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Breast cancer remains as a significant cause of morbidity and mortality in women.

Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells

shows mitochondrial abnormalities that are incompatible with energy production through

oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will

become more reliant on substrate level phosphorylation (fermentation) than on oxidative

phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory

of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy

resistance and drive breast cancer growth through substrate level phosphorylation (SLP)

in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively.

Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose

availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable

metabolic fuel. It is suggested that KMT would be most effective when used together

with glutamine targeting. Information is reviewed for suggesting how KMT could reduce

systemic inflammation and target tumor cells without causing damage to normal cells.

Implementation of KMT in the clinic could improve progression free and overall survival

for patients with breast cancer.
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INTRODUCTION

Breast cancer persists as a significant cause of morbidity and mortality in woman. According to the
American Cancer Society, the number of new cases and deaths from breast cancer in US woman
is estimated to be 268,600 and 41,760, respectively, for 2019 (1). Indeed, breast cancer alone will
account for 30% of all female cancers. Although the incidence of breast cancer is lower in black
women than in white women, the death rate is 41% higher in blacks than in whites possibly due
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in part to diet and lifestyle (2). The failure to effectively manage
malignant breast cancer, and most malignant cancers for that
matter, comes in large part from a misunderstanding on the
origin of cancer. Although cancer has long been considered a
genetic disease based on the somatic mutation theory (3–5),
recent revelations have raised serious concerns that question the
validity of this theory. Major concerns include:

1 The absence of gene and chromosomal mutations in some
cancers (6–9). Indeed, Greenman et al. found no mutations
following extensive sequencing in 73/210 cancers (3), while
Parsons et al. found no mutations in the P53, the PI3K, and
the RB1 pathways in the Br20P tissue sample of a glioblastoma
patient (10). Such samples should not exist according to the
somatic mutation theory.

2 The presence and clonal expansion of numerous so-called
driver gene mutations in a broad range of normal human
tissues including breast tissue (11–15). It is not clear how the
somatic mutation theory can account for malignant tumors
that have no mutations or for normal cells and tissues that
express driver mutations.

3 The absence of breast cancer and most other cancers in
chimpanzees despite having about 98.5% gene and protein
sequence identity with humans even at the BRCA1 locus
(16–19). Indeed, breast cancer has never been documented in
a female chimpanzee suggesting that diet and lifestyle issues,
rather than genetic mutations, are largely responsible for the
disease (18, 20).

4 The nuclear/cytoplasm transfer experiments showing
that normal cells and tissues can be produced from
tumorigenic nuclei as long as the tumorigenic nuclei are
localized in cytoplasm containing normal mitochondria (21).
Furthermore, recent studies show that normal mitochondria
can down-regulate multiple oncogenic pathways and
growth behavior in metastatic breast cancer cells (22, 23).
These findings show that normal mitochondrial function can
suppress tumorigenesis regardless of the gene or chromosomal
abnormalities that might be present in the tumor nucleus.
Viewed collectively, these findings suggest that the somatic
mutations found in breast cancer and in most other cancers
are not the primary cause of the disease. It is therefore unlikely
that therapeutic strategies based on the somatic mutation
theory will have major impact on the management of most
cancers including breast cancer.

THE MITOCHONDRIAL METABOLIC
THEORY OF CANCER

Emerging evidence indicates that most if not all cancers
display deranged energy metabolism (24–35). It is well-
documented that the tumor cells found in most cancerous
tissues including breast cancer tissue, have abnormalities in the
number, structure, and function of their mitochondria (26, 27,

Abbreviations: SLP, Substrate level phosphorylation; KMT, Ketogenic metabolic

therapy; OxPhos, Oxidative phosphorylation; EMT, Epithelial mesenchymal

transition; GKI, Glucose Ketone Index; SUCL, succinate-CoA ligase.

