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Phenolic compounds are broadly represented in plant kingdom, and their occurrence

in easily accessible low-cost sources like wastes from agri-food processing have led

in the last decade to an increase of interest in their recovery and further exploitation.

Indeed, most of these compounds are endowed with beneficial properties to human

health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely

ascribed to their potent antioxidant and scavenging activity against reactive oxygen

species generated in settings of oxidative stress and responsible for the onset of several

inflammatory and degenerative diseases. Apart from their use as food supplements or

as additives in functional foods, natural phenolic compounds have become increasingly

attractive also from a technological point of view, due to their possible exploitation

in materials science. Several extraction methodologies have been reported for the

recovery of phenolic compounds from agri-food wastes mostly based on the use of

organic solvents such as methanol, ethanol, or acetone. However, there is an increasing

need for green and sustainable approaches leading to phenolic-rich extracts with

low environmental impact. This review addresses the most promising and innovative

methodologies for the recovery of functional phenolic compounds from waste materials

that have appeared in the recent literature. In particular, extraction procedures based on

the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of

green solvents such as deep eutectic solvents (DES) are surveyed.

Keywords: phenolic compounds, agri-food wastes, sustainability, microwave assisted extraction, ultrasound

assisted extraction, supercritical fluid extraction, deep eutectic solvents, Naviglio extractor

INTRODUCTION

Global food waste approximates 1.3 billion tons per year as the result of primary and
secondary processes occurring along the supply chain, which include losses generated during
production and postharvest of the food products, that represent about 75% of food losses
e.g., in developing African countries, or wastage at the consumption stage as is the case of
industrialized countries (North America and Europe) (1, 2). Agri-food industry in particular
is responsible for the generation of high volumes of organic wastes (biomasses), reaching
up to 140 billion tons per year, although a considerable part of this is not related

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2020.00060
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2020.00060&domain=pdf&date_stamp=2020-05-07
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:panzella@unina.it
https://doi.org/10.3389/fnut.2020.00060
https://www.frontiersin.org/articles/10.3389/fnut.2020.00060/full
http://loop.frontiersin.org/people/634361/overview
http://loop.frontiersin.org/people/912403/overview
http://loop.frontiersin.org/people/919211/overview
http://loop.frontiersin.org/people/912015/overview
http://loop.frontiersin.org/people/25486/overview
http://loop.frontiersin.org/people/912089/overview


Panzella et al. Sustainable Production of Phenolic Compounds

to food wastage issues (2–4). Disposal of these byproducts
represents a cost to the food processor and has a negative
impact on the environment. On the other hand these materials
can be considered as a largely available, low cost source not
only of energy for biofuel production, but also of value-added
compounds, whose recovery represents therefore a valuable
opportunity (5).

Generally, natural products are considered attractive value-
added compounds based on their wide bioactivity spectrum.
Among these, a prominent role is occupied by phenolic
compounds, which are well-known for their beneficial effects
on human health, e.g., in the prevention of cancer and
cardiovascular diseases (6–8). These effects have been ascribed in
part to their ability to act as potent antioxidants and scavengers
of reactive oxygen species, generated under oxidative stress
conditions and responsible for the onset of several inflammatory
and degenerative diseases (9–11). These properties have therefore
prompted the use of natural phenolic compounds not only
as food supplements (7, 12–15), but also as additives for
functionalization of materials to be used e.g., in biomedicine
(16–18), cosmetic (19–22), or food industry (23–27).

In this context of course it is clear that, in order to comply
with the principles of the green economy, the recovery of
phenolic compounds from agri-food wastes should be achieved
using environmentally friendly, sustainable and possibly low-cost
procedures. On this basis, this review will provide an overview of
the most commonly employed green approaches for the recovery
of functional phenolic compounds from agri-food byproducts.
In particular microwave assisted extraction (MAE), ultrasound
assisted extraction (UAE), and supercritical fluid extraction (SFE)
have been considered as well as the use of deep eutectic solvents
(DES) as emerging green solvents. A brief description of other
promising sustainable methodologies based e.g., on the use
of Naviglio extractor R©, pulse electric fields (PEF) and steam
explosion will also be provided. Patents were excluded since the
main aim of this review is an update of those applications that
have a potential for further development but may not be ready
for a straightforward use in industries.

PHENOL-RICH AGRI-FOOD WASTES

Fruit Byproducts
Grape and Wine Byproducts
The main byproduct of the wine industry is known as grape
pomace and consists mainly of grape skin, seeds, stems, and
remaining pulp (28). Approximately 9 million tons of this

Abbreviations: ABTS, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid); β-
CD, β-cyclodextrin; BHT, butylated hydroxytoluene; CE, catechin equivalents;
ChCl, choline chloride; DES, deep eutectic solvents; DPPH, 2,2-diphenyl-1-
picrylhydrazyl; EP, emerging pollutants; GAE, gallic acid equivalents; FRAP, ferric
reducing/antioxidant power; HBA, hydrogen bond acceptor; HBD, hydrogen bond
donor; MAE, microwave assisted extraction; MHG,microwave hydrodiffusion and
gravity; PEF, pulse electric fields; QE, quercetin equivalents; RE, rutin equivalents;
ROS, reactive oxygen species; RSM, response surface methodology; S/L, solid-
to-liquid ratio; scCO2, supercritical CO2; SFE, supercritical fluid extraction;
TAC, total anthocyanin content; TAEC, Trolox equivalent antioxidant capacity;
TFC, total flavonoid content; TPC, total phenol content; UAE, ultrasound
assisted extraction.

waste are produced per year in the world, which represents
about 20% w/w of the total grapes used for wine production
(29, 30). As to the phenolic composition, an average lignin
content of 17–24% w/w has been reported (31). Condensed
tannins (proanthocyanidins) represent another main class of
polyphenols present in the pomace, together with other small
phenolic compounds exhibiting high health beneficial properties,
such as cardioprotective, neuroprotective, anti-inflammatory,
anticarcinogenic, and antimicrobial activities. Among these, the
most abundant are phenolic acids (caffeic, gallic, protocatechuic,
4-hydroxybenzoic, and syringic acid), hydroxytyrosol, and
flavonoids, mainly catechin and epicatechin derivatives as well as
anthocyanins, which are commonly recovered and used as food
colorants (28) (Figure 1).

Olive and Oil Byproducts
The olive oil industry also generates high amounts of byproducts,
which are particularly rich in lignans, secoiridoids, and especially
hydroxytyrosol, which is one of the most bioactive phenolic
compounds present in nature, endowed with anti-inflammatory
and antiplatelet properties (12, 28–30, 32) (Figure 1). Soybean
(33) and palm oil (34) byproducts have been also described as
a valuable source of polyphenols.

Orange and Lemon Byproducts
Citrus peels as well as seeds and pulp deriving from the industrial
production of orange and lemon juice, which led to about
15 million tons of waste per year, are an important source
of hydroxycinnamic acids and flavonoids, mainly flavanone
glycosides (hesperidin, naringin, and narirestin), flavanones
(hesperetin and naringenin), and flavone aglycons (luteolin) (28,
30, 35) (Figure 1). Extracts rich in these compounds have been
proposed to be used as antimicrobials or as food additives to
impart bitter taste to food and beverages (30).

Pomegranate Byproducts
As in the case of citrus fruits, pomegranate juice production leads
to the generation of high amounts of wastes (ca. 9 tons for 1 ton
of juice) (36), containing very specific compounds such as the
ellagitannins punicalagin and punicalin, which are endowed with
very high antioxidant potency (17, 30, 37) (Figure 1).

Apple Byproducts
Also apple pomace represents an important source of
valuable polyphenols, exhibiting antimicrobial, anticancer,
and cardioprotective activities. Among these a prominent
role is played by quercetin glycosides, kaempferol, catechin,
procyanidins, and especially the dihydrochalcone phlorizin
(28, 30, 38–40) (Figure 1).

