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Mounting evidence supports a connection between the composition of the infant gut

microbiome and long-term health. In fact, aberrant microbiome compositions during key

developmental windows in early life are associated with increased disease risk; therefore,

making pertinent modifications to the microbiome during infancy offers significant

promise to improve human health. There is growing support for integrating the concept

of ecosystem services (the provision of benefits from ecosystems to humans) in linking

specific microbiome functions to human well-being. This framework is widely applied in

conservation efforts of macro-ecosystems and offers a systematic approach to guide

restoration actions aimed to recover critical ecological functions. The aim of this work

is to apply the ecosystem services framework to integrate recent studies demonstrating

stable alteration of the gut microbiome of breastfed infants when Bifidobacterium longum

subsp. infantis EVC001, a gut symbiont capable of efficiently utilizing human milk

oligosaccharides into organic acids that are beneficial for the infant and lower intestinal

pH, is reintroduced. Additionally, using examples from the literature we illustrate how

the absence of B. infantis results in diminished ecosystem services, which may be

associated with health consequences related to immune andmetabolic disorders. Finally,

we propose a model by which infant gut dysbiosis can be defined as a reduction in

ecosystem services supplied to the host by the gut microbiome rather than merely

changes in diversity or taxonomic composition. Given the increased interest in targeted

microbiomemodification therapies to decrease acute and chronic disease risk, the model

presented here provides a framework to assess the effectiveness of such strategies from

a host-centered perspective.
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INTRODUCTION

Disruption to the composition and function of the early life gut
microbiome is now recognized for its role in irregular immune
development (1, 2), metabolic disorders (3) and inflammation
(4, 5). Several of these phenotypes have been reconstructed
using animal models or epidemiological approaches providing
a compelling link between aberrant microbiome development
in early life and these negative health outcomes (6–9). Thus, if
pandemic non-communicable diseases such as type 1 diabetes,
obesity, allergy, and asthma are associated with impaired
microbiomes during infancy, as suggested by emerging evidence
(3, 10–15), then relevant modulation of the microbiome in
early life provides a compelling solution for addressing the
increasing public health burden associated with these diseases.
However, evaluative parameters to identify desirable microbiome
compositions and their potential interrelationship with health,
are currently lacking.

The application of methods derived from ecological theory
and evolutionary biology have been fundamental to elucidating
the factors that shape the microbiome throughout the lifespan.
In this work, we apply concepts from the “ecosystem services”
framework (16) to guide the ecological assessment of the
breastfed infant gut microbiome from a host-centered
perspective. We first describe the ecological processes that
shape and define the composition of the microbiome in early
life. This description is centered on the hypothesis that human
hosts select, via diet (human milk), for the enrichment of
specialized symbionts that fulfill beneficial functions underlying
the provision of ecosystem services that contribute to their fitness
and well-being. We then propose a model in which the absence
of these beneficial functions and the consequential reduction
in one or more ecosystem services can be defined as dysbiosis.
To demonstrate the applicability of the model, the discussion is
centered on the coevolution of specialized bifidobacteria, namely
B. infantis, for which clinical evidence is available (17). Finally,
we summarize, as evidence for this model, large cohort studies
indicating the absence of bifidobacteria in early life is associated
with negative health outcomes.

ECOLOGICAL PROCESSES SHAPING THE
COMPOSITION OF THE BREASTFED
INFANT GUT MICROBIOME

Immediately following birth, the neonatal intestine becomes
rapidly colonized by microbes from the mother and the
surrounding environment. Infants delivered by cesarean section
are more likely to become colonized by environmental
microorganisms from the maternal skin, healthcare staff and
hospital surfaces. Vaginally delivered infants come in contact
with bacteria from mother’s vaginal canal and the fecal
microbiota (18, 19). From this initial load of microbes, the
allochthonous, vaginally-derived and environmental species are
then rapidly replaced by organisms adapted to the gut (20–
23); however, the microbiome differences based on delivery
mode persist over time (19). Nutritional resources that reach

the gut are another major factor influencing the neonatal
gut microbiome, in terms of both composition and function.
In exclusively breastfed infants, human milk oligosaccharides
(HMOs) represent the main nutritional resources for bacteria
in the gut. As a result, the gut microbiome of exclusively
breastfed infants exhibits lower alpha diversity and higher
abundance of specialized taxa able to metabolize HMOs,
namely bifidobacteria (24–27). In the absence of specialized
infant-associated species of bifidobacteria, HMOs are under-
utilized, resulting in excess resources with profound impacts
on ecosystem function (Figure 1). Cessation of breastfeeding
and the introduction of solid foods represent a major shift
in the nutritional resource landscape and a more functionally
complex community of microbes is then required to deplete
the greater variety of dietary substrates reaching the large
intestine (Figure 1).