29, 33, 36–42). These abnormalities would compromise efficient
energy production through oxidative phosphorylation (OxPhos).
Figure 1 documents ultrastructural abnormalities in breast
cancer mitochondria that are linked to abnormalities in proteins
of the electron transport chain (43). In addition to abnormalities
in mitochondrial membranes, breast cancer cells also express
abnormalities in mitochondrial-associated membranes (MAM),
that would further reduce energy production through OxPhos
(44, 45). Consequently, increased fermentation metabolism
would be necessary to compensate for OxPhos deficiency in
order to maintain sufficient energy for breast cancer viability
and growth.

AEROBIC FERMENTATION OF GLUCOSE
AND GLUTAMINE IN CANCER CELLS

Glucose and glutamine are the major fermentable fuels used by
cancer cells with impaired OxPhos (39, 46). Glucose is fermented
to lactic acid through glycolysis in the cell cytoplasm, while
glutamine is fermented to succinic acid through glutaminolysis
in the tricarboxylic acid (TCA) cycle. Notably, both fermentation
processes can generate energy in the presence or absence of
oxygen through substrate level phosphorylation (SLP) at the
pyruvate kinase reaction in glycolysis and at the succinate
ligase reaction in glutaminolysis, respectively (46). Warburg
first described the aerobic fermentation of glucose as a major
phenotype of most cancers (47–51). This metabolic phenotype
has become known as the Warburg effect (52). In contrast to the
Pasteur effect, where fermentation is suppressed in the presence
of oxygen, the Warburg effect involves robust glucose-derived
lactic acid fermentation even in the presence of 100% oxygen
(aerobic fermentation).

GLUTAMINOLYSIS

In addition to aerobic fermentation in the cytoplasm,
glutaminolysis can also support high-energy phosphate
synthesis in the mitochondria through the sequential
conversion of glutamine-glutamate-alpha-ketoglutarate-succinyl
CoA-succinate (Figure 2) (46). ATP synthesis through the
succinate-CoA ligase reaction in the TCA cycle can compensate
for reduced ATP synthesis through either glycolysis or OxPhos.
We recently proposed that most of the ATP synthesized in
tumor cells would come from mitochondrial substrate level
phosphorylation (mSLP) at the succinate ligase reaction (46).
Evidence showing that mSLP can compensate for OxPhos
deficiency in cancer is emerging (57–60). mSLP could also
compensate for minimal energy production through glycolysis
due to the predominance of the glycolytic pyruvate kinase
M2 (PKM2) isoform, which produces less ATP than the
PKM1 isoform (61). The PKM2 isoform is predominant in
many cancers including breast cancer (62, 63). As Q is the
single-letter designation of glutamine, the aerobic fermentation
of glutamine through mSLP was recently defined as the Q
effect; which has been recognized as the missing link in the
mitochondrial metabolic theory of cancer (32, 46, 64, 65).

Frontiers in Nutrition | www.frontiersin.org 2 March 2020 | Volume 7 | Article 21

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Seyfried et al. Metabolic Management of Breast Cancer

FIGURE 1 | Electron microscopy of primary breast cancer cells (human mammary carcinoma HMC-1) and human epithelial mammary cell control line (HEMC).

Abnormal mitochondrial morphology in the HMC-1 cell showing loss of invaginations and vacuoles. These abnormalities in mitochondria ultrastructure were linked to

abnormalities in the electron transport chain and are in general agreement with those from other studies of breast cancer mitochondria (37, 40, 42). Reprinted with

permission from Putignani et al. (43).

Unfortunately, the glutaminolysis pathway and the role of
glutamine and mSLP was unknown to Warburg (46). We find
it remarkable that nearly all of the major reviews or previous
studies on cancer energy metabolism have not addressed
or possibly even recognized the role of SUCL activity and
mSLP, as a compensatory energy mechanism for deficient
OxPhos. We consider mSLP as the key mechanism that
underlies energy production in tumor cells with defective
respiration (46).