Other Fruit Byproducts
Banana peels contain high amounts of phenolic compounds,
particularly flavonoids and proanthocyanidins (28, 41), whereas
pineapple peels are a source of gallic acid, catechin, epicatechin,
and ferulic acid (28, 42) (Figure 1). Also different nut shells
as well as endocarps and skins of berries (43), apricot (44),
acerola (45), xonocostle (46), litchi (47), sea buckthorn (48),
pequi (49, 50), juçara (50), and dragon fruit (51) are emerging as
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FIGURE 1 | Main fruit byproducts and their most prominent phenolic constituents with reported bioactivities.
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FIGURE 2 | Main vegetable and lignocellulosic byproducts. Shown are the most abundant phenolic components and the reported bioactivities.

valuable sources of phenolic compounds. Tea residues also lead
to phenolic-rich extract (52, 53).

Vegetable byproducts
Onion Byproducts
The major byproduct resulting from industrial peeling of onions
is represented by the skin, the outer fleshy leaves, and the top
and bottom bulbs, which are produced in more than 450,000 tons
only in Europe (30, 54). These are particularly rich in flavonoids
such as quercetin and kaempferol glycosides. Anthocyanins are
also present in red onions (Figure 2) (28, 55).

Carrot Byproducts
The main carrot byproduct is the pomace deriving from
carrot juice production. This is rich in hydroxycinnamic
acid derivatives, particularly chlorogenic acid, which are
known to possess antiviral, antimutagenic, anti-inflammatory,
cardioprotective, antiobesity, and wound healing properties
(Figure 2) (28, 56).

Potato Byproducts
Potato peels are undoubtedly among the most abundantly
produced vegetable byproducts. Their extracts have been
proposed for several applications in the food and other sectors.

The main phenolic compounds present in potato peels are
phenolic acids and derivatives, especially chlorogenic acids
(Figure 2) (28).

Tomato Byproducts
Peels and seeds from tomato processing contain mainly
flavanones (naringenin glycosylated derivatives) and flavonols,
mainly quercetin, rutin, and kaempferol glycoside derivatives
(Figure 2) (28, 57).

Other Vegetable Byproducts
Other vegetables that lead to high amounts of byproducts are
fennels (58, 59), broccoli (60), cabbages (61), lettuce (62, 63) and
artichokes (64, 65).

Lignocellulosic Byproducts
Lignocellulosic agri-food byproducts such as wheat straw (28,
30), wheat bran (66) and distiller’s grain (67), spent coffee
grounds from the industrial production of soluble coffee
(68, 69), sawdust (70, 71) and other wastes from the wood
industry (72) have been widely described as a clean source of
phenolic compounds, mainly deriving from hydrothermal and/or
autohydrolysis processing of lignin, that could be exploited for
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FIGURE 3 | Schematic representation of MAE equipment and characteristics.

application in a variety of sectors given their antioxidant and
antimicrobial properties (28) (Figure 2).

GREEN EXTRACTION TECHNIQUES

Microwave Assisted Extraction (MAE)
Microwave assisted extraction (MAE) can be classified as a green
extraction technique since it shortens the extraction time and
reduces the consumption of solvent. The principle on which
MAE is based is the dielectric heating, that is the process in
which a microwave electromagnetic radiation heats a dielectric
material by molecular dipole rotation of the polar components
present in the matrix (73) (Figure 3). MAE has been reported
to proceed through several distinct steps as the result of heat
and mass gradients generated into the matrix: (1) penetration of
the solvent into the matrix; (2) solubilization and/or breakdown
of the components; (3) transport of the solubilized compounds
from the insoluble matrix to the bulk solution; (4) separation of
the liquid and residual solid phase (74, 75). Several parameters
should be considered to optimize the MAE process, that is
solvent, solid to solvent ratio, microwave power and extraction
temperature and time. As to the solvent, ethanol, alone or in
combination with water, is one of the most commonly used in
MAE because it has a good capacity to absorb the microwave
energy and exhibits good solubilizing properties toward phenolic
compounds. The amount of solvent to be used has to be properly
chosen to ensure complete immersion of the sample during
the entire irradiation process, avoiding excessive amounts that
would require time and energy consumption for removal in the
final recovery of the extracted compounds. The choice of the
microwave power as well as of extraction temperature and time is
dependent on the stability of the compounds to be extracted (75).

Other factors can also affect the efficiency of the extraction,
such as the characteristics of the matrix in terms of particle size,
the contact surface area and the water content. As an example,
higher extraction yields of phenolics can be achieved by milling
the sample into smaller particle sizes, although particles smaller
than 250µm can be difficult to separate from the liquid phase at
the end of the process (75).

Regarding the instrumental apparatus, MAE can be
performed in closed extraction containers, which operate at
high pressures and temperatures, allowing for higher extraction
yields, or in open vessels operating under milder conditions,
at atmospheric pressure. This latter system is particularly
suitable for thermolabile compounds and has the advantage
of requiring a low-cost instrumentation able to process higher
amounts of material. Recently, instruments operating under
vacuum or under a nitrogen atmosphere have also been
developed (75).

Ultrasound Assisted Extraction (UAE)
As in the case of MAE, ultrasound assisted extraction (UAE)
also allows to reduce the time and solvent amount needed to
efficiently extract phenolic compounds from agri-food wastes.
UAE is considered one of the simplest extraction procedure
since it requires common laboratory equipment, that is an
ultrasonic bath (76). The technique is based on the cavitation
process induced by compression and expansion cycles associated
to the passage of ultrasounds (20 kHz-100 MHz frequency)
through the sample. The implosion of the cavitation bubbles
induces inter-particle collisions which result, among others, in
particle disruption and enhanced diffusion of the extractable
compounds into the solvent (Figure 4). Sample characteristics
such as consistency, rheology and particle mobility can therefore
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FIGURE 4 | Schematic representation of UAE equipment and characteristics.

significantly affect the ultrasound energy dispersion and hence
the effectiveness of UAE.

UAE is generally performed under static conditions, that is in
closed vessels, with no solvent refreshing, or in a dynamic mode,
in which fresh solvent is supplied in continuously (75).

Supercritical Fluid Extraction (SFE)
Another green technology, based on supercritical CO2 (scCO2),
has been recently considered in order to overcome the
environmental concerns related to conventional methods. scCO2

is in fact characterized by immediate advantages over traditional
solvent-based methods. It enables the selective extraction of
compounds soluble in scCO2, thus perfectly applicable to
lipophilic compounds like fats, with no need of concentration
steps (77). The addition of a co-solvent (for example ethanol, that
is well-tolerated by various industrial sectors) is able to modify
the polarity of the scCO2 allowing the extraction of more polar
molecules (78) (Figure 5). Moreover, the operative temperatures
can be set low enough to avoid the degradation of thermolabile
substances. Literature results show a substantial advantage with
respect to conventional extraction in terms of easy recovery,
selectivity, compounds stability, time, and an overall total energy
saving (79).

The high versatility of SFE technique can be extended to
industrial scale with the intent to introduce sustainability to
large-scale processes. Moreover, the easy removal of CO2 at
ambient conditions and its feasible recovery through specific
apparatus for its reuse lead to a reduction of reagent-related costs,
well-appreciated in the industrial sector.

A relevant aspect in SFE, affecting the extraction rate, is
the solubility of target compounds in the scCO2. In this case,
temperature and pressure are key thermodynamic parameters
that mainly contribute to solubility of target compounds.
In details, the increase of pressure enhances the density of
supercritical fluid and its solvation power (80). Working on

vegetal matrix, high pressure can disrupt plant cell thus
facilitating the release and the solubilization of compounds.
Temperature has a more complex role: at constant pressure,
its increase enhances the vapor pressure of the solute and its
solubility in the extractor fluid with a slight but balanced decrease
of supercritical fluid density.

Many examples in literature show how the scCO2 has
been widely applied to lipophilic molecules extraction (81).
Conversely, there are fewer applications on target molecules of
higher polarity when the addition of a co-solvent to scCO2 is
necessary to enable their extraction. The use of co-solvents affects
the physical and chemical intermolecular forces of the system and
increases the local density around a solute molecule, achieving
specific interactions such as H-bond.

Some works in the literature recently reported the
recovery of polyphenols from wastes through scCO2.
Bioactive and valuable compounds isolation from agri-food
residues by green technologies like scCO2 is of particular
interest because it accomplishes the implementation of
bio-based-economy policies.

