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Nutritional epidemiology shows that insufficient protein intake is related to senile

dementia. The levels of protein intake in aged people are positively associated with

memory function, and elderly people with high protein intake have a low risk of mild

cognitive impairment. Although the beneficial roles of protein nutrition in maintaining brain

function in aged people are well demonstrated, little is known about the mechanism

by which dietary intake of protein affects memory and brain conditions. We fed aged

mice a low protein diet (LPD) for 2 months, which caused behavioral abnormalities,

and examined the nutritional effect of essential amino acid administration under LPD

conditions. The passive avoidance test revealed that LPD mice demonstrated learning

and memory impairment. Similarly, the LPD mice showed agitation and hyperactive

behavior in the elevated plus maze test. Moreover, LPD mice exhibited decreased

concentrations of gamma-aminobutyric acid (GABA), glutamate, glycine, dopamine,

norepinephrine, serotonin and aspartate in the brain. Interestingly, oral administration

of seven essential amino acids (EAAs; valine, leucine, isoleucine, lysine, phenylalanine,

histidine, and tryptophan) to LPD mice, which can be a source of neurotransmitters,

reversed those behavioral changes. The oral administration of EAAs restored the brain

concentration of glutamate, which is involved in learning and memory ability and may

be associated with the observed behavioral changes. Although the details of the link

between decreased amino acid and neurotransmitter concentrations and behavioral

abnormalities must be examined in future studies, these findings suggest the importance

of dietary protein and essential amino acids for maintaining brain function.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative condition
that is highly prevalent in old age (1) and has a significant
socioeconomic impact, which will lead to an increased
economic burden in healthcare systems worldwide (2). Because
pathological changes, such as amyloid β accumulation, occur
more than two decades before the appearance of cognitive
impairments (1), finding preventive strategies against AD is
important. However, prescribing drugs for AD prevention to
people several decades before the onset of cognitive impairments
has huge socioeconomic impact considering the growing number
of patients with AD (3). In this context, daily food intervention
could be a realistic strategy for AD prevention.

Indeed, nutritional epidemiology has shown the importance
of protein intake for maintaining brain function in the elderly
population. Compared with the healthy elderly, patients with
dementia have significantly lower protein intake and lower
protein intake of patients with dementia is reported to be
associated with severe dementia (4–6). The levels of protein
intake in aged people are positively associated with memory
function (7, 8), and elderly people with high protein intake have
a low risk of mild cognitive impairment (MCI) (9). Moreover,
elderly people with high protein intake have recently been
reported to have low amyloid β accumulation in the brain (10).

Although the beneficial roles of protein nutrition for brain
function in aged people are well demonstrated, little is known
about the mechanism by which protein intake maintains brain
function and prevents MCI. Given that proteins are composed
of multiple amino acids, including essential amino acids (EAAs),
protein malnutrition could lead to amino acid intake deficiency,
thereby affecting the brain. Amino acids are known to play
essential roles not only as energy sources but also in protein
synthesis, metabolism and homeostatic function of cells in
multiple organs of the body, including the brain. Amino acids
function as precursors of neurotransmitters, especially in the
brain. We hypothesized that a low protein diet (LPD) leads to
low concentrations of EAAs in the plasma and brain, resulting
in a depletion of neurotransmitters in the brain. To unveil the
nutritional importance of protein and amino acids in brain
function, we fed aged mice a LPD, which caused behavioral
abnormalities, and further examined the nutritional effect of
seven EAAs [valine (Val), leucine (Leu), isoleucine (Ile), lysine
(Lys), phenylalanine (Phe), histidine (His), and tryptophan
(Trp)], which are sources of neurotransmitters, in this model.

MATERIALS AND METHODS

Animals
Male C57BL/6J mice (55–63 weeks, Charles River Laboratories,
Japan) were used for experiments. These mice were housed
at 25◦C on a 12-h light/dark cycle (lights on 8 PM to 8AM)
with ad libitum food and water in their cages. All animal
experimental procedures in the present study were approved by
the institutional review board of the animal ethical committee,
who follows the institutional guidelines of Ajinomoto Co., Inc.

TABLE 1 | Composition of amino acids mixture.