Additional ecological events, including random processes,
ultimately influence the overall composition of the infant gut
microbiome; however, initial microbiome inoculation based on
birth mode, and the subsequent environmental selection through
the provision of selective substrates from human milk, are the
two major ecological processes shaping the gut microbiome of
breastfed infants (30–33).

BIOLOGICAL CONSIDERATIONS IN
DEFINING A HEALTHY INFANT GUT
MICROBIOME

Identifying a healthy gut microbiome in both infants and
adults has proven to be a major challenge to the scientific and
medical fields (34). Historically, diversity has been speculated
to maximize functionality, in a generalization of the “insurance
hypothesis” (35–38). However, diversity indices are of limited
value alone and have proven insufficient to determine ecosystem
functionality, or to categorize microbial ecosystems as healthy
or unhealthy (37, 39) (see Box 1 for an in-depth discussion on
the limitations of diversity). Moreover, taxonomic composition
can be highly variable among individuals, while functions
encoded by the gut microbiome are remarkably coherent (45)
and breastfed infants across different geographies develop a
common microbial functional core (15, 32, 33). This implies
hosts are under a strong pressure to select high-fidelity microbial
partners to maintain key ecosystem functions (38), and that
breast milk establishes key niches that can only be occupied
by specialized taxa (46) (Figure 1). Furthermore, given the host
and its microbiome operate as a highly interconnected and co-
evolved ecosystem in which interactions among members and
community characteristics are governed by the principles of
community ecology, we argue the evaluation of gut microbiomes
can only be successful if based on ecological and evolutionary
criteria. To this end, the ecosystem services framework has been
implemented to link ecological processes of macro-ecosystems
with elements of human well-being (47) and has recently been
adapted to value the services of gut microbial ecosystems from a
host-centered perspective (16, 48, Box 2). Therefore, we propose
to use this framework to guide the assessment of the infant gut
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FIGURE 1 | Resource utilization and diversity in the gut in determining invasion resistance. The resource landscape in the human gut is vastly influenced by diet. One

fundamental function of the microbiome is to keep potential pathogens at bay by direct competition for space and resources (i.e., co-lonization resistance, a regulating

service). Excess resources (blue squares) represent open niche opportunities and increase the risk of colonization by invasive species, including pathogens. When

resources are efficiently utilized, the risk of successful invasion is greatly reduced due to the lack of available resources to sustain growth (28). On a solid food diet, a

more diverse composite of species is required to deplete the greater variety of resources reaching the gut (29). However, in early life, and while diet is restricted to

mother’s milk, resource utilization is independent from diversity and will only reach maximum levels when specialized species able to efficiently consume HMOs

are present.

microbiome and to determine the ecological conditions within
the gut that may increase host health and, ultimately, fitness.

In the following sections we outline three key ecosystem
services: (1) supporting services; (2) provisioning services; and
(3) regulating services underlying the relationship between the
breastfed infant and the gut microbiome based on previously
defined criteria (16). Specifically, we discuss the ability of B.
infantis to efficiently utilize resources (i.e., HMOs) and produce
organic acids as key functional traits that sustain the provision of
these services.