Overall, not only the physico-chemical parameters of scCO2

extraction (temperature, pressure, and amount of co-solvent),
but also the biomass nature and processing before extraction
(lyophilization, micronization, etc.) deeply affect the final
extraction yields and composition, being the diffusivity inside the
solid matrix a critical parameter. The process conditions in SFE
may differ from onematrix to another, even in the presence of the
same compounds (82). The literature in the field is not as wide as
in the case of the other green techniques, at least when scCO2

is applied to extract more polar molecules. The optimization
of extraction parameters, such as pressure, temperature and the
percentage ofmodifier, together with the understanding ofmatrix
effects, are the key points to yield more polar molecules, but a
wide literature sink to be set as background is still missing in
this field.
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FIGURE 5 | Schematic representation of SFE equipment and characteristics.

Deep Eutectic Solvent (DES) Extraction
Solid-liquid extraction is one of the most commonly used
procedures to extract phenolic compounds e.g., from agri-food
wastes (83). However, this methodology typically involves
long extraction time periods, high costs, low yields, and
the use of organic solvents, which even if exhibit excellent
ability in phenolic compound dissolution and extraction,
show many intrinsic drawbacks, such as low boiling
points, flammability, toxicity, and non-biodegradability
(84, 85). On the other hand, water is as an extraction
solvent effective only for polar and hydrophilic compounds
(86, 87). Therefore, there is a high demand for green
solvents exhibiting the same excellent extraction properties
of organic solvents, but low-costs and minimal environmental
impact (87, 88).

Recently, a new type of eco-friendly and green solvents called
deep eutectic solvent (DES) has been developed and applied in
the extraction of phenolic compounds (87–90).

DES preparation was first described by Abbott et al. (91).
They are easily prepared by mixing, at a suitable temperature,
a hydrogen bond acceptor (HBA) and a hydrogen bond donor
(HBD) (91) (Figure 6). Compared to common organic solvents,
DES offer many advantages such as low price, easy preparation,
and easy availability. Moreover, most of them are biodegradable
with very low toxicity (90, 92).

DES can be described by the general formula Cat+X−zY,
where Cat+ is typically ammonium, sulfonium, or phosphonium,
X− a Lewis base, normally a halide, Y a Lewis or Brønsted acid,
that forms a “complex” with X−, and z is the number of Y
molecules that interact with the anion (93). These interactions
result in the formation of a eutectic mixture, characterized by a
melting point lower than that of individual constituents.

The most popular component used for the preparation of DES
is choline chloride (ChCl), a cheap and non-toxic salt. The most
used HBD are urea, ethylene glycol, glycerol, but also alcohols,
amino acids, carboxylic acids and sugars (94, 95). Indeed,
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FIGURE 6 | Schematic representation of extraction of phenolic compounds with DES.

very recently, DES have been developed from the combination
of primary metabolites and bio-renewable starting materials.
These solvents have been called “natural deep eutectic solvents”
and have been obtained by combining compounds abundantly
present in nature that play important roles for solubilizing,
storing or transporting metabolites in living cells and organisms
(96, 97).

The physicochemical characteristics of DES, such as freezing
point, conductivity, density, viscosity and polarity, normally
depend on their composition, therefore it is possible to modulate
them by modifying the HBD and HBA components. Generally
the densities of DES are higher than water, and higher than
the individual components (98). Also the viscosity of most DES
is high (> 100 cP) at room temperature (89) as the results of
the hydrogen bond network between the components leading
to a lower mobility of the species. The large ion size and
the electrostatic or van der Waals interactions between the
componentsmay also contribute to the high viscosity of DES. The
conductivity of DES is generally poor, due to their high viscosity.

The ability of DES of donating and accepting protons and
electrons as well as to form hydrogen bonds confers them good

dissolution properties toward phenolic compounds, as recently
explored also in the case of agri-food wastes.

APPLICATION OF GREEN EXTRACTION
TECHNIQUES TO PHENOL-RICH
AGRI-FOOD WASTES

Grape and Wine Byproducts
Anthocyanins undoubtedly represent one of the main class
of phenolic compounds recovered from grape-processing
byproducts. Response surface methodology (RSM) coupled with
genetic algorithm allowed to determine the optimal MAE
conditions for the recovery of these pigments from grape juice
waste. These were microwave power of 435W, exposure time of
2.3min and solid to solvent (water) ratio of 52 g/L. Under these
conditions an anthocyanin yield of ca. 1.3 mg/g was obtained
(99) (Figure 7). Anthocyanins together with other polyphenols
have been efficiently extracted from winery byproducts also
by UAE, requiring however the use of glycerol (90% w/v in
water) as solvent and a lower (11 g/L) solid to solvent ratio
(100) (Figure 7). Ten different ChCl-based DES have been also
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FIGURE 7 | Representative examples of phenolic compounds recovered from grape byproducts.

comparatively evaluated as solvents for anthocyanin extraction
from grape pomace, and the highest efficiency was found for
ChCl-citric acid. On these basis, new citric acid-based DES
were prepared, and citric acid/maltose 4:1 molar ratio led to
a significantly higher total anthocyanin content (TAC) when
compared to reference solvents, particularly when combined with
UAE (101). A DES composed of lactic acid-sodium acetate at
a molar ratio of 5:1 has also been found efficient for pigment
extraction from red grape pomace (Figure 7), whereas a 5:1
glycerol-sodium acetate mixture performed better for flavonoid
extraction (102). A significant improvement in anthocyanin
extraction yields from wine lees compared to acidified aqueous
ethanol has been reported using ChCl-malic acid containing
35% v/v water combined with UAE (extraction time, 30.6min;
ultrasound power, 341.5W) (103).

Resveratrol represents another important bioactive phenolic
compounds which has been the focus of several studies directed
to the optimization of the better conditions allowing for
its efficient extraction from grape and wine byproducts. As
an example, orthogonal test indicated a material to ethanol
ratio of 50 g/L, an extraction time of 30min, an extraction
temperature of 55◦C and a microwave power of 1.0 kW as

the best conditions for MAE of resveratrol from grape pomace
(104). Yields of about 30mg per 100 g of dried extract were
instead reported from Pinot noir seeds by performing MAE
at 60W for 30min, using methanol as solvent with a solid
to liquid ratio of 200 g/L (105). A more energy-efficient
process for resveratrol recovery from red grape wastes has
been reported by means of UAE using polyethylene glycol
(PEG) as a co-solvent, allowing for lowering the amount of
ethanol used in the extraction process. The optimized conditions
as determined from RSM-Box-Behnken design involved a
combination of 19min, 54◦C, and an ethanol/PEG/water ratio
of 48:32:20 v/v/v (106). Likewise, a 1.5% aqueous β-cyclodextrin
solution showed to be an excellent UAE medium for grapevine
waste (107).

Phenolic compounds have been extracted also from grape
skins. Very short extraction times (83 s, with a microwave
power of 900W) have been reported for the MAE of phenolic
compounds from grape skins (108). Longer extraction times
(50min, at 65◦C, with a solid to liquid ratio of 100 g/L) have been
instead reported in the case of UAE using ChCl-oxalic acid as
DES in presence of 25% water (109). Promising antioxidant and
antiproliferative activity against cancer cells have been described
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also for a ChCl-malic acid phenolic extract obtained from grape
skin (110).

Based on what reported above, it can be concluded that
MAE generally requires short extraction times compared to
the other techniques, although the use of more innovative
methodologies, based e.g., on the use of DES, seem not to
have been fully explored yet. Moreover, compared to the other
widely exploited green methodology, that is UAE, a survey of the
literature revealed MAE to be the first choice for the recovery of
phenolic compounds from grape-derived wastes as summarized
in the following.

MAE has been reported to be particularly effective in the case
of vine shoots from Portuguese grapes. A total phenol content
(TPC) of 32mg gallic acid equivalents (GAE)/g was obtained by

extracting dried vine shoots (0.1 g) at solid to solvent ratio of 5 g/L
with ethanol: water 6:4 v/v for 20min at 100◦C. The extract thus
obtained was significantly more effective than ascorbic acid in
protecting erythrocytes against 2,2’-azobis(2-amidinopropane)-
induced hemolysis. Moreover, it exhibited quite low IC50

values as inhibitor of acetylcholinesterase (IC50: 17–25µg/mL)
and α-amylase (IC50: 60–74µg/mL) and presented promising
antibacterial and antifungal activity. HPLC analysis indicated
gallic acid, catechin, myricetin and kaempferol-3-O-rutinoside as
the major contributors to the observed biological activities (111).