C1 (%) C2 (%)

Leucine 15.3 31.1

Lysine 21.6 22.1

Valine 2.7 3.9

Isoleucine 2.7 8.6

Phenylalanine 16.9 28.3

Histidine 40.0 5.4

Tryptophan 0.7 0.7

Total 100.0 100.0

Diet and Amino Acid Intervention
The mice were provided ad libitum access to water and a
control diet [normal protein diet (NPD); 20% casein-based
diet, Supplementary Table 1]. At the start of the experimental
protocol, the control diet was replaced with the experimental
diet, which was either the NPD (20% casein-based diet) or LPD
(5% casein-based diet) (Supplemental Table 1). In the amino
acid intervention conditions, we treated mice with 10 ml/kg
0.5% methylcellulose [vehicle (Veh)] per os (PO), 1 g/10 ml/kg
composition 1 (C1) amino acids PO, or 1 g/10 ml/kg C2 amino
acids PO (Table 1) twice daily on days 1–5 of each week during
the experimental protocol period of 72 days (Figure 1A).

Quantification of Amino Acid and
Monoamine Concentrations in the Plasma
and Brain Tissue
A previously described quantification method for amino acids
(11) was used in this study with minor modifications. The plasma
sample was mixed with the internal standard solution (stable
isotope-labeled amino acids in water) and deproteinized with
acetonitrile. Frozen brain tissue was powdered using a Multi-
Beads Shocker (Yasui Kikai, Osaka, Japan) and homogenized
in an ice-cold methanol aqueous solution containing L-phenyl-
d5-alanine was used to calculate recovery of the pretreatment
procedure. The homogenate was further mixed with water and
chloroform, and its upper phase was dried up. The residual
was dissolved with water, and mixed with the internal standard
solution. The plasma and brain samples were derivatized with
APDSTAG R© (FUJIFILM Wako Pure Chemicals, Osaka, Japan)
and analyzed using liquid chromatography coupled with tandem
mass spectrometry (LC-MS/MS) as described in (11). Dopamine,
norepinephrine and serotonin measurements were conducted
on an HPLC-ECD system (HTEC-500: EICOM, Kyoto, Japan)
and expressed as pg/mg tissue weight. Plasma albumin and total
protein and glucosemeasurements were conducted on a chemical
analyzer (DRI-CHEM3500V: FUJIFILM, Tokyo, Japan).

Elevated Plus Maze
The elevated plus maze (EPM) consisted of two open (29.5 ×

6 cm) and two closed arms (29.5 × 6 × 15 cm), which extended
from a central platform (6 × 6 cm) at 50 cm from the ground
(BRC, Nagaoya, Japan). Each individual mouse was placed in the
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FIGURE 1 | LPD induced cognitive decline, agitation, and disinhibition behavior, but EAAs ameliorated these changes. (A) Schematic diagram of the experimental

procedure. Experiment 1 data are shown in (B–H). (B–D) Summary of PAT results. (B) During the training session, there was no significant difference among the

groups. (C) Mean step-through latency in each group during the training trial [F(3, 43) = 3.4, p < 0.05]. The latency time was significantly lower in the LPD + Veh group

than in the NPD + Veh group (*p < 0.05) and in the LPD + C1 group than in the NPD + Veh (*p < 0.05) but not in the LPD + C2 group compared with that in the NPD

+ Veh group. (D) Summary of the achievement ratio which is the effect of the 1st electrical stimulation (ES) on step-through latency in each group. (E–H) Summary of

EPM test results on day 28 (E,F) and day 60 (G,H). (E) Mean number of entries in the open arms on day 28 in each group. There was no significant difference among

the groups. (F) Mean total distance traveled on day 28 in each group [F(3, 44) = 5.0, p < 0.01]. The total distance was significantly increased in the LPD + Veh group

compared with that in the NPD + Veh group (**p < 0.01, Holm-Sidak’s test), in the LPD + Veh group compared with that in the LPD + C1 group (**p < 0.01,

Holm-Sidak’s test), and in the LPD + Veh group compared with that in the LPD + C2 group (*p < 0.05, Holm-Sidak’s test). (G) Mean number of entries in the open

arms on day 60 in each group (p < 0.05, Bartlett’s test). The number of entries in the open arms was significantly higher in the LPD + Veh group than in the NPD +

Veh group (*p < 0.05, Dunnett’s test). (H) Mean total distance traveled on day 60 in each group. There was no significant difference among the groups. Experiment 2

data are shown in (I–L). (I,J) Summary of PAT results. (I) Mean step-through latency in each group during the training trial [F(3, 40) = 2.9, p < 0.05]. The latency time