SUPPORTING AND PROVISIONING
SERVICES OF THE GUT MICROBIOME IN
EARLY LIFE

Organic acids, including short chain fatty acids (SCFA), are the
major metabolic products of anaerobic microbial fermentation
in the gut and have demonstrated roles in human health

(63, 64). In the breastfed infant gut, fermentation of HMOs
into lactate and acetate depends critically on specialized
primary degrader organisms that have the metabolic machinery
to capture and metabolize these complex compounds (46).
This process generates pioneer products (supporting service;
Table 1) and releases energy that is otherwise inaccessible to
the infant (provisioning service; Table 1). Selected strains of
bifidobacteria and Bacteroides metabolize HMOs (24), but only
B. infantis contains complete pathways enabling intracellular
HMO-transport and degradation. Consequently, it is the only
organismwith the demonstrated capacity to significantly increase
the production of lactate and acetate in the breastfed infant gut
while simultaneously decreasing residual HMOs in the stool of
breastfed infants (17, 65). In fact, in the absence of B. infantis,
high concentrations of these HMOs are expelled into the stools
of infants (1, 17, 66–68) which is a clear indication of low
utilization of these resources (i.e., HMOs) in the gut, even when
compared to infants colonized by other bifidobacteria. This
observation highlights the importance of B. infantis in providing
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BOX 1 | Diversity: How is it measured and what does it mean?

There are two main types of diversity computed in microbial ecology studies, particularly as it pertains to microbiome profiling: alpha diversity and beta diversity.

Alpha diversity refers to the measure of diversity within a specific ecological community or locality in a given sample. Depending on the metric used, this index

describes either species richness (i.e., the number of different species in a community); or both species richness and the evenness (i.e., the distribution of the species’

abundances in the community) (40). There are several metrics to determine alpha diversity, each different in their sensitivity to richness and evenness (41). Depending

on the index used, it is possible that no change in alpha diversity may be detected despite the presence of highly divergent community compositions (Figure 2).

Beta diversity is a measure of diversity between samples. It answers the questions: How different is the microbial composition in one sample or group of samples

compared to others? How many species are shared between samples? Similar to alpha diversity, there are different metrics to establish beta diversity. Some methods

are purely qualitative based on presence/absence of species, while others include a quantitative component and take into account a phylogenetic distance between

species. Each method presents its own inherent biases and sensitivity capturing changes in community composition.

Uses and limitations of diversity in microbial ecology

Diversity is speculated to maximize the functionality in a generalization of the “insurance hypothesis” (35, 36), which suggests that stabilization of communities

against decline in function is improved by increasing diversity (42, 43). Thus, higher diversity is often assumed to be desirable. However, unless substantial functional

redundancy exists in amicrobial community, any loss in key functional species will likely alter the capacity of themicrobiome to support ecosystem services (44). Further,

a reduction in diversity is not necessarily unfavorable to the host, especially when it is a consequence of the selective enrichment of health-promoting symbionts.

Another inherent challenge exists in the lack of an accepted, absolute value of diversity for a given community. Moreover, as previously discussed [see (39) for an

excellent discussion on the matter], diversity is relative and always constrained by method of measurement. In fact, different indices vary in their sensitivity to species

richness and evenness, and inferences made can differ widely depending on the measure chosen. Thus, caution must be exercised when drawing conclusions from

any one diversity index and when comparing findings across studies.

Overall, simplifying the microbiome to a measure of biodiversity has obvious limitations as it does not reflect composition or function, or relevant ecosystem

properties such as stability, productivity or invisibility. We and others (37, 39) argue that the continued use of this index, without context of function, distracts the field

from the development of relevant hypotheses to gain insight into the underlying ecological mechanisms driving patterns and processes in microbial communities

and their potential relationship to host health.

FIGURE 2 | Alpha diversity is independent of relative abundance. Three different bacterial communities are depicted (A–C). Corresponding relative abundance of

the individual species in the bacterial comminutes is represented by the stacked bar graphs. Bacterial communities B and C have the same number of observed

species (n = 9) but their relative abundance is different, with community C being dominated by one species. While the alpha diversity can be computed with

different metrics, when accounting for community richness, communities B and C species have the same alpha diversity.

and provisioning services that underlie the overall function of the
infant gut microbiome ecosystem (Table 1).