Another study also reported ethanol MAE extraction as an
effective technique to obtain a polyphenol-rich, antioxidant
extract from grapevine shoots. A plant/solvent ratio of 100
g/L was used, at 60◦C for 30min, with a 1.5 kW microwave

FIGURE 8 | Representative examples of phenolic compounds recovered from olive byproducts.
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power, under a 5 bar nitrogen pressure. The same apparatus but
using acetone/water 8:2 v/v as the solvent, for 49min, has been
described also for the recovery of polyphenols from hazelnut
skins (107).

Grape marc was also found to provide the extract with the
highest TPC (143mg GAE/100mL) and highest antioxidant
properties (239 mmol and 1,145 mmol of Trolox eqs/100mL
from the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-
azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay,
respectively) when MAE was applied to a series of agri-food
wastes such as chicory, cabbage, celery, fennel, olive leaf, and
grape marc wastes. The extraction was performed at 750W for
4min with water, using a solid to liquid ratio of 1,000 g/L.
The obtained aqueous extracts were used as water substitute in
dough formation to fortify bread, with the grape marc extract
conferring food antioxidant activities to both the crust and crumb
of bread (112).

Also red wine lees have been described as an important source
of polyphenols, using a combination of MAE and membrane-
based filtration (113).

Very recently, microwave pretreatment prior to conventional
solid-liquid extraction has been found to lead to overall

better outcomes for the preparation of polyphenol-rich extracts
from winemaking process wastes with cosmeceutical potential
(114). High efficiency has been reported also for ultrasound-
assisted emulsification-extraction of polyphenols from grape
seeds and alperujo, using methanol/water (dispersed phase)-
hexane (continuous phase) emulsions formed in the presence of
ultrasounds (115). Other sustainable UAE treatments have also
been described in the case of grape pomace (116).

The possibility to recover high-value polyphenols by SFE
starting from skin and seed fraction of grape pomace has been
also investigated (117), comparing the results of conventional
and not-conventional extraction. In this work, the temperature
and pressure range were 40–60◦C and 350–500 bar, respectively.
The results confirmed that the final compositions (not reported)
of the extract obtained through supercritical and conventional
methods were similar, but scCO2 was more selective. In
agreement with the literature, results showed that extraction
of polyphenols was possible only after the addition of ethanol
as co-solvent. In this case, however, co-solvent amounts >5%
do not significantly affect the extraction yield. The authors
hypothesized that high concentration of ethanol in the scCO2

enhances the formation of strong H-bond between the solvent

FIGURE 9 | Representative examples of phenolic compounds recovered from orange byproducts.
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and the solute. A second speculation concerns the possibility that
some polyphenols could be solubilized by the adsorbed-ethanol
molecules remaining entrapped in the solid matrix at the end of
the SFE process.

Olive and Oil Byproducts
Differently from what reported above for grape-derived wastes,
DES has been widely applied to the extraction of phenolic
compounds from olive and oil byproducts, combined in some
cases with MAE or UAE.

Polyphenol extraction from Olea europaea leaves have
been reported using glycerol-glycine-water 7:1:3 molar ratio.
Optimized parameters in terms of total polyphenol yield and
antioxidant power were 80% in water (w/w) DES concentration
and a solid to liquid ratio of 31 g/L, at 70◦C. Under these
conditions a 18–30% higher total polyphenol yield was obtained
compared to 60% aqueous ethanol, aqueous methanol and
water, used as reference solvents. Furthermore, the DES extract
exhibited significantly higher antiradical activity and reducing
power (118) (Figure 8).

The use of different DES prepared from ChCl as HBA
combined with MAE has been also reported for the extraction
of phenolic compounds from olive leaves. RSM optimized
extraction conditions were found to be 80◦C and 17min
temperature and irradiation time, respectively, using 43% of
water (119) (Figure 8).

Four different DES consisting of ChCl combinedwithmaltose,
glycerol, citric, and lactic acid in 1:2 molar ratio, 20% (v/v) of
water, at 60◦C have been proposed for the MAE of polyphenols
from olive kernel and leaves. The best results were obtained with
lactic acid based-DES, leading to the highest TPC (120).

Lactic acid-glucose 5:1 mol/mol implemented with 15% of
water has also been proposed as a solvent for extraction of
phenolic compounds from different byproducts of olive oil
industry, combined with 30–60min UAE at 40◦C, using a solid-
to-solvent ratio of 75 g/L (121) (Figure 8).

Recently, a blend of lactic acid/ammonium acetate 7:1 molar
ratio with β-cyclodextrin (β-CD) has been used to recover
polyphenols from olive leaves. The RSM optimized extraction
conditions were: stirring speed 300 rpm, DES concentration
in water 56% (w/w), solid to liquid ratio 10 g/L and β-
CD concentration 0.7% (w/v). Maximum extraction yield was
achieved at 80◦C, without compromising antioxidant activity.
Comparative assessment of the DES/β-CD extraction medium
with other green solvents showed that it was a high-performing
system providing polyphenol-enriched extract with improved
antioxidant characteristics (122).

A relatively few number of papers have reported the UAE of
phenols from olive wastes: these include for example recovery of
polyphenols from industrial wastes of olive oil production such as
olive tree leaves (123), or the obtainment of a phenolic yield of 45
mg/g for a virgin olive oil waste extract under RSM-determined

FIGURE 10 | Representative examples of phenolic compounds recovered from lignocellulosic byproducts.
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optimum conditions, that is water:methanol 1:1 v/v, 60◦C,
21min (124). Ultrasound assisted enzymatic hydrolysis has
also been established for extraction of phenolics from olive
waste (125).

Similarly to grape- and wine-derived byproducts, also in
this case shorter extraction times and higher efficiencies
were obtained by use of MAE compared to conventional
extraction methodologies.

Higher amounts of hydroxytyrosol (1.2 g/kg) and higher DNA
strand scission inhibition activity compared to conventional
extracts were found following MAE of olive pomace using power
of 700W over 10min in a closed vessel system and 20% ethanol
as the solvent (126).

Microwave irradiation has been combined with enzymatic
hydrolysis to enhance the recovery of phenolic compounds also
from palm oil mill effluents. Ragi tapai, a traditional fermented
asian food, was used as the enzyme source, and MAE was
performed at a solid to liquid ratio of 50 g/L for 4–5min,
with a microwave power of 180W, that is low enough to
avoid enzyme denaturation. The best results were obtained
using 50% ethanol as the solvent, leading to a more than 30%
increase in polyphenol extraction yield compared to conventional
maceration extraction (127).

The advantages of MAE over conventional extraction
techniques in terms of extraction times have been highlighted
also for the recovery of isoflavones from soybean processing
byproducts. In this case a 187.5W power was applied for 3min,
using 80% ethanol at a sample to solvent ratio of 40 g/L (128).

Orange and Lemon Byproducts
Citrus byproducts seem to represent the most promising agri-
food waste for the exploitation of UAE (129, 130). For example,
a higher efficiency compared to MAE has been reported for the
recovery of phenolic compounds from lime peel waste (131).UAE
proved effective also in the case of orange peels, increasing
the TPC yield by 30% compared to conventional extraction;
statistical analysis revealed that the optimized conditions of
ultrasound power and temperature were 0.956 W/cm2 and ca.
60◦C, giving a polyphenol yield of ca. 50mg GAE/100 g of dry
matter (132) (Figure 9).

In another study a systematic evaluation of UAE parameters,
including particle size, extraction time, extraction temperature
and ultrasonic power for the recovery of p-coumaric acid, caffeic
acid, chlorogenic acids, and hesperidin from citrus waste using
pure water as the solvent has been carried out (133).

An economic and environmentally friendly UAE treatment
free of organic solvents performed at room temperature for only
3min was shown to lead to a naringin-rich flavonoid extract from
grapefruit wastes, exhibiting a TPC of 75.3mg GAE/g (134).

