian clock protein
CLOCK (124). From these reports, it is possible that the beneficial
timing of exercise is different by your aim. Thus, exercise in
the evening is better for the induction of muscle hypertrophy,
while in the morning is better for the prevention of muscle
loss. However, because there are few studies in this field called
chrono-exercise, further studies are expected to generate strong
and conclusive evidence.

Lipid Metabolism
Endurance exercise controls the energy metabolism and
oxygen (O2) consumption (126–128). Some studies show time-
dependent or -independent response to acute endurance exercise
(see below). In women, higher O2 consumption is observed
during submaximal treadmill exercise in the afternoon and
evening compared with morning (129). In the normal weight
and obese men, fat oxidation during the incremental running

exercise test is higher in the evening than in the morning,
suggesting that evening exercise is better for fat burning (130).
The beneficial effects of evening exercise on lipid metabolism in
men are also observed in the change of post-exercise hormone
levels (131). Treadmill running in the evening increases the free
fatty acid levels, subsequent to the elevation of blood adrenaline
and interleukin-6 levels, compared with morning running (131).
In this report, exercise was performed under the postprandial
condition in each time. On the other hand, in the other study,
the exercise-induced fat oxidation for 24 h in men is only
observed in cases where the exercise performed in the early
morning before breakfast but not in the cases where exercise
was performed after breakfast, in the afternoon, and evening. As
one of its mechanism, it is suggested that it is easy to shift the
fuel source from carbohydrate to fat because prior to breakfast,
because it is the longer fasting condition within a day, resulting
in depletion of energy derived from a carbohydrate source like
glycogen (132). Similar responses are observed in women (133).
Thus, acute response of fat oxidation to exercise is greater in the
evening while the longer effects of exercise on fat oxidation are
observed before breakfast.

SUMMARY AND PERSPECTIVES

In this review, we confirm that the postprandial response of
macronutrients is different based on the feeding time, when
an identical meal is ingested at each time point. Circadian
clock system and behavioral pattern are involved in the time-
dependent physiological responses to each meal. Additionally,
the metabolic function of macronutrients could be exacerbated
by a misalignment between endogenous circadian clock and
life cycle, as observed in shift workers (48, 134). On the
other hand, there are a few reports to elucidate a chronic
physiological effect of the distribution of macronutrients to
each meal. Although there are many reports about the training
time-dependent regulation of the day-night variation of athletic
performance, the mechanisms are not fully understood and
the research in these fields is only just beginning. Further
evidence is expected to lead to a clearer understanding of
the molecular mechanisms leading to the interaction between
circadian clock and time-of-day effects. Finally, exercise also
has the potential for a timekeeper of circadian clock, especially
exercise at night-time induces phase-delay in humans (14).
Thus, further evidence is needed to discuss the effects of
exercise timing in the context of therapeutic effects and its
circadian rhythms.
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