In addition to their role as pioneer substrates in the gut,
organic acids and SCFA can enter circulation and directly
affect the adipose tissue, brain, and liver (69–71). Acetate
has been proposed to have an important role in inducing
anti-inflammatory effects via the modulation of regulatory T-
cells and anti-inflammatory cytokines (70), as well as improve

mucosal epithelial integrity in the gut leading to protection
from infectious disease in animal models (64). Lactate crosses
the blood-brain barrier and functions as a modulator of
neural activity, and is actively transported by gut epithelial
cells (72–74). Acetate and lactate are also precursors of
butyrate, which has anti-tumorigenic and anti-inflammatory
properties and provides energy to gut epithelial cells (64).
Overall, these microbially-produced organic acids have a major
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BOX 2 | Advantages of an ecosystem services paradigm to evaluate the infant gut microbiome.

The application of concepts drawn from applied macroecology research has provided important insights into the mechanisms shaping the gut microbiome, especially

as it relates to how microbial communities assemble, function and evolve (38, 49–53), and how these processes influence human health (54, 55).

Unlike abiotic geographies for macroecology, hosts have faced millennia of coevolution to shape the populations of microbes that colonize them. Exquisitely

specific mechanisms to select for specific microbial symbionts have been described for plants (56) invertebrates (squid, insects) (57), and vertebrates (58–60).

Selective pressures have shaped these interactions between host and microbe over time, and in the gut microbiome, toward selection for the key ecosystem services

that improve host health (i.e., fitness). Evaluation of the infant gut microbiome through the lens of ecosystem services will facilitate the identification of key ecosystem

“service providers” as those species whose functions are critical for the delivery of a given service. Colonization resistance and access to specialized foods or diets

(provisioning services) are examples of ecosystem services where research may offer clues as to how services in the gut microbiome have been maximized by

host-microbe interactions under strong selective pressures.

The ecosystem services framework is widely applied to evaluate terrestrial and marine ecosystems (47) and was recently adapted to evaluate the mammalian gut

(16). Viewed through the lens of ecosystems services, the goods and services humans obtain from their microbiomes can be categorized as supporting, provisioning,

or regulating (Table 1). Provisioning services are those obtained directly from the production of goods, e.g., microbial production of vitamins, antimicrobials, organic

and short-chain fatty acids. Regulating services are those involved in maintaining stable ecosystem conditions, e.g., resistance to pathogen invasion. Supporting

services are those necessary for the production and maintenance of all other ecosystem services, e.g., generation of pioneer products.

One main advantage of applying the ecosystem service model to evaluate the infant gut microbiome is that it facilitates the systematic identification of key “service

providers” whose functional traits underpin the delivery of a given service (61, 62). By explicitly linking functional traits to ecosystem service delivery, it is possible to

assign “functional importance” and “irreplaceability” indices, and correspondingly, predict the extent to which the loss of key “service provider” species can impact

the ecological processes that sustain ecosystem functioning (35, 62).

TABLE 1 | Ecosystem services, functions, traits, measures, and dysfunction consequences.

Ecosystem service* Description of benefit Underpinning functional traits of

ecosystem service providers

Measures of ecosystem’s

functionality

Consequences of ecosystem

dysfunction

Supporting

Basic ecosystem processes

that maintain the generation

of all other

services

Generation of pioneer products

(primary production)

Capacity to stably colonize and

generate pioneer products efficiently

from the available ecosystem

resources

Bioconversion rate Decreased ecosystem functions

Provisioning

Products, nutritional

compounds and energetic

outputs from ecosystems

Recovery of energy from

non-digestible/absorbable

substrates from the host’s diet

Ability to efficiently access and

metabolize the available resources

(i.e., HMOs)

Production of organic acids

and bacterial biomass from

fermentation of HMOs

Residual HMOs in stool.

Inefficient resource utilization.

Loss of HMOs in the stool

Regulating

Moderation and

maintenance of essential

ecological and conditions

and processes.

Resistance to invasive species

and prevention of pathogenic

overgrowth

Maintenance of mucosal and

epithelial integrity

Establish abundant and stable

populations.

Effectively deplete the utilize the

available resources (i.e., HMOs)

without cross-feeding

Reduce intestinal pH through the

production of organic acids

Ecosystem stability index

Mucosal and epithelial

barrier integrity

Fecal pH

Increased vulnerability to invasion

and/or to the overgrowth of

virulent and antibiotic resistant

gene-carrying bacteria

Elevated endotoxin levels

Overgrowth of mucolytic bacteria

*As outlined in by McKenney et al. (16) according to criteria established in the Millennium Ecosystem Assessment (47).

influence on host physiology. Thus, the presence of taxa able
to efficiently metabolize HMOs into these key metabolites
is critical to the delivery of fundamental ecosystem services
that can affect the short- and long-term health of the
growing infant.