UAE combined with the use of ChCl-glycerol-based DES has
also been reported in the case of lemon peels and other agri-food
wastes (135).

Remaining in the field of DES application, ChCl-based DES
prepared using glycerol and ethylene glycol at different molar
ratio have been evaluated as potential solvents for the recovery of
polyphenols from orange peels. Optimal conditions were found
to be: DES containing 10%w/w of water, a temperature of 60◦C, a

solid to liquid ratio of 100 g/L, and an extraction time of 100min
(136) (Figure 9).

Recently, the effects of physicochemical properties of DES
(viscosity, pH and polarity) for extracting flavonoids from citrus
peel waste have been also investigated. Based on the strong
linear dependence of extraction yield on polarity, a ternary
DES composed of ChCl–levulinic acid–N-methyl urea at a
molar ratio of 1:1.2:0.8 provided high extraction yields of total
flavonoids (137).

Of course, also MAE has been applied as well to citrus
processing wastes.

Hesperidin recovery from immature fruit peels of Citrus
unshiu has been reported using 70% ethanol at 140◦C for 8min,
at a 100 g/L solid to solvent ratio. After 24 h storage at 5◦C, ca. 48
mg/g of hesperidin were collected (138).

Microwave hydrodiffusion and gravity (MHG) technique has
been instead applied to mandarin leaves, under RSM optimized
conditions involving 275W microwave power, 2 g mandarin leaf
and 45 s. TPC and total flavonoid content (TFC) values of ca.
17 mg/g GAE and 1.7 mg/g of catechin equivalents (CE) were
determined, which, although lower compared to those obtained
by supercritical fluid extraction (SFE), well-correlated with the
antioxidant capacity (139).

In a comparative study performed on the residues of industrial
processing of fennels, carrots, lemons and tomatoes, MAE has
been applied together with maceration and ultrasound assisted
extraction (UAE) for the recovery of phenolic compounds. A
power of 750W was used, with a solid to solvent ratio of 40
g/L and a 5min extraction time; different solvents (methanol,
ethanol, water) were used. MAE proved to be particularly
effective in the case of carrot wastes, using methanol:water 1:1
v/v as solvent, whereas pure methanol was found to be the best
choice for lemon pomace. This latter, in particular, exhibited
promising antibacterial activity against Pseudomonas aeruginosa
and Clostridium difficile (140).

Pomegranate Byproducts
Apparently, UAE seem to be the only green extraction
methodology applied to pomegranate wastes, although a
combined ultrasound and microwave assisted extraction
methodology has been recently reported to be very efficient
for the recovery of ellagic acid from fermented pomegranate
wastes (141). Ultrasound pretreatment has been reported as
an expedient method to significantly improve punicalagin
extraction yield from pomegranate peels using a cellulase-based
magnetic nanobiocatalyst. This involved suspension of the solid
material in 50mM phosphate buffer (pH 6) (67 g/L solid to
liquid ratio) and 37 kHz ultrasound exposure at 50◦C for 20min
(142, 143). Pulsed UAE using water as solvent has been also used
for the recovery of polyphenols from pomegranate marc (144).

Apple Byproducts
The superiority of UAE compared to conventional extraction has
been proved also in the case of apple pomace. Indeed, in this
case, even more efficient than UAE proved to be the ultrasound-
assisted micelle-mediated extraction. A 1% water solution of
Rokanol B2 was used as solvent, at a 50 g/L solid to solvent
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ratio. Ultrasound treatment was performed at 50Hz and 300W
for 30min. A 7-fold higher TPC was obtained compared to
standard UAE with ethanol or water as solvent. Chlorogenic acid,
quercetin, and quercetin glyocosides were identified as the main
compounds present in the extract (145).

Notably, antioxidant compounds from apple pomace were
also efficiently extracted by scCO2 (146). In particular SFE was
carried out on fresh, oven- and freeze- dried apple pomace
varying pressure (20 or 30 mPa) and temperature (45 or 55◦C),
in absence and presence of ethanol as co-solvent (5%, v/v). The
results were compared to those obtained by Soxhlet extraction
with ethanol and boiling water maceration. Results showed that
scCO2 was able to extract polyphenols mainly from the oven
and freeze-dried apple pomace, suggesting that the pre-treatment
affects the scCO2 extract. However, the overall yields were lower
when compared to those from conventional solvents methods.
The authors justified this unexpected result with the thermal
degradation of polyphenols under the working conditions (45–
55◦C). Concerning the composition, the isolated fractions were
rich in quercetin, catechin, myricetin, phlorizin, and phloretin,
conferring a high antioxidant activity. Differently, the extract
processed by Soxhlet lacked in some polyphenols, accounting
for the decrease in the antioxidant activity. Overall, even if the
extraction with conventional technique led to higher yields, the
SFE process was able to provide an antioxidant enriched fraction.

Onion Byproducts
Onion wastes represent another important source, together with
grape-derived byproducts, of anthocyanins, which have been
recovered with other polyphenols by UAE or extraction with
DES. The first involved the use of 90% aqueous glycerol as the
solvent, with a 11 g/L solid to solvent ratio (147), whereas a higher
solid to solvent ratio (33 g/L), 90min, and 40◦C were found to
be the best conditions when ChCl/1,2-propanediol/water 1:1:1
molar ratio DES was tested (148). The highest total phenol and
flavonoid content was instead obtained with a 50 g/L solid to
solvent ratio (148).

In another paper UAE of quercetin from onion wastes
has been reported: the optimal extraction conditions were
determined to be an ethanol percentage of 59% and extraction
temperature of 49◦C, yielding a total quercetin content of
11mg per g of dry weight, whereas pH, solid to solvent ratio
and extraction time did not significantly affect the extraction
yields (149).

As to the use of DES, other authors investigated the use of
eutectic mixtures composed of ChCl as hydrogen bond acceptors
with sucrose (4:1), urea (1:2), and sorbitol (3:1) implemented
with different water contents for phenolic antioxidant extraction
from onion peels. The best results were obtained with ChCl-urea-
water 1:2:4 mol/mol/mol, at 60◦C, for 120min, at a solid to liquid
ratio of 20 g/L, which led to a TPC comparable to that obtained
using 70% aqueous methanol. The experiments were carried out
also in a modified domestic microwave oven, with a significant
reduction in extraction times (5–25min) (150).

Different DES consisting of sodium propionate as HBA
combined with glycerol and lactic acid have also been
analyzed for polyphenol extraction from onion wastes. The best

results were obtained with 85% w/w aqueous glycerol/sodium
propionate at a molar ratio 8:1, 10 g/L solid to liquid ratio, a
temperature of 80◦C and a stirring speed of 900 rpm. These
conditions provided antioxidant power and polyphenols content
comparable to other green solvents (151).

Carrot Byproducts
UAE apparently represents the only applied green extraction
methodology also in the case of carrot wastes. In particular,
chlorogenic acids as well as caffeic acid, catechin and epicatechin
have been efficiently recovered by RSM optimized UAE of
carrot pomace (152). UAE has been described as a powerful
technology also for extraction of anthocyanins from black carrot
pomace (153).

Potato Byproducts
Chlorogenic acids are among the main extractable polyphenols
from potato byproducts. Both MAE and UAE have been applied
to this aim, with the first again allowing for very short extraction
times, although requiring higher temperatures and lower sample
to solvent ratio. In particular, based on orthogonal array design,
MAE was accomplished at 300W using 60% ethanol as the
solvent, at 80◦C, for 2min, with a solid to solvent ratio of 25 g/L,
proving to bemore efficient than conventional solvent extraction,
especially in terms of solvent volumes (154). The RSM-optimized
UAE protocol instead involved use of ethanol/water 55/45 v/v in
a ultrasound bath (34 kHz frequency) for 35min at 35◦C and a
100 g/L sample to solvent ratio (155).

A DES composed of glycerol and ammonium acetate (molar
ratio 3:1) has been also tested for its efficacy for the recovery
of phenols from chlorogenic acid rich agri-food solid wastes,
including potato peels. The extraction, performed with 80%
w/v DES in water, 10 g/L solid to liquid ratio, at 80◦C for
3 h and under constant stirring at 600 rpm, demonstrated
that the DES was the most efficient in extracting chlorogenic
acid derivatives and superior or equally efficient in recovering
flavonoids compared to other green solvents (156).