Aerobic fermentation (Warburg effect) is a common
metabolic phenotype in breast cancer regardless of
histopathological type, grade, or gene expression profile
(24, 66–74). In addition to glucose, glutamine is the other
major fuel necessary for breast cancer cells (73, 75–78). The
elevated utilization of glucose and glutamine becomes necessary
to sustain the viability of OxPhos-impaired cancer cells
through SLP in the cytoplasm and mitochondria, respectively.
The Q-effect provides a rational explanation for the high
glutamine use in cells with compromised OxPhos (46). The
aerobic fermentation of glucose and glutamine in cancer cells
would be the expected consequence of impaired OxPhos,
as fermentation can compensate for insufficient respiration.
Some have suggested that the function of the Warburg-effect
is to provide a growth advantage for tumor cells. This is a
teleological explanation, i.e., design with a purpose or intelligent
design, which should not be part of modern biological thought
(79–81). Cells do not make choices or have preferences, but
simply respond to conditions in their internal and external
environments according to evolutionarily designed metabolic
programs. As proliferation, rather than quiescence, is the
default state of metazoan cells (8, 82), unbridled proliferation
becomes the consequence when fermentation gradually replaces
respiration in cancer cells (21, 83, 84). Indeed, unbridled
proliferation was the dominant growth phenotype of all

organisms that existed on the planet before oxygen entered

the atmosphere some 2.5 billion years ago (83). Hence, glucose

and glutamine become the drivers of cancer cell fermentation

and growth.

FIGURE 2 | The glutaminolysis pathway. The succinyl-CoA ligase reaction,

metabolizing succinyl-CoA to succinate, produces high-energy phosphates

(ATP) in the absence of oxidative phosphorylation through the process of

substrate-level phosphorylation in the mitochondrial matrix. Provision of

succinyl-CoA by the α-ketoglutarate dehydrogenase complex is crucial for

maintaining the function of succinyl-CoA ligase thus preventing the adenine

nucleotide translocase from reversing. Succinate contributes to inflammation

and stabilizes Hif-1a, a key transcription factor that contributes to the aerobic

fermentation (53–56).

ROLE OF REACTIVE OXYGEN SPECIES
(ROS) AND ONCOGENES IN THE ORIGIN
AND PROGRESSION OF CANCER

Impaired OxPhos together with compensatory fermentation
leads to the accumulation of reactive oxygen species (ROS)
(85–87). ROS are carcinogenic and mutagenic, and are largely
responsible for the genomic instability and mutations seen in
tumor cells (85, 87–93). In other words, the mutations seen
in tumor cells arise as a consequence of impaired energy
metabolism (32, 64). Oncogenes such as Hif-1alpha, Myc,
Ras, BRAF, etc., facilitate the dependence of tumor cells on
glucose and glutamine while defects in the tumor suppressor
genes p53 and pRb will compromise OxPhos function thus
causing further dependency on fermentation for growth (28,
46, 84, 94–99). These genes mutations are linked to breast
cancer and other cancers through mitochondrial dysfunction.
Compromised OxPhos would require compensatory glucose and
glutamine fermentation to maintain membrane pump activity
and tumor cell viability (64, 100). A mutation in the p53
gene was found to increase glucose consumption and the
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Warburg effect, whereas the retinoblastoma Rb protein was
found to increase glutamine metabolism through an effect on
the E2F-3 transcription factor (101, 102). Mutations in these
and in other oncogenes, and tumor suppressor genes, have
been detected in breast cancer cells (103, 104). It is interesting
that Her2 signaling in breast tumor promotes glycolysis and
glucose utilization with lactate accumulation (105). Moreover,
the ErbB2 targeting antibody, trastuzumab (Herceptin), inhibits
glycolysis via downregulation of HSF1 and LDH-A in ErbB2-
positive cancer cells. The results of Ding suggest that ErbB2
not only promotes glycolysis, but also inhibits mitochondrial
oxidative phosphorylation by decreasing ETC activities (106).
Mutations in the BRCA1 gene, which is known to play an
important role in maintaining metabolic homeostasis, have
also been linked to elevated glycolysis and other metabolic
disturbances (107, 108). As no known inherited breast cancer
gene is 100% penetrant, germline mutations are considered
secondary risk factors and cannot therefore be considered
primary causes of cancer. A penetrance of 100% is necessary
for any tumor gene to be considered a primary cause of cancer.
OxPhos impairment with compensatory glucose and glutamine
fermentation is the common underlying phenotype of most if not
all cancers.