COLONIZATION RESISTANCE AND
STABILITY ARE CRITICAL REGULATING
SERVICES OF THE INFANT GUT
MICROBIOME

One of the critical functions of the gut microbiome is to protect

the immunologically naïve infant from acquiring exogenous

pathogens and to prevent the overgrowth of opportunistic
commensals (10, 75), a process known as colonization resistance

(76, 77). Direct competition for resources, metabolic exclusion
by production of organic acids, and indirect stimulation of the
mucosal barrier system are well-characterized mechanisms by
which the microbiome provides the host with this regulatory
service (78). More competition for resources increases ecological
stability at the expense of diversity by favoring the growth of
specialized taxa, and limits the ability of invading microbes to
establish and replicate (79). Thus, increased stability is central
to the delivery of this regulatory service (Table 1) as stable
ecosystems are inherently more resistant to external disturbances
(42). In a clinical study, it was shown that colonization with

B. infantis EVC001 significantly increases the stability of the
infant microbiome (17). Moreover, consumption of HMOs by
B. infantis produces acidic end-products mainly lactate and
acetate, thereby altering the intestinal environment to prohibit

the growth of pH-sensitive populations (e.g., Enterobacteriaceae
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and Clostridia) (69, 80, 81) including known enteric pathogens
(17, 82), many of which carry antibiotic resistant genes (83–

85). Further, the resulting high abundance of bifidobacteria
contributes to maintaining intestinal barrier function through
the production of acetate and tryptophan metabolites, and
the reduction of mucus-eroding bacteria (86–89). Thus, the

regulating services infants obtain from a microbiome abundantly
colonized by B. infantis represents an archetypal model of

protection, in which the host selects (via HMOs) microbial taxa
most adept at strengthening epithelial defenses as well as creating
biotic (i.e., competition for resources) and abiotic (i.e., pH)
resistance barriers against invasion (28). A conceptual depiction
of these concepts is shown in Figures 1, 3.

INTEGRATING ECOSYSTEM SERVICES IN
THE EVALUATION OF THE INFANT GUT
MICROBIOME

The application of traditional concepts from macroecology
has proven successful in providing relevant insight into the
ecological dynamics that govern the human microbiome (38,
49). According to ecological theory, ecosystem productivity
can be measured by total biomass and by changes in the
concentration of a limiting substrate (35, 62, 91). In the
gut, dietary and host-derived carbohydrates are the primary
resources for microbial metabolism (31, 32). Productivity of
the ecosystem can thus be determined based on the efficiency
of their utilization, and in concert, determining bacterial
biomass (Table 1; Figure 3). Together, these two functions
offer complementary and independent approaches to monitor
productivity and to identify states in which the delivery of
the ecosystem services is maximized. Thus, by combining
evaluations of ecosystem productivity and the generation of
ecosystem services we propose a model for the definition
of dysbiosis of the breastfed infant gut as a low-functioning
ecosystem, in which the gut microbiome community is
characterized by (1) low stability evenwithout perturbations (e.g.,
diet change or antibiotics); (2) high susceptibility to invasion by
external taxa; and (3) low utilization of the available resources
(i.e., HMOs). The alternative to dysbiosis or a “healthy” state
is characterized as being a high-functioning ecosystem when
the gut microbiome community is: (1) stable over time, (2)
resistant to invasion by allochthonous bacteria; and (3) shown
to exhibit a high conversion of HMOs to pioneer products and
biomass of benefit to the host (Figure 3). Overall, by focusing on
function, this model is agnostic to method and index of choice
and provides a quantifiable and objective approach to evaluate
the microbiome.