Tomato Byproducts
A number of papers describe tomato byproducts processing
with MAE under different conditions using ethanol-water as
the solvent. Under the global optimized conditions, that is
20min, at 180◦C, with 47% ethanol, a solid to solvent ratio
of 45 g/L, and 200W microwave power, an extraction yield
of 76% was obtained, with a TPC value of 43.9mg GAE/g
and a TFC of 3.5mg CE/g. Although the antioxidant power as
determined by the ABTS assay was found to be lower compared
to commonly used food additives, the optimized tomato waste
extract was considered as a sustainable alternative to be used in
the fortification and functionalization of food (157). MAE was
also found to be the more efficient technique for water extraction
of tomato wastes. In particular, extraction was performed at
750W, for 90 s, with a solid to solvent ratio of 100 g/L. Under
these conditions an extraction yield of 16% w/w was achieved,
which is higher than those obtained by conventional extraction
methods (158). The effects of solvents, temperature and times on
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MAE of polyphenols from tomato peels have also been recently
systematically evaluated (159).

Lignocellulosic Byproducts
Ferulic acid and its oligomers were the main phenols identified
by HPLC-MS following MAE of brewer’s spent grain. 0.75%
NaOHwas used as the solvent and RSM analysis indicated 15min
extraction time, 100◦C extraction temperature and a solid to
solvent ratio of 50 g/L as the optimal conditions. A 5-fold higher
extraction yield (1.3% w/w) of ferulic acid was obtained with
MAE compared to conventional extraction techniques, leading
to 0.001–0.27% yields (160).

MAE using 20% ethanol in water as the solvent has been
described as an efficient methodology also for the recovery of
phenolic compounds from spent coffee grounds (161).

An increase in the wheat straw lignin extraction yield from 3.4
to 11.8%w/w has been also reported, using amicrowave radiation
power of 602W for 39min, and 0.46M sulfuric acid as the solvent
(162) (Figure 10). Another study reported lignin extraction from
agri-food wastes by treating the biomass at a 50 g/L solid to liquid
ratio in 92% ethanol and 0.32M sulfuric acid with a microwave
power of 250W for 30min at 150◦C. Under these conditions
more than 82% pure lignins were recovered in 35% w/w yield
starting from olive kernels (163).

Although no significant improvement was observed in either
extraction yields or antioxidant properties when compared to
conventional maceration, the advantages offered by MAE in
terms of extraction time have been recognized in particular
in the case of eucalyptus (164) and chestnut (165) wood
industry wastes.

IC50 values lower compared to the reference antioxidant
butylated hydroxytoluene (BHT) were obtained when MAE was
applied to maritime pine (P. pinaster) sawdust waste, a byproduct
from industry of wood transformation. Both MHG and solvent
free microwave extractions were performed, heating the material
at 100◦C, with a 600W microwave power, for 40min. Under
these conditions TPC values of ca. 75mg GAE/g extract were
obtained, which were higher than those obtained by applying
other extraction methodologies (70). A 40% improvement in
polyphenol extraction compared to conventional maceration has
been reported also when UAE was applied, which apparently
involved milder conditions (0.67 W/cm2 ultrasonic intensity,
40◦C, 43min) compared to MAE (71).

Other UAE application to lignocellulosic byproducts include
use of ionic liquids to extract lignin from rice husks (166)
(Figure 10), whereas a phenolic content of 3.1mg GAE/g of
wheat bran has been obtained by UAE using 64% ethanol as
solvent, at 60◦ C, for 25 min (167).

TABLE 1 | MAE extraction of phenolic compounds from various agri-food wastes.

Extraction

technique

Fruit or vegetable

byproduct

Extraction conditions Polyphenols extraction yields References

Microwave assisted

extraction (MAE)

Pineapple waste solid-to-liquid ratio (S/L)

30 g/L, 15min, 300W

TPC 12.4mg GAE/g (178)

Banana peel S/L 28.5 g/L, H2O:ethanol 1:1 v/v,

100 s, 380W

2.2% polyphenols (179)

S/L 20 g/L, pH 1, 6min, 960W TPC 53.8mg GAE/g (180)

Xoconostle S/L 100 g/L, H2O, 5.5min, 297W TPC 12.9mg GAE/g TFC 5.6mg

CE/g

(181)

Macadamia tetraphylla S/L 50 g/L, H2O, 4.5min, 360W TPC 45mg GAE/g

TFC 29mg rutin equivalents (RE)/g

(182)

Sterculia nobilis S/L 30 g/L, 41% ethanol,

37min, 67◦C, 700W.

TPC 3.7mg GAE/g

TFC 0.45mg quercetin

equivalents (QE)/g

(183)

Peanut shells Irradiation for 2.6min, followed by

incubation with 0.81% w/w cellulase,

pH 5.5, 66◦C, 120min.

1.8% polyphenols (184)

Apricot kernel skin S/L 25 g/L, 43% ethanol, 80◦C,

20min, 400W

TPC 22mg GAE/g (185)

Tobacco waste S/L 25 g/L, acetone:H2O 3:7 v/v,

4min, 400W

7.8–12.9mg CA/g (186)

Pequi and jucara waste S/L 20 g/L, 94% ethanol, 100 s,

670W

TPC 3.8mg GAE/g

TFC 1.6mg QE/g

(50)

Dragon fruit peel S/L 24 g/L, H2O, 45
◦C, 20min,

400W

TPC 58mg GAE/g (187)

Cabbage outer leaves S/L 100 g/L, ethanol, 5min, 100W TPC 14.9–19.2mg GAE/g (188)

Yarrow dust S/L 25 g/L, 70% ethanol, 33 s, 170W. TPC 238mg GAE/g TFC 43mg QE/g (189)

Horsetail S/L 22 g/L, 55% ethanol, 80 s, 170W. TPC 162mg GAE/g (190)

Tea residues 230◦C, H2O, 2min 74 % polyphenols (191)

Camellia oleifera meal S/L 100 g/L, 80% ethanol, 15min. TFC 12.8mg RE/g (192)
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Ultrasound pretreatment of wheat dried distiller’s grain,
a coproduct from the ethanol production process, has been
reported to increase the phenolic compounds extraction yield by
ca. 14%, as a results of increased pore volume and size (168).

UAE of beech bark at 40 kHz frequency for 20min, at 65◦C,
using 70% ethanol as solvent led to a phenolic extract containing
72mg GAE/g beech bark (169). Polyphenols, particularly
phlorizin, have been obtained also from UAE of apple bark using
60% acetone (170).

Ultrasound-assisted enzymatic extraction of protein and
antioxidant compounds has been described from sesame bran.
The RSM optimized parameters were 836W ultrasound power,
43◦C, 98min, 9.8 pH value and 1.248 enzyme (alcalase) units
/100 g of material, with a solid to solvent ratio of 100 g/L (171).

SFE has apparently not been applied to lignocellulosic
byproducts for the recovery of phenolic compounds yet, whereas
several applications of DES have been reported in particular not
only for lignin extraction but also for lignin processing, being
in some cases able to efficiently hydrolyze lignin-carbohydrate
bonds in hemicellulose.

Four DES mixtures were prepared using ChCl as HBA and
four HBD: acetic acid, lactic acid, levulinic acid and glycerol, in
order to solubilize lignin from poplar and Douglas fir wood. At
145◦C more than 70% lignin present in poplar and more than
50% present in Douglas fir wood was extracted, with ChCl-lactic
acid exhibiting the highest extraction yield (172).

The same DES was found to be the best solvent also in the
case of lignin extraction from Salix matsudana cv. Zhuliu. After
treatment with ChCl-lactic acid 1:10 mol/mol at 120◦C for 12 h,
the extracted lignin was recovered by precipitation after addition
of water and its purity was evaluated, suggesting that the DES not
only has a unique capability for the selective extraction of lignin,
with a yield of 92%, but is also capable to provide a lignin with
high purity degree (95%) (173).

Similar results have been obtained from poplar meal treated
with lactic acid/ChCl at 9:1 molar ratio. At 120◦C for 6 h an
optimal dissolving capacity of 95% has been reached, with a
purity of regenerated lignin up to 98.1% (174) (Figure 10).