(Continued)
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FIGURE 1 | was significantly decreased in the LPD + Veh group compared with that in the NPD + Veh group (*p < 0.05). (J) Summary of the achievement ratio in

each group. (K,L) Summary of EPM test results. (K) Mean number of entries in the open arms in each group [F(3, 44) = 4.1, p < 0.05]. The number of entries in the

open arms was significantly higher in the LPD + Veh group than in the NPD + Veh group (*p < 0.05) and in the LPD + C2 (1 g/kg x2) group than in the LPD + Veh

group (*p < 0.05). (L) Mean total distance in each group. There was no significant difference among the groups. Error bars and dots indicate SD and scores of

individual mice, respectively. NPD, normal protein diet; LPD, low protein diet; EPM, elevated plus maze; PAT, passive avoidance test; Veh, vehicle; p.o., per os; C1,

composition 1; C2, composition 2.

center area facing an open arm and allowed to freely explore
the maze for 8min. The behavior of the animals was recorded,
tracked, and analyzed with the SMART 3.0 video tracking
systems. The following parameters were evaluated: number of
entries into the closed vs. open arms, distance traveled (cm)
within the closed and opened arms, and time spent in the closed
and opened arms. The EPM test was conducted on day 28 and
day 60 in Experiment 1 and on day 36 in Experiment 2 during
the dark period.

Passive Avoidance Test
The passive avoidance test (PAT) was performed using a step-
through cage (Muromachi Kikai, Tokyo, Japan) consisting of
white and black compartments separated by a sliding door.
During the training trial, mice were placed in the white
compartment, the door was opened, and the step-through latency
was recorded. When the mice entered the dark compartment
with its four paws on the grid floor, an electric foot shock (1mA)
was delivered through stainless-steel rods for 1 s. After 24 h, a
probe test was performed using the same procedure without
any foot shock. The step-through latency time to enter the
dark compartment was recorded up to a maximum of 480 s in
Experiment 1 and 300 s in Experiment 2 as the cut-off latency.
The PAT was conducted on days 29 and 30 in Experiment 1 and
on days 37 and 38 in Experiment 2 during the dark period.

Statistics
Statistical analyses were performed using GraphPad Prism 6
Software. Data were statistically analyzed by Welch’s t-test for
≤2 comparisons and one-way analysis of variance (ANOVA)
with Tukey’s or Dunnett’s or Holm-Sidak’s posttest for ≥3
comparisons. P values of ≤0.05 were considered statistically
significant at a confidence interval of 95%.

RESULTS

First, we examined whether LPD intake affected brain function
in aged mice through behavioral experiments. The PAT was used
to investigate the learning and memory activities of mice. In the
training trial of the PAT, there was no significant difference in
step-through latency among the groups (Figure 1B), whereas in
the test trial, step-through latency was significantly lower in the
LPD + Veh group than in the NPD + Veh group (Figure 1C).
In addition, the achievement ratio was lower in the LPD + Veh
group than in the NPD + Veh group (Figure 1D). The EPM
is considered to be a reliable indicator of anxiogenic behavior
and depends upon the assumption that mice inherently prefer
the closed arms of the maze to the open arms. We observed the
number of entries in the open arms and total distance in the

EPM, which are given in Figures 1E–H. The percent time spent
in the open arms was not significantly different among the groups
(Figure 1E), whereas the total distance traveled was significantly
greater in the LPD+Veh group than in the NPD+Veh group on
day 28 (Figure 1F). On day 60, the total distance traveled was not
significantly different among the groups (Figure 1H), whereas
the number of entries (Figure 1G) and the percent time spent
[F(3, 43) = 4.8, p < 0.01, Brown-Forsythe test; p < 0.05, data not
shown] in the open arms were significantly increased in the LPD
+Veh group compared with that in theNPD+Veh group. These
results indicate that LPD induced cognitive function decline and
agitation and disinhibition behavior in aged mice.

Next, we hypothesized that LPD leads to low concentrations
of EAAs in the plasma and brain, thereby inducing
neurotransmitter depletion in the brain, resulting in cognitive
dysfunction and behavioral abnormalities. To identify the
concentrations of EAAs and neurotransmitters, we quantified
these concentrations in the plasma and brain of the NPD and
LPD groups. Plasma levels of EAAs (Val, Leu, Ile, Lys, Met, Thr,
Trp, and Phe) and non-essential amino acids (Tyr and Pro) in
the LPD group were significantly lower than those in the NPD
group (Figure 2A, Supplementary Table 2). The LPD group
also exhibited significantly lower levels of EAAs (Val, Leu, Ile,
Lys, and Thr), non-essential amino acids, and neurotransmitters
[especially aspartate (Asp), GABA, glutamate (Glu), glycine
(Gly), dopamine, norepinephrine, and serotonin] in the brain
than the NPD group (Figure 2B, Supplementary Table 3).
However, the concentrations of plasma albumin and total
protein and glucose were not different between the LPD and
NPD groups (Supplementary Figure 1).