ORIGIN OF METASTASIS

Metastasis involves the dissemination of cancer cells from the
primary tumor to surrounding tissues and to distant organs
and is the primary cause of cancer morbidity and mortality
(109). Most tumors that fail to show local invasion or metastasis
are considered benign and do not pose serious risk despite
expressing a majority of the so called “Hallmarks of Cancer”
(110). Tumor cell metastasis involves a stereotypic cascade of
biological phenomenon including local invasion, intravasation
into the blood, survival in the circulation, immune suppression,
extravasation from the blood, and growth in a distant organ
or tissue (111). Identification of the unique features of the
metastatic cell can expand understanding of metastasis and
facilitate rational therapeutic strategies based on knowledge of
cell biology and biochemistry.

Two major theories have been advanced to explain metastasis
that include the epithelial-mesenchymal transition (EMT), and
the macrophage fusion hybrid hypothesis. The EMT is the
dominant explanation and is based on the somatic mutation
theory of cancer. The EMT proposes that an initial series of
random mutations disturb cell-cell interaction causing a normal
epithelial cell to transform into an invasive mesenchymal cell.
Further additional random mutations cause the mesenchymal
cell to intravasate, and subsequently extravasate into the
parenchyma at some distant organ site (4, 112). Once established
at the distant site, the metastatic tumor cells transform back to
an epithelial phenotype via the so called mesenchymal epithelial
transition (MET) (4, 112). No explanation has been presented,
however, as to how the multiple random gene mutations
responsible for the initial events of the metastatic cascade could
be reversed or suppressed during the MET (4). Despite its

linkage to phenomenology, the EMT is considered the dominant
explanation for breast cancer metastasis (113).

In contrast to the EMT, the macrophage fusion hybrid
hypothesis posits that metastasis arises from macrophages either
directly or indirectly from the fusion of macrophages with
neoplastic cells (109, 114–117). The metastatic breast cancer
cell, like many metastatic cancer cells, expresses characteristics
of myeloid cells and macrophages (109, 114, 118–125).
These characteristics include phagocytosis, fusogenicity, and
expression of multiple myeloid/macrophage biomarkers. Fusion
hybridization could also better account for the large degree
of cellular and genetic heterogeneity seen in metastatic breast
cancer than can the EMT (126, 127). A macrophage origin
of metastasis is also more consistent with Paget’s “seed soil”
hypothesis than is an origin based on EMT (109, 128, 129).
Macrophages (seeds) are known to infiltrate organs (soil) non-
randomly (109). As glutamine is a major fuel for macrophages
(130, 131), targeting the availability of glutamine together with
glucose becomes a rational, yet largely overlooked, therapeutic
strategy for managing metastatic cancer (60).