APPLICATION OF THE MODEL TO
EVALUATE THE SYMBIOSIS BETWEEN
B. INFANTIS AND THE
BREASTFED INFANT

Humans live in symbiosis with the composite of microbial
inhabitants residing in their intestinal tracts but the contribution

of specific species to the overall ecosystem function and terms
of the individual symbiotic relationships, which can range from
commensal to parasitic, are less understood. Considering the
ecosystem services the infant host obtains from selectively
favoring the growth of B. infantis, it is evident that the symbiotic
relationship is mutualistic. Free selectively consumed resources
like HMOs are extremely rare in nature and the composition of
HMOs is unique among mammals (92, 93). Of the thousands
of species able to colonize the human gut, only a very limited
number of species have the molecular machinery to utilize them
(24). Within the genus bifidobacteria, only B. infantis encodes the
complete set of genes required to transport, and intracellularly
deconstruct and metabolize all the chemical structures found
among HMOs (65), thus indicating maintenance of these
genes is under strong selection. Indeed, since its discovery, B.
infantis has so far been exclusively found in association with
human beings (94) and phylogenetic analysis indicates humans
and bifidobacteria have co-speciated (95). Taken together, the
association of B. infantis and the breastfed infant host presents
strong characteristics of an exclusive symbiotic alliance that has
persisted over evolutionary timescales, whereby the human host
requires the symbiont to access a significant portion of its diet
(i.e., HMOs), while concurrently the symbiont benefits from the
nutritional niche provided by the host. This concept is congruent
with well-established models of coevolved symbioses (57, 96, 97).

Interdependent biological alliances are best understood in
binary symbiotic models (57). One invariable lesson from
decades of research in these model systems has been that
aposymbiosis (i.e., the absence of the symbiont) can represent
a major stressor to the host and often results in physiological
and developmental deficiencies. For example in the well-
characterized Squid-Vibrio model, external perturbations are
markedly different between apo- and symbiotic squids (98, 99).
Indeed, the presence of V. fischeri may help modulate the host
stress responses (100). Similarly, the removal of nutritional
symbionts (i.e., symbiotic bacteria that help their animal partners
digest, absorb, and metabolize complex nutrients) is known
to pose appreciable fitness costs to the host (96, 101, 102).
Notably, the removal of vertically transmitted (from parent
to offspring) nutritional symbionts has been shown to have
the greatest negative impact on host fitness (102), which
bears surprising parallels to the conspicuous depletion of B.
infantis among infants with severe acute malnutrition (103)
and with the inverse correlation between fecal pH and stunting
(104). Further examples include aposymbiotic pea aphids which
have reduced growth rates, attain a lower adult size, and are
reproductively sterile (101) and fruit flies, for which the presence
of the facultative symbiont Lactobacillus plantarum is critical
to the growth and maturation of larvae ingesting nutritionally
suboptimal diets (9). Together, these examples demonstrate
broadly that the disruption of ancient symbiotic associations can
have negative implications on the host.

All data indicate human infants have evolved to partner
with key symbiotic gut bacteria specialized in metabolizing
host-provided resources in the form of HMOs; however, it
appears over time the role of B. infantis and the impact of
its absence from the infant gut have become obscured, likely
because the generational loss of B. infantis predates the advent
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A B

FIGURE 3 | Characteristics of a high and a low functioning infant gut microbiome based on delivery of ecosystem services. (A) A low functioning infant gut

microbiome ecosystem where the resources (HMOs) are inefficiently utilized leading to their loss in the stool (17) and potential cross-feeding to non-adapted

opportunistic taxa. Prevalence of non-adapted opportunistic taxa leads to loss of ecosystem stability and decreased ecosystem function along with increased

abundance of virulence factors and antibiotic resistance genes (82, 84, 85). Overgrowth of mucus-degrading bacteria and elevated levels of endotoxin compromise

the intestinal barrier leading to chronic enteric inflammation and/or increased susceptibility to bacterial translocation (5, 89, 90). (B) A high functioning gut microbiome

where ecosystem functions and stability are maintained over time, corollary to an increase in biomass of B. infantis. HMOs are efficiently utilized by B. infantis and

converted into cell biomass, organic and SCFA. Production of organic and SCFA reduces the luminal pH (17) creating an unfavorable environment for opportunistic

taxa, including virulent, antibiotic resistant, and mucolytic bacteria.

of high resolution tools to investigate the gut microbiome. For
instance, substantial fecal excretion of HMOs and high fecal
pH are not considered abnormal, and considerable instability
of the gut microbial ecosystem is considered normal in early
life (33). However, historical records suggest bifidobacteria was
once more prevalent among infant populations in developed
nations than what contemporary reports indicate (105), and
correlative evidence from large cohort studies suggest absence
of this key symbiont comes with important negative acute and
chronic health consequences during a critical developmental
stage (2, 4, 103, 104, 106).