Finally, we hypothesized that the flux of EAAs from the
blood to the brain would be important for maintaining
neurotransmitters. Thus, we conducted oral administration of
seven EAAs (Val, Leu, Ile, Lys, Phe, His, and Trp), which are
a source of neurotransmitters. To examine the importance of
the flux of EAAs into the brain, we compared the effects of
administering EAAs in the form of C1 (control against C2)
or C2, which is composed of EAAs with high fluxes into the
brain based on a previous report (12) (Table 1). Both C1 and
C2 EAAs ameliorated the changes in agitation and disinhibition
behavior indicated by a reversal of the changes in the total
distance traveled on day 28 and the number of entries in the
open arms on day 60 in the EPM (Figures 1F,G). In addition,
C2 ameliorated the step-through latency in the PAT (Figure 1C),
confirming the importance of fluxes of EAAs into brain for
cognitive function. While C2 intake once per day was enough
to ameliorate cognitive decline (Figures 1I,J), C2 intake twice
per day was needed to ameliorate agitation and disinhibition
behavior (Figure 1K). Moreover, C2 reversed the concentrations
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FIGURE 2 | The concentrations of amino acids and neurotransmitters in the plasma and brain were decreased by LPD. (A) Radar charts of amino acids in aged B6

mice. The average of each amino acid concentration as normalized values in the plasma (left) and prefrontal cortex area (PFC area; right) are expressed. (B) Mean

neurotransmitter concentrations in the PFC area after sacrifice in each group. The Glu concentration [F(3, 17) = 4.2, p < 0.05] was significantly lower in the LPD + C2

group than in the LPD + Veh group (*p < 0.05). The dopamine concentration [F(3, 18) = 23.9, p < 0.001] was significantly lower in the LPD + Veh group than in the

NPD + Veh group (*p < 0.05), in the LPD + Veh group than in the LPD + C1 group (***p < 0.001), and in the LPD + Veh group than in the LPD + C2 group (***p <

0.001). The norepinephrine concentration [F(3, 19) = 4.5, p < 0.05] was significantly lower in the LPD + Veh group than in the NPD + Veh group (*p < 0.05). The

serotonin concentration [F(3, 19) = 5.7, p < 0.01] was significantly lower in the LPD + Veh group than in the NPD + Veh group (*p < 0.05), in the LPD + C1 group than

in the NPD + Veh group (*p < 0.05), and in the LPD + C2 group than in the NPD + Veh group (*p < 0.05). Error bars and dots indicate SD and scores of individual

mice, respectively.
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of Glu and dopamine in the brain (Figure 2B). However, there
was no difference among the groups in the total distance in the
EPM (Figure 1L).

DISCUSSION

Here, we demonstrated the importance of protein and amino acid
nutrition for maintaining brain function. In this study, protein
malnutrition in aged mice caused behavioral abnormalities as
well as physiological alterations in the brain, including decreased
neurotransmitter and plasma amino acid levels. These findings
are in accordance with previous clinical studies showing the
possibility that chronic protein malnutrition leads to cognitive
dysfunction (7, 8). In this study, the changes induced by
LPD were reversed by EAA supplementation, suggesting the
importance of EAA nutrition in the brain and behavior. This is
the first study to report the phenotype of protein malnutrition
and EAA supplementation in aged mice.

In this study, LPD mice showed a significantly decreased
passive avoidance response compared to NPD mice, indicating
that LPD in aged mice was associated with learning and
memory impairment. The PAT is one of the most widely
used tests for fear learning and memory. Previous studies
have demonstrated that several mouse models of AD, such as
rTg2576, APP23, APP/PS, and 3xrTg, show impaired learning
and memory function evaluated by the PAT (13–15), similar
to our data on aged mice fed a LPD. Furthermore, LPD mice
showed an increase in the proportion of time spent in the
open arms of the EPM, indicating that those mice had agitation
and disinhibition potentially caused by the LPD. Furthermore,
similar to rTg2576 mice (16–18), LPD mice showed increased
total distance moved, indicating hyperactive behavior in a
new environment.