CURRENT STANDARD OF CARE (SOC)
FOR BREAST CANCER

Current standard management of breast cancer requires
histological diagnosis obtained by core needle biopsy prior to
surgical procedure (132). Therapies for breast cancer depend
largely on the stage, grade, and the biology of the disease.
Surgery and radiotherapy (breast and axilla) are used for local
disease control, staging, and tumor extirpation. It is important
to mention, however, that the extent of surgery and radiotherapy
are not linked to a survival advantage (133). Chemotherapy,
hormone therapy (tamoxifen, aromatase inhibitor, or one
followed by the other), targeted therapies, trastuzumab
(Herceptin) and pertuzumab (Perjeta), or combinations of
these are designed to destroy local residual cancer cells and
latent metastasis, while also reducing the risk of recurrence.
Mechanical interventions (core needle biopsies and surgery)
can cause wound-induced inflammatory oncotaxis, which
influences the natural history of breast cancer (129). Data
from several studies show that biopsies and surgery can cause
inflammatory oncotaxis thus increasing tissue angiogenesis
and spread of tumor cells (134–140). Invasive and metastatic
behavior would be expected for breast cancer cells with myeloid
properties (123). Some have hypothesized that growth factor
stimulation in response to intraoperative tissue damage, can
increase HER2 receptor activation in incompletely resected
pre-invasive breast cancer thus increasing risk for tumor cell
proliferation and spread (141). Procedures that might elevate
blood glucose or insulin levels should be avoided, as glucose
is known to accelerate breast cancer development (142–147).
Products used in anesthesia might also increase blood glucose
and insulin levels (148). The type of anesthesia and analgesia
used during and after surgery should be carefully monitored
for possible influence on glucose and insulin metabolism
(149). Glucocorticoids, which are given to some breast cancer
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patients, can also elevate blood glucose levels thus supporting
glucose-dependent aerobic fermentation. In addition to elevating
blood glucose, glucocorticoids can also block estrogen-induced
apoptosis to further stimulate breast cancer growth (150). Hence,
risk for tumor spread can be associated with accepted procedures
used in breast cancer management.

KETOGENIC METABOLIC THERAPY

Ketogenic metabolic therapy (KMT) is emerging as an effective
complementary or alternative therapeutic strategy for managing
a broad range of malignant cancers including breast cancer (151–
160). Calorie restriction and low-carbohydrate high-fat ketogenic
diets (KD) reduce the glucose needed to propell the Warburg
effect while also elevating ketone bodies (34). Cancer cells cannot
effectively use ketone bodies or fatty acids for ATP synthesis
through OxPhos due to defects in the number, structure, and
function of their mitochondria (34, 46). Moreover, ketone
bodies and fatty acids cannot be fermented, and thus cannot
effectively replace glucose and glutamine as an alternative energy
source for cancer (46). Bartmann et al. showed that the major
ketone body, beta-hydroxybutyrate, could not stimulate breast
tumor growth in vitro (161). Hence, KMT becomes a putative
therapeutic strategy for managing most cancers including breast
cancer (34).

There have been reports, however, suggesting that some
cancers, including breast cancer, can oxidize ketone bodies and
fatty acids for growth (162–165). The uptake of ketone bodies
or fatty acids together with oxygen consumption in tumor
cells is not proof that the ketone bodies or fatty acids can
be used to generate energy through OxPhos (34, 46, 166).
Indeed, Kuok et al. recently showed that palmitate could increase
oxygen consumption rate (OCR) by stimulating ATP usage and
insulin secretion rather than by increasing beta-oxidation (167).
Fatty acids are potent swelling and uncoupling agents that can
stimulate insulin secretion and glucose/glutamine consumption
thus making it appear as if tumor cells can metabolize fatty
acids for energy (166, 168–170). In other words, fatty acids can
stimulate utilization of glucose and glutamine. Many tumor cells
including breast cancer cells will store fatty acids as lipid droplets
(166, 171, 172). Lipid droplet storage is considered a protection
mechanism from the lethal effects of saturated fatty acids in
cells that cannot metabolize fats for energy (171–174). If tumor
cells could use fatty acids for growth, then water-only fasting
and calorie restricted ketogenic diets should accelerate tumor
growth, as these dietary changes elevate free fatty acids in the
blood (175, 176). This is clearly not the case. Also, palmitic
acid cannot support in vitro tumor cell growth in the absence
of glucose and glutamine. Any disruption of the mitochondrial
proton motive gradient will provide ATP for the F1-F0 ATP
synthase thus hydrolyzing ATP rather than synthesizing ATP
(46). mSLP will provide ATP for F1-F0-ATP synthase in an effort
to maintain a moderate mitochondrial membrane potential and
prevent reversal. Based on the foundational biological principle
that structure determines function (43, 168, 177, 178), ketone
bodies and fatty acids cannot serve as major respiratory fuels

for tumor cells containing defects in mitochondrial structure
and function (46, 84). Hence, it would be helpful to include
evidence of normal mitochondria ultrastructure and electron
transport chain activities in reports indicating that ketone bodies
and fatty acids are fuels for OxPhos-generated ATP synthesis in
cancer cells.