WHAT ARE THE ACUTE AND CHRONIC
HEALTH CONSEQUENCES OF THE
ABSENCE OF B. INFANTIS IN THE INFANT
GUT?

The importance of individual species to ecosystem function, and
ultimately to the services, can become apparent through their
loss. There is growing appreciation that interventions known

to disrupt microbiome development may lead to the extinction
of certain taxa across entire populations (107). Widespread
antibiotic use, cesarean section delivery, and formula feeding
are associated with altered gut microbiome compositions and
subsequent negative health outcomes, including obesity and
autoimmune diseases (3, 108, 109). In particular, the increased
prevalence of these dietary and medical interventions has been
associated with the decline of Bifidobacterium over the past
century (20, 21, 60, 105, 110, 111). We pose the loss of
critical functions in the gut resulting from the decline in the
prevalence of B. infantis may have selected for microbiota
that lack the resilience and stability during critical stages of
immune and metabolic development. In fact, lower abundance
of bifidobacteria has been associated with greater risk for
developing colic, atopic dermatitis, asthma, food allergies,
type I diabetes and chronic inflammation (2, 10, 11, 15,
112). Additionally, infants lacking B. infantis show signs of
chronic enteric inflammation during the first 60 days of life
(5), which has been directly linked to an increased risk of
certain chronic disorders such as atopy and asthma later in
life (113).
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Interestingly, in geographic locations where breastfeeding
rates are high and vaginal birth is widespread, Bifidobacterium
is normally abundant in infant microbiomes (66, 114, 115).
In contrast, the gut communities of infants in developed
countries are largely unstable and highly variable (25, 111)
and the distribution of Bifidobacterium is notably bimodal
(26). This variation is clearly evident in a recent comparison
of the gut microbiome of infants in geographically similar
but developmentally diverse locations in which the level of
Bifidobacterium was found to be higher in infants in more
resource-limited locations, which correlated with decreased
incidence of autoimmune and allergic diseases (2). Together
these findings raise the question of whether the modern infant
gut microbiome has been fundamentally altered from that of
our ancestors and how the loss of key symbiotic species and the
resulting disruption in immune development could be connected
to the increased incidence of metabolic, autoimmune, and
allergic diseases observed in developed countries today.

Fecal pH is another factor that has changed significantly
over the past century and is consistent with the loss of
Bifidobacterium (105). Fecal pH values directly correlates with
the bacterial species colonizing the infant gut, particularly
pertaining is the direct association between lower fecal pH
and significantly decreased abundance of potentially harmful
bacterial populations (i.e., Clostridiaceae, Enterobacteriaceae,
Peptosteptoccocaceae, and Veillonellaceae) (105). These findings
are intriguing, as an abundance of specific Enterobacteriaceae
species induce gut inflammation (21), which has been positively
associated with colic and crying in infants (116, 117).
These adverse conditions may be due to the fact that
Enterobacteriaceae-derived lipopolysaccharides induce stronger
inflammatory activity compared with other lipopolysaccharide-
producing bacteria (2, 118). In addition, lower fecal pH has been
shown to be associated with better anthropometric growth scores
(104) and improved thymic growth, a sign of immune system
development (1). This may partially explain why B. infantis-
colonized infants exhibit more robust vaccine responses (66, 119)
and why there is a reduced incidence of autoimmune diseases
in populations colonized with high levels of Bifidobacterium (2).
Taken together, these data indicate functions provided by key
symbiotic partners (i.e., B. infantis) during infancy have a strong
impact on development and conversely, the absence of these taxa
can have negative health consequences, underscoring the need to
restore specific beneficial taxa to the infant gut.