Interestingly, LPD mice showed decreased amino acid
concentrations in the blood and brain. Since EAAs in the
blood enter the brain via the blood-brain barrier (BBB),
both blood and brain EAAs can conceivably be influenced
by food intake. Most neurotransmitters are synthesized from
amino acids. For example, dopamine and norepinephrine
are synthesized from tyrosine, which is a metabolite of
Phe. Glu is synthesized from branched-chain amino acids or
glutamine (Gln), which are derived from the blood via the
BBB. Despite the slow flux of Leu into the brain, which is
14.5 times slower than that of Gln, 30–50% of the amino
groups of Glu and Gln are derived from Leu (19). With
age, the synthesis of these neurotransmitters is known to
decline in humans and mice (20–23). Furthermore, the amount
of neurotransmitters, including dopamine, norepinephrine,
acetylcholine, Glu, serotonin and GABA, and the levels of
their synthetic enzymes are known to be lower in patients
with AD than in healthy people (21, 24). Dopamine and
norepinephrine are monoamines that are associated with
cognitive function, particularly working memory (25). In this
study, LPD mice exhibited decreased concentrations of GABA,
Glu, Gly, dopamine, norepinephrine, serotonin and Asp, which
might be associated with behavioral abnormalities.

In this study, we used seven essential amino acids (Val, Leu, Ile,
Lys, Phe, His, and Trp) that can be a source of neurotransmitters
in the brain tomake two EAAmixtures of different compositions.
We hypothesized that the rate of amino acid influx to the brain
(12) would be important and set C1 as the composition that is
the reciprocal of what easily passes through the brain. In contrast,
C2 was composed to directly match the ratios of the brain influx
rate of the different EAAs. Although both C1 and C2 reversed the
behavioral changes in the EPM, only C2 reversed the behavioral
change in the PAT. C2 but not C1 improved the LPD-induced
learning and memory behavior deficits and elevated the Glu
concentration. The C2 mix is mainly composed of Leu, Phe, and
Lys, which are potential substrates for synthesizing Glu in brain
cells (19). Glu is known to be an important neurotransmitter that
triggers de novo spine growth (26) and is involved in learning
and memory ability (27). Glu restoration could be one of the key
mechanisms connecting behavior and nutrition. The details of
the link between the decreased amino acid and neurotransmitter
concentrations and behavioral abnormalities must be further
examined in the future. Also, in this study, only male mice were
fed a LPD for 2months. The effects with shorter- and longer-term
LPD feeding to behaviors are to be investigated in the future. And
whether the similar results will be obtained in female mice, which
have estrus cycle that affect animal behaviors including emotion-
related behaviors, social behaviors, and cognition, would be a
future research question.

Several reports have indicated that the amount of protein
consumed by the elderly is not sufficient (28–31). Oral issues
such as decreased appetite with age (32, 33), dysphagia
(34), reduced muscle strength required for meat consumption
(35, 36), and periodontal disease (37) are noted as causes.
In addition, aging of the digestive organs and gastric acid
secretion decrease in the elderly (38), suggesting a decrease
in digestive function to efficiently absorb the ingested protein.
Although some nutritional epidemiological studies suggest the
relationships between dietary protein deficiency and cognitive
decline (7–10), it is yet to be demonstrated whether the EAA
supplementation could affect cognitive ability in humans. Future
clinical trials to examine the effects of EAA supplemental
intake to cognitive ability in the elderly are needed. This study
may shed light on the roles of EAAs in relation to the brain
function of aged people. Although further research is necessary to
illustrate the detailed mechanism and clinical effectiveness, EAA
ingestion could be one possible solution for maintaining healthy
brain function.

CONCLUSION

In this work, we investigated the association between protein
intake and cognitive function in aged mice, showing that
LPD resulted in learning disabilities, disinhibition, and
hyperactive behavior. LPD intake may conceivably cause
low blood amino acid levels, resulting in neurotransmitter
deficiency in the brain. The addition of seven EAAs (Val,
Leu, Ile, Lys, Phe, His, and Trp) that can be a source
of neurotransmitters to the LPD reversed some of the

Frontiers in Nutrition | www.frontiersin.org 6 March 2020 | Volume 7 | Article 23

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Sato et al. Amino Acids Improved Cognitive Function

changes in behavior and neurotransmitter concentrations.
Further studies elucidating the connection between
brain function and protein and amino acid nutrition
are necessary.
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