Depletion of fermentable fuels from KMT will facilitate
catastrophic tumor cell death. Ketogenic diet appears to work
better when used with glutamine targeting and is consumed in
restricted amounts (60). The simultaneous targeting of glycolysis
and glutaminolysis is now emerging as a potential therapeutic
strategy for managing a broad range of cancers including breast
cancer (60, 179, 180). KMT reduces circulating levels of glucose
and insulin that are needed for rapid tumor growth (176).
Excessive consumption of ketogenic diets, however, can provoke
tumor growth by causing insulin insensitivity and glucose
elevation (176, 181). Hence, KMT becomes a logical therapeutic
strategy for managing breast cancer when used correctly.

The microenvironment of many tumors is hypoxic, acidotic,
and enriched with glucose and glutamine. Under KMT,
this pro-tumorigenic microenvironment becomes less inflamed
(84, 182, 183). Restricted KDs and calorie restriction are
antiinvasive, antiangiogenic, anti-inflammatory, and capable of
killing tumor cells through a pro-apoptotic mechanism (181–
188). Metabolism of the major circulating ketone body, D-beta-
hydroxybutyrate, reduces reactive oxygen species production
through the mitochondrial Co-enzyme Q couple in normal
cells, while simultaneously elevating oxidative stress in tumor
cells (34, 189–191). Implementation of KMT prior to any
surgical procedure could also benefit patients (152). KMT
should decrease the need for dexamethasone pretreatment, a
problematic therapy that can inadvertently increase availability
of glucose to the tumor cells while also inhibiting chemotherapy-
induced apoptosis (192–194). It is well-known that glucose
and hyperglycemia contribute to rapid breast cancer growth
(146, 195, 196). Consequently, KMT could reduce inflammation
and glucose systemically, thus enhancing the anti-tumorigenic
properties of the microenvironment.

Therapeutic ketosis is linked to reduced blood glucose
levels and to elevated ketone body levels within normal
physiological ranges (Figure 3). Reduction of carbohydrate
intake after breast cancer diagnosis in women reduces risk
of recurrence (198). Evidence shows that therapeutic ketosis
can act synergistically with several drugs and procedures to
enhance cancer management while improving both progression-
free and overall survival (34, 154, 199, 200). For example,
hyperbaric oxygen therapy (HBOT) increases oxidative stress on
tumor cells especially when used alongside therapies that reduce
blood glucose and elevate blood ketones (201). By reducing
blood glucose, KMT would also reduce the immunosuppressive
effects of lactic acid in the tumor microenvironment (202).
Recent studies show that therapeutic ketosis can facilitate drug
delivery through the blood-brain barrier (60, 203). This would
be important in helping to target breast cancer cells that
metastasize to the brain. Also, it has been reported that caloric
restriction reduces leaky tumor blood vessels by increasing
neovascular smooth muscle (183). This could account, in part,
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FIGURE 3 | Linkage of plasma glucose and ketone body levels to cancer

management. The glucose and ketone (beta-hydroxybutyrate) values are within

normal physiological ranges for humans that are under water-only fasting. This

state is considered the zone of metabolic management for most cancers. The

zone of metabolic management is obtained gradually, as circulating levels of

glucose fall and ketones rise. the Glucose Ketone Index (GKI) tracks the

transition to therapeutic ketosis. The dashed lines highlight individual variability

that could exist in reaching a therapeutic GKI. GKI values approaching 1.0 and

below are considered potentially therapeutic. [Reprinted from Meidenbauer

et al. (197), and distributed under a Creative Commons license].

