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The aging process is characterized by a series of molecular and cellular changes over the

years that could culminate in the deterioration of physiological parameters important to

keeping an organism alive and healthy. Physical exercise, defined as planned, structured

and repetitive physical activity, has been an important force to alter physiology and brain

development during the process of human beings’ evolution. Among several aspects

of aging, the aim of this review is to discuss the balance between two vital cellular

processes such as autophagy and apoptosis, based on the fact that physical exercise as

a non-pharmacological strategy seems to rescue the imbalance between autophagy and

apoptosis during aging. Therefore, the effects of different types or modalities of physical

exercise in humans and animals, and the benefits of each of them on aging, will be

discussed as a possible preventive strategy against neuronal death.
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AGING

The aging process is characterized by a series of molecular and cellular changes over the years that
could culminate in the deterioration of physiological parameters important to keeping an organism
alive and healthy. This widespread loss of body function, or loss of fitness, is extremely variable and
can result in increased individual vulnerability, the onset of various illnesses, and death (1, 2). At
the cellular level, aging is characterized by aggregation and accumulation of misfolded proteins and
disabled organelles in a progressive way that may lead to cell homeostasis interruptions. Therefore,
progressive degeneration may occur, increasing the risk of cell death [reviewed by (1, 3)].

In the Central Nervous System (CNS) normal aging is accompanied by alterations in brain
structure such as white matter atrophy (4, 5), and functional and cognitive decline. It is still unclear
what relationship the cognitive and functional dysfunctions have with the decrease in neurogenesis
observed during aging (6). Age-related cognitive decline can reduce the quality of an individual’s
life and is related to an increased risk of neurodegenerative diseases (7, 8).

Neurogenesis consists in the generation of new neurons from neural stem cells and progenitor
cells that reside in germinal niches in the subgranular zone (SGZ) of the hippocampal dentate gyrus
and in the subventricular zone (SVZ) of the lateral ventricle (9). In relation to humans, neurogenesis
is still a highly controversial topic, because of the inherent difficulty in marking neurogenic niches
and newborn cells in vivo (10). Notwithstanding, a recent study raised the debate about the
existence of neurogenesis in the human brain and its meaning. Analyzing 37 postmortem and 22
intraoperative tissue samples from human hippocampus, Sorrells et al. concluded that, different to
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other species, dentate gyrus (DG) proliferating progenitor cells
and newborn neurons in humans decline during childhood
without being detected in adult brain samples, suggesting a
decline in neurogenesis during life (11). Besides, some studies
suggest that neurogenesis happens daily in human DG (12–14),
whereas others find a decrease in neurogenesis with just a few
neurons being generated in adults (15, 16). Indeed, in 2019 new
studies supported the evidence of hippocampal neurogenesis in
adult humans, with great individual variability (17) up to the
ninth decade of life in healthy subjects (18) and also in patients
with mild cognitive decline and Alzheimer’s Disease (17).

In animal models, physical exercise has been related to
increased hippocampal neurogenesis (19, 20) which is reduced in
old rodents (21), whereas in humans it is still speculative (22).
However, in humans of all ages, physical exercise is related to
improvedmemory function (23–25), as well as reduction in brain
atrophy observed during aging in humans (26) and rodents (27).
In the face of such an interesting approach against age-related
cognitive decline, the focus of this review is to present and discuss
some cellular mechanisms by which different kinds of physical
exercise can unleash possible benefits in the CNS in human and
animal models.

PHYSICAL EXERCISE AND AGING

Physical exercise was defined by Caspersen as a planned,
structured and repetitive physical activity done with the objective
of improving or promoting physical fitness (28). Exercise has
been an important force of evolution for the human species
in order to hunt for food sources, adapt to the environment
and, in consequence, to alter physiology and development of
the brain, displaying co-evolution of neuroplasticity signaling
pathways (29–32).