A facile approach for efficiently cleaving the lignin-
carbohydrate bonds using microwave-assisted DES treatment

TABLE 2 | UAE extraction of phenolic compounds from various agri-food wastes.

Extraction

technique

Fruit or vegetable

byproduct

Extraction

conditions

Polyphenols extraction yields References

Ultrasound assisted

extraction (UAE)

Walnut green husks solid-to-liquid ratio (S/L) 50 g/L, 60%

ethanol, 60◦C, 30min

TPC 6.9mg GAE/g (193)

Durio zibethinus M. S/L 77 g/L, n-hexane, 5min, 261

W/cm2

TPC 0.7mg GAE/g (194)

Lettuce leaves S/L 20 g/L, 50–75% ethanol, 120 s,

400W, 24 kHz

81 µg polyphenols/mL extract (63)

Acerola residues S/L 115 g/L, 46% ethanol, 49min,

50 kHz, 250W

TPC 10.7mg GAE/g

TFC 5.6mg QE/g

(195)

Capsicum and

cabbage waste

S/L 50 g/L, 60% methanol, 37◦C,

30min, 40 kHz.

- (196)

Bamboo leaves S/L 50–100 g/L, 60–90% ethanol,

30–40min, 150–250W

TFC 1.5mg RE/g (197)

Ziziphus mauritiana L. S/L 10 g/L, 60% methanol, 30min TPC 12.8mg GAE/g (198)

Kudzu roots S/L 50 g/L, H2O/ethanol 2:8 v/v, 80◦

C, 6 h

7.3 g isoflavones/100 g sample (199)

Coconut shell S/L 20 g/L, 50% ethanol, 30◦C,

15min, 0.487 W/cm2

22.4mg of phenolics/g of sample (200)

Aronia melanocarp S/L 25 g/L, 0–50% ethanol, 20–70◦C,

0–240min, 0–100W

TPC >70mg GAE/g (201)

Purple corn cob and

husks

S/L 100 g/L, 20min, 100W,

ethanol/H2O/lactic acid 80:19:1

TPC 44-47mg GAE/g (202)

Euryale ferox S/L 37 g/L, 62% ethanol, 40◦C,

38min

TAC 2.8 mg/g (203)

Litchi pericarp Incubation for 90min with 0.12

mg/mL 1:1 cellulase/pectinase, S/L

67 g/L, 20% ethanol, 50◦C, 80min,

300W

89.6% procyanidin content (204)

Ginkgo biloba leaves S/L 100 g/L, phosphate buffer +

68% ethanol, 8.4mg cellulase, 40◦C,

20min, 218W

25.4% flavonoids and 12.4%

ginkgolides

(205)

Star anis residues S/L 49 g/L, 51 % ethanol, pH 5.3,

45◦C, 70 mg/g enzyme, 120min +

60min sonication time

14.8% flavonoids (206)
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has also been developed. In particular, DES formed by ChCl and
oxalic acid dihydrate 1:1 mol/mol was able to solubilize lignin
but not microcrystalline cellulose. The extraction was carried out
at 80◦C, with a microwave power of 800W and a radiation time
of 3min, which allowed to extract selectively lignin with a high
purity (ca. 96%) (175).

Other DES have also been evaluated for wood delignification,
based on ChCl as HBA and phenol, α-naphthol, resorcinol or
maleic acid as HBD, with the aid of ultrasound irradiation. The
results showed that all the DES have good solubility properties
toward lignin, leading to more than 48% w/w recovery in the case
of resorcinol (176).

In another study lignocellulosic biomass fractionation was
carried out using different DES, and mixtures of ChCl with
oxalic acid and potassium hydroxide allowed to selectively isolate
phenols and cellulose, respectively (177).

Other Fruit and Vegetable Byproducts
A large number of papers report the application of MAE,
UAE, SFE, and DES extraction to other agri-food wastes, as
summarized in Tables 1–3. Most of these works again highlight

the very short extraction times (80 s-37min) and in some cases
the higher yields and antioxidant properties of the extracts
obtained with MAE compared to conventional extraction,
though sometimes the requirements of higher amounts of solvent
has been reported. The higher efficiency compared to traditional
extraction also emerges in the case of UAE, which is generally
reported to allow the employment of lower temperatures. Also
DES generally led to higher extraction yields of polyphenols
compared to conventional organic solvents, whereas not much
has been reported regarding SFE.

APPLICATION OF OTHER SUSTAINABLE
EXTRACTION METHODOLOGIES TO
AGRI-FOOD WASTES

The Naviglio Extractor R© is a relatively new solid-liquid extractor
that applies the principle that a forced extraction from a
solid matrix suspended in a suitable solvent is produced by
generating a negative pressure gradient and letting it to go to
equilibrium between outside and inside of the solid material
(Naviglio’s Principle) (Figure 11A). By applying more extractive

TABLE 3 | UAE, SFE, MHG, and DES extraction of phenolic compounds from various agri-food wastes.

Extraction

technique

Fruit or vegetable

byproduct

Extraction conditions Polyphenols extraction yields References

Ultrasound assisted

extraction (UAE)

Artichoke waste Solid-to-liquid ratio (S/L)

333 g/L in H2O, 60min, 50W/L

TPC 0.8–1.4mg GAE/g (207)

S/L 100 g/L, 50% ethanol, 25◦C,

60min, 240.

0.02–14.8mg chlorogenic acid/g (208)

Cauliflower waste S/L 50 g/L, 2M NaOH, 60◦C, 15min,

37 kHz, 180W

TPC 7.3mg GAE/g (209)

Tobacco waste S/L 20-100 g/L, ethanol-H2O

60:40–20:80 v/v, 30–70◦C,

15–45min, 37 kHz, 50W

3.6–804.2µg/mL of chlorogenic acid

2.34–10.8µg/mL of caffeic acid

11.6-93.7µg/mL of rutin

(210)

Mustard seed meal S/L 25 g/L, 70% ethanol, 40◦C,

30min, 60W

TPC 13.8mg sinapic acid

equivalents/g

(211)

Microwave

hydrodiffusion and

gravity (MHG)

Broccoli waste 43min, 500W, under atmospheric

pressure, in the absence of solvents

317 µg GAE/mL (212)

Sea buckthorn pomace 15min, 400W 1147mg GAE/g (213)

Supercritical fluid

extraction (SFE)

Blueberry waste Flow rate 0.5 kg/h

5% ethanol + 5% H2O

as co-solvents, 20 MPa, 40◦C

TPC 134mg GAE/g (214)

Deep eutectic

solvent (DES)

extraction

Ginkgo biloba leaves S/L 95 g/L, ChCl/malonic acid 1:2

mol/mol + 55% H2O, 65
◦C, 53min

22.2mg proanthocyanidins/g (215)

Moringa oleifera leaves S/L 50 g/L, glycerol/sodium acetate

6:1 mol/mol + 20% H2O, 50
◦C,

180min

TPC 53.8mg GAE/g

TFC 16.5mg RE/g

(216)

Peanut roots S/L 33 g/L, ChCl/1,4-butanediol 1:3

mol/mol + 40% H2O, 55
◦C, 40min

38.9mg of resveratrol/kg of sample (217)

Rue leaves S/L 50 g/L, ChCl/citric acid 2:1

mol/mol + 20% H2O,

30◦C, 90min.

38.2mg GAE/g (218)

Mango waste S/L 17 g/L, lactic acid/sodium

acetate/ H2O 3:1:4 mol/mol/mol,

20min, 436W

56.2mg GAE/g (219)
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FIGURE 11 | Schematic representation and examples of extraction of bioactive compounds with (A) Naviglio Extractor®, (B) PEF, and (C) steam explosion.

cycles it is possible to reach the exhaustion of the solid matrix
and the extraction of bioactive molecules (220). This new
solid–liquid dynamic technology possesses several advantages
because it allows to carry out the extraction at room or sub-
room temperature thus avoiding thermal stress on thermolabile
substances (220). Moreover, the employment of high pressures
allows a reduction in the extraction time and a concomitant
improvement of the extraction efficacy.