for a better drug delivery to solid tumors under KMT. The anti-
malarial drug, chloroquine neutralizes lysosomal pH reducing
phagocytosis and autophagy, and thus depriving invasive and
metastatic tumor cells from obtaining glucose and glutamine
(34, 204, 205). Chloroquine can also inhibit mitochondrial
diaphorases that oxidize NADPH to NAD+, which in turn
would reduce mSLP (46, 206). The glutamine dehydrogenase
inhibitor, epigallocatechin gallate (EGCG) is also proposed to
target glutamine metabolism through an effect on glutamate
dehydrogenase (207). The glutaminase inhibitor, 6-diazo-5-
oxo-L-norleucine (DON), is a powerful glutamine-targeting
drug that can work synergistically with a restricted KD for
managing brain cancer and metastasis (60, 208, 209). Hence,
KMT can, (a), target the multiple drivers of rapid tumor
growth, (b), facilitate drug delivery to the tumor tissue, (c),
work synergistically with glutamine-targeting drugs, and, (d),
enhance the metabolic efficiency in normal healthy cells. To our
knowledge, there are currently no cancer therapies that can target
these multiple drivers of tumor growth while simultaneously
protecting normal cells.

THE GLUCOSE KETONE INDEX

The Glucose Ketone Index (GKI) is single number representing
the glucose-to-ketone ratio (expressed in mmol/L), and was
developed as a guide for evaluating therapeutic efficacy of KMT.
The GKI serves as a proxy for the degree of metabolic stress
placed on tumor cells through the reduction of circulating
glucose and elevation of ketone bodies (beta-hydroxybutyrate,
acetoacetate) (34, 197). A GKI value of 1.0 or below has
been suggested as the therapeutic goal for cancer management

FIGURE 4 | Tracking an individual’s GKI using the Glucose Ketone Index

Calculator. Index values of 1.0 or below are considered best for managing

cancer growth. Individual glucose and ketone values are shown, along with the

corresponding GKI values. The GKI values are plotted over the course of a

month, whereas the target GKI value (1.0) is plotted as a single line. Tumor

management is predicted to be better (slower growth) within the metabolic

target zone than outside of the zone. [Reprinted from Meidenbauer et al. (197),

and distributed under a Creative Commons license].

(Figure 4). However, therapeutic GKI values can be difficult to
achieve for many cancer patients. For example, tumor burden,
toxic treatment protocols, and emotional and physical stress
can combine to elevate blood glucose and insulin levels thus
preventing the patient from achieving therapeutic GKI values
(34, 84, 210). Further refinement of existing KMT therapies
along with introduction of new therapies may serve to mitigate
this obstacle.

KMT AS A COMPLEMENTARY OR
ALTERNATIVE TO SOC

KMT has been used together with low dose chemotherapy
and other treatments to manage tumor progression in a
woman with stage IV triple negative breast cancer (154).
The woman responded well to the combined treatment,
and initially reported as a complete therapeutic response.
Although overall survival exceeded the median expected
for her stage and grade, she eventually succumbed to her
cancer. A failure to continue with the KMT protocol was
considered responsible in part for her tumor recurrence (154).
Nevertheless, a subsequent clinical study showed that a ketogenic
diet combined with carboplatin/paclitaxel, hyperthermia, and
hyperbaric oxygen therapy significantly improved progression-
free and overall survival in patients with advanced non-small
cell lung cancer (211). Currently, neoadjuvant therapies are
commonly prescribed for a subset of invasive or late-stage
cancers, including breast cancers. KMT initiated soon after
diagnosis and prior to surgery may prove to be a non-toxic
adjunct treatment capable of downgrading the aggressive and
invasive nature of the cancer, thereby increasing the efficacy of
subsequent treatments (212). It is our view that improvements
in selection, dosage, timing, and scheduling of drugs, diet,
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and procedures will offer benefits in survival and quality of
life to patients with advanced metastatic breast cancer when
used as a complementary or alternative therapeutic strategy
alongside the SOC (Figure 5). The Press-Pulse therapeutic
strategy for cancer management was based on the concept
of Arens and West, who described how the simultaneous
occurrence of “press-pulse” disturbances was responsible for
the extinction of organic populations during prior evolutionary
epochs (213). A similar concept can be used to show how tumors
can be slowly degraded. Optimization of dosing, timing, and
scheduling of KMT used together with synergistic drugs and
procedures will facilitate the eradication of breast tumor cells

with minimal patient toxicity. This therapeutic strategy can serve
as a framework for the design of clinical trials for the non-toxic
management of most cancers (34). Further details are described
in Figure 5.