RELEVANCE, APPLICATIONS, AND
LIMITATIONS OF THE MODEL

With the growing recognition of the role of the microbiome
in human health, the incorporation of microbiome-based

diagnostics will inevitably become routine. In fact, a number
of commercial tests are currently available to the general
public and physicians are increasingly requested to interpret
test reports. However, we currently lack a “gold standard” for
what constitutes a healthy microbiome. Here, we proposed
an anthropocentric model whereby gut microbiome function
is determined in terms of ecosystem services that ultimately
benefit the infant. Thus, microbiome composition can be
evaluated objectively with regard to its contribution to host
health, facilitating interpretation by health professionals.
Furthermore, linking functional traits to specific ecosystem
services may assist both the development of prognostic tools
of infant microbiome function and probiotic interventions
aimed at restoring the ecosystem services of the infant
gut microbiome.

However, it is important to recognize that this model is limited
to conditions in which the nutrient landscape in the gut is
shaped by a single nutritional resource (i.e., HMOs) and will
have to be re-validated for conditions known to shift the type
and amount of resources as well as the distribution of biomass.
Such conditions include, the introduction of complementary
foods, formula feeding, antibiotic use and other microbiome-
modifying practices. Moreover, the principles on which this
model is based may be affected by stochastic events including
niche pre-emption (i.e., “first come, first served”) driven by
priority effects (120). We also recognize the overall dynamics
of the infant microbiome involve complex intra and inter-
species interactions which are not considered in our model.
For example, the ecological relevance of Bifidobacterium species
other than B. infantis, which are known to have limited capacity
to metabolize HMOs but are found in the stools of infants, is
currently unknown (121). Additionally, future models should
aim to integrate the non-bacterial microbial inhabitants of the
microbiome (e.g., virus, archaea, fungi, and other eukaryotes)
which are increasingly recognized as important functional
components. Nevertheless, the ecological principles presented
here, can be broadly applicable to other host species, and
evaluation of additional body sites, and can be adapted to inform
the selection of taxa that may be relevant for health in other stages
of life.

Lastly, we hope this work encourages the field to propose
analogous models that incorporate ecological theory and testable
frameworks to identify microbiome characteristics that are
conducive to health or disease.
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GLOSSARY

Allochthonous: An organism whose origin is different than that
in which is found.

Biomass: Total quantity of living organisms of a species
per unit area of a given habitat.

Dysbiosis: Vague/imprecise term often used to describe a
microbiome composition that is different from the control
and/or observed in subjects with a particular disease or
condition. No scientific consensus has been reached on its
definition. The origins and use of the term are reviewed by
Hooks and O’Malley (122), and the casual obfuscation of its use
to progress in the field, is discussed in Olesen and Alm (123) and
Brussow (124).

Ecosystem services: Refers to the benefits to be gained
from properly functioning ecosystems.

Ecosystem functioning: Refers to all processing and
transport of energy and matter in an ecosystem,
integrating multiple individual functions of the ecosystem
including the production of biomass, the biochemical
cycling of resources and the ability to resist invasion by
allochthonous species.

Fitness (ecology): An organism’s adaptation to the environment
that increases its ability to propagate its genes. Genotypes with
higher fitness are therefore selected for in the next generation
(see natural selection). Fitness is environment-specific and
directly related to the number of offspring produced.

Insurance hypothesis: Suggests that stabilization of communities
against decline in function resulting from invasion, species loss,

or fluctuations in abiotic features of the environment is improved
by increasing diversity, and that diminishing fluctuations over
time increases the overall productivity or services provided by
the community.

Limiting substrate: Specific resource by which the productivity
rate of an ecosystem depends on.

Mutualistic: Exchange of goods and services between species.

Niche (Hutchinsonian): Environmental conditions (biotic
and abiotic) of a given habitat under which a species can persist
and maintain stable populations without immigration from
external sources.

Opportunistic commensal: Otherwise non-harming members
of the gut microbiome that bloom upon a disturbance to the
ecosystem and exert pathogenicity to the host.

Primary production: First level of nutrient generation in
the tropic chain (food web).

Productivity: Rate at which energy is converted to biomass.

Stability (ecology): Measure of the temporal variability of
an ecosystem, depends on its resistance to environmental
change, and its rate of return to equilibrium following a
perturbation (resilience).

Stochastic: With inherent randomness, the opposite
of deterministic.

Symbiosis (From Greek: sym “with” and biosis “living”)
long-term associations between organisms of distinct
genetic makeup.
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