Naviglio Extractor R© has been applied to the recovery of
phenolic antioxidants from the Cagnulari grape marc. The
extraction, performed using 21 extractive cycles of 1min and
25 s each for a total of 38min using water/ethanol (60:40
v/v) as solvent led to recovery of malvidin, peonidin-3-O-
glucoside, malvidin-3-(6-acetyl)-glucoside, and malvidin-3-O-
glucoside as the main components of the extract exhibiting
a TPC of 4.0 g/L. The extract also revealed a significant
ability to inhibit the hydrogen peroxide-induced cell death and
reactive oxygen species (ROS) generation (221) (Figure 11A).
The solid liquid dynamic Naviglio extraction of vine shoot
waste from Vitis vinifera Airen variety performed in different

conditions provided higher flavonoid and phenolic acid yields
in comparison with others solid-liquid extraction methods (222).
The vine shoot waste aqueous extract, in particular, stimulated
Lactuca sativa radicule elongation (223). Naviglio extraction has
also been reported for the recovery of polyphenols from grape
peels (224).

Another non-thermal processing sustainable technology is
based on the use of pulsed electric fields (PEF). This is a novel
extractionmethodwhich involves the application ofmicrosecond
(µs) pulses of high electric field to a material placed between
two electrodes (225) (Figure 11B). A classical system for the
treatment of pumpable fluids is composed of a PEF generation
unit that consists of a high voltage generator and a pulse
generator, a treatment chamber, a proper product process system
and a set of monitoring and controlling equipment (225, 226).
PEF treatment is able to induce a permeabilization of the
cytoplasmatic membranes, facilitating the release of intracellular
compounds from the cells. PEF increases the extraction rates and
yields of different compounds and does not affect the quality of
the extracted products.
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Phenolic acids such as protocatechuic, cholorogenic, and
salicylic acids and salicylic, ferulic, p-hydroxybenzoic and caffeic
acids were found in high concentrations in PEF treated apple
pomace and sorghum flour, respectively. The two optimized
conditions, 12.5% w/v solid to water ratio, 2 kV/cm electric field
intensity and 500 µs treatment time for apple pomace and 45%
w/v solid to water ratio, 2 kV/cm electric field intensity and 875
µs for sorghum flour, provided TPC 37% and 25% higher than
those obtained by conventional extraction of apple pomace and
sorghum flour, respectively (227) (Figure 11B).

PEF-assisted extraction was found to be a suitable technology
to maximize total phenolic and flavonoid yields from canola seed
cake under optimized conditions (30V, 30Hz, 10% ethanol and
10 s exposure time) (228).

The application of PEF improved the recovery of polyphenols
also from cocoa bean shell and coffee silver skin (229), Norway
spruce bark (230), and blueberry press cake (231).

PEF pretreatment has been also successfully applied to
rapeseed stems and leaves (232), fresh tea leaves (233) and borage
leaves (234), leading in all cases to an increase in TPC and
antioxidant properties of the extracts.

A PEF pretreatment with an energy input of 300 kJ/kg at 20
kV/cm and a subsequent diffusion step in 20% ethanol and 0.3M
sodium hydroxide allowed to obtain high extraction yield of
polyphenols from rehydrated flaxseed hulls (235).

The influence of PEF at different intensity levels (0–7 kV/cm)
on pressed orange peels has been also evaluated and the results
showed that higher electric field strengths led to an increase in
total polyphenol extraction yield and antioxidant activity (236).

Another study proposed a combination of PEF and
supplementary aqueous extraction (SAE), which allowed a
significant increase of high-added value compound yields and
antioxidant capacities of extracts from papaya peels (237).
Also in the case of mango peels, the application of two-stage
PEF + SAE that included PEF-assisted extraction as the first
step and supplementary extraction at 50◦C, pH 6, for 3 h as
the second step, allowed a noticeable enhancement of TPC
(+400%) (238).

Steam explosion is another widely employed and
environmentally friendly pretreatment method for vegetable
materials. It is based on steam hydrolysis at high temperature
(160–280◦C), followed by sudden release of high pressure
(0.7–4.8 MPa) for relatively short retention time (from several
seconds to a few minutes). The treated materials are then
discharged through restricted orifices, producing an explosive
decompression of biomass (239) (Figure 11C). This results
in breakdown of the lignocellulosic structure, hydrolysis of
hemicellulose compounds, and depolymerization of the lignin
compounds due to rupture of rigid cell wall structure. This
technique can therefore be employed as a pretreatment to
effectively extract bioactive compounds (240).

Steam explosion and UAE were investigated to develop
an effective process for the production of valuable phenolic
compounds from sugarcane bagasse lignin. Analysis of the
extracts revealed the presence of gallic acid, hydroxybenzoic acid,
vanillic acid, p-coumaric acid, ferulic acid, syringic acid, and
sinapic acid (241).

TABLE 4 | Main advantages and disadvantages of the extraction techniques

reviewed in this paper.

Extraction

method

Advantages Disadvantage

MAE • Fast extraction

• Low solvent consumption

• High extraction yields

• Good reproducibility

• High equipment cost

• Filtration required

• Very poor efficiency for

volatile compounds

UAE • High extraction efficiency

• Fast and selective extraction

• Low equipment cost

• Low operating temperature

• Efficient for

thermolabile compounds

• Filtration required

• Lack of uniformity in the

distribution of ultrasound

energy

• Potential change in the

constitutive molecules

• Large amount of solvent

SFE • Fast extraction

• Automated system

• No filtration required

• Possibility to reuse CO2

• No use of toxic solvents

• Possibility to tune the polarity

of scCO2

• Possibility to extract

thermolabile compounds at

low temperatures

• High equipment cost

• Elevated pressure required

• Risk of volatile compounds

losses

• Many parameters to optimize

DES • Low price

• Biodegradable

• Very low toxicity

• Possibility to tune polarity,

viscosity and density

• High extraction yields

• Filtration is required

• High density and/or viscosity

Also for wheat bran, the steam explosion treatment at 215◦C
for 120 s provided free phenolic acid and conjugated phenolic
acid yields about 39- and 7-fold higher than those obtained with
the untreated sample (242) (Figure 11C).

Finally, high concentrations of hydroxytyrosol and tyrosol
were found in olive stones (243) and olive mill solid waste or
alperujo (244) after steam explosion pre-treatment.

CONCLUSIONS

The main advantages and disadvantages of the extraction
methodologies described in this review are briefly summarized
in Table 4. Of course, the choice of one methodology over
another is dictated not only by consideration of the advantages
or drawbacks, but also and above all by the physicochemical
characteristics of the materials and the type of compounds to
be extracted. As an example, MAE is not recommended for the
recovery of thermolabile compounds, but it can be preferable
to UAE if the amount of solvent to be used is a critical factor.
Compared to MAE and UAE, much less is apparently reported
in the literature for other green extraction methodologies, such
as extraction with DES and particularly SFE. It is undoubtedly,
however, that these emerging techniques will be more and more
exploited in the next future to comply with a total respect of
the environment and of the green chemistry principles. Indeed,
SFE represents a highly clean, no-solvent technology, allowing to
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operate at very low temperatures, and it can be expected that the
current high equipment costs would be significantly reduced as
hand when novel perspectives and applications of this technique
will appear in the literature. On the other hand, the added value
of DES deriving not only from the low price and biodegradability
but also from their ability to induce chemical transformations
of agri-food materials (e.g., hemicellulose hydrolysis) resulting
in higher extraction yields of bioactive polyphenols will certainly
contribute to the enlargement of their application fields.

As a general remark, care should be taken concerning
the purity of the extracts obtained, since, given the non-
selectivity of the green methodologies described, co-extraction
of phenolic compounds with compounds that may be toxic,
such as emerging pollutants (EPs), could occur. For example,
fruit peels usually contain phytosanitary compounds such
as herbicides or fungicides, which although present at low
concentrations as the result of post-harvest treatments, could
accumulate in the extract thus compromising its safety and
limiting its possible uses. On this basis, the development

of more selective extraction procedures, particularly in the
case of SFE which seems not too much susceptible to
extensive modulations of the operative conditions e.g., variation
of the co-solvent, represents an important challenge to
be faced.
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