CONCLUSIONS

Breast cancer, like many cancers, are dependent on fermentation
metabolism for growth. Substrate level phosphorylation
drives the fermentation metabolism of tumor cells using
glucose and glutamine as major fuels in the cytoplasm and

FIGURE 5 | Breast Cancer Management with Press-Pulse Therapeutic Strategy. Arens and West considered the simultaneous occurrence of “Press-Pulse”

disturbances as the mechanism responsible for the mass extinction of organic populations during prior evolutionary epochs (213). We described how this concept

could be adopted as a therapeutic strategy for the management and possible eradication of cancer (34). This therapeutic strategy considers all cancer, including

breast cancer, as a single disease that can be managed by transitioning the energy metabolism of normal cells from glucose to non-fermentable ketone bodies, while

simultaneously restricting the availability of fermentable fuels (glucose and glutamine) to tumor cells (34). The reduction in blood glucose levels will also reduce insulin

and insulin-like growth factor 1, which are known to drive rapid tumor growth (184, 214, 215). This metabolic therapeutic strategy exploits the dependency of tumor

cells on glucose and glutamine fermentation and their inability to metabolize ketone bodies for energy due to defects in the number, structure and function of the

tumor mitochondria. In essence, the press-pulse therapy pits the metabolic demands of the mutated tumor cells against those of the normal cells, which evolved to

adapt and survive under the extremes of nutrient stress (216). Collections of random mutations will prevent tumor cells from adapting to nutrient stress, thus leading to

their extinction according to evolutionary theory (81). As a cancer diagnosis can increase emotional stress and blood glucose, stress management techniques

together with exercise could improve general health while reducing glucose availability to the tumor. The press therapies would work synergistically with acute pulse

therapies to further restrict glucose and glutamine metabolism. HBOT would work synergistically with the press therapies to increase oxidative stress selectively in

tumor cells. The timing (spacing) between the various pulse therapies is designed to stress tumor cell metabolism while minimizing toxicity to normal body cells (34).

This therapeutic strategy will target the fermentation metabolism common to most breast tumor cells, thus degrading tumor burden gradually with little or no toxicity.

The color change from red (diseased with darker red spots indicative of metastatic lesions), to yellow (with reduced metastasis), to green (resolution) in the Vitruvian

man indicates the gradual metabolic management and possible resolution of the breast cancer. The pill and Rx symbols are suggestive of drugs taken orally and/or

intravenously (prescription) that would be effective in targeting simultaneously glycolysis and glutaminolysis. Pulse therapies would be eliminated with evidence of

tumor management or resolution, while press therapies could continue under modifications or adjustments (arrow). Optimization of timing, dosing, and scheduling of

the press-pulse treatments will facilitate eradication of tumor cells with minimal patient toxicity. This therapeutic strategy is a framework for future clinical trials. HBOT,

hyperbaric oxygen therapy; KD-R, calorie restricted ketogenic diet. The figure is reprinted with modifications, as described previously (34) and distributed under a

Creative Commons license.
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mitochondria, respectively. The protracted replacement
of respiration with fermentation in cancer cells leads to
unbridled cell proliferation. Fusion hybridization of epithelial-
derived cancer stem cells with glutamine-dependent tissue
macrophages is an alternative explanation to the epithelial-
mesenchymal-transition for the origin of metastatic breast
cancer cells. The aim of our review is to illustrate that the
restriction of glucose and glutamine together with elevation
of non-fermentable ketone bodies offers a complementary or
alternative therapeutic strategy to the SOC for the non-toxic
management of breast cancer. It is our view that KMT could
improve progression-free and overall survival for most breast
cancer patients.
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