The benefits of physical exercise can be observed throughout
different stages of life. During pregnancy, supervised moderate
exercise attenuates prenatal depression (33). It is also associated
with a shorter first stage of labor (34), and newborns whose
mothers exercised during pregnancy presented a better auditory
memory response related to sound differentiation (35). Thus,
an active lifestyle during pregnancy should be encouraged and
promoted by public health policies (36). Among adolescents,
physical activity may have beneficial effects on attention capacity
and cognitive functions (37, 38), and is likely to be effective in
reducing depression symptoms amongst both adolescents and
young adults (39–42). Meanwhile, different modes of exercise
are investigated for the older population, including stretching
exercise, such as Pilates (43, 44) and Tai Chi Chuan (45, 46),
resistance exercise (26, 47), multimodal exercise (48–50) and
aerobic exercise (51). These modes of exercising seem to be
similarly effective regarding cognitive improvement (23), but
such improvement may not be seen in a short period of time (52).

Some studies and public organs recommend 150min of
moderate physical exercise per week to be sufficient for beneficial
outcomes (53, 54). However, few elderly people accomplish the
recommendation, especially of moderate to vigorous physical
exercise; some believe physical exercise may be potentially

harmful or even unnecessary [reviewed by (55)]. A review of nine
cohort studies indicated that lower doses of the recommended
physical exercise may reduce mortality risk by 22% (56),
indicating that, even though it is believed that it is necessary to
reach the suggested amount of activity, there is also the need
to investigate whether light intensity exercise could ameliorate
health or function and motivate the practice of more intense
exercise (57).

Among the various interventions that affect aging, physical
exercise seems to be the main ally in the prevention of aging-
related diseases (58).

Studies regarding the effects of physical activity on elderly
people also extend to several types of aging-related disorders,
comprising dementia (59), late-life depression (60, 61), frailty
syndrome (62, 63), Parkinson’s Disease (64) and Alzheimer’s
Disease (65), through evaluation of epigenetic changes [see (66,
67) for review]. However, studies about the effects of physical
exercise on elderly people’s epigenetics are still emerging. Lavratti
et al. conducted one of the first human studies to demonstrate the
relationship between physical exercise and levels of global histone
acetylation in schizophrenic patients (68). A meta-analysis on
elderly people supports the protective effects of physical activity,
a healthy diet and higher educational levels (69); however, in
2018, Gale et al. investigated the effect of physical activity on
the epigenetic clock [reviewed in (69)] and found no correlation
between them, indicating that exercise alonemight not be enough
to exert a protective effect in this specific regard.

It has already been demonstrated in the literature that physical
exercise can promote neuroprotection. For example, treadmill
physical exercise carried out in a mouse model of Alzheimer’s
disease (69) and voluntary running physical exercise in elderly
mice (70) demonstrated, among other effects, that running
physical exercise decreased glia activation and amyloid-beta
(Aβ) peptide levels, suggesting possible mechanisms for exercise-
induced neuroprotection.

The literature brings some ways in which physical exercise
promotes its neuroprotective effects. In mice, it has been
shown that neuroprotection induced by resistance physical
exercise occurs in combination with multiple synergistic
neuroprotective pathways: increased neurogenesis, decreased
loss of dopaminergic neurons, increased antioxidant capacity,
and improved autophagy (70). A study carried out in rats
suggested that aerobic physical exercise reverted the synaptic loss
in the cortex and hippocampus in old rats, which may be related
to the up-regulation of Rho-GTPases (a G protein family, which
plays a fundamental role in synaptic morpho-functional changes)
(71). In mouse model of Parkinson’s disease induced by MPTP,
endurance physical exercise promoted neuroprotection possibly
due to its contribution to the improvement of mitochondria
biogenesis and reduction of apoptosis (72), decrease of pro-
inflammatory cytokines and α-synuclein protein (73). In
ischemic brain injury rat model, aerobic physical exercise can
contribute to neuroprotection by blocking glia activation and
preventing neuronal death (74).

Given the data presented here, it is likely that physical exercise
is able to promote neuroprotective effects, which seem to depend
on the type of physical exercise performed.
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In addition to that, in a more general view about the effects
of physical exercise in aging, there are many studies regarding
cerebrovascular function, gut microbiota, hormone release, sleep
quality, and neurotrophic factors production. These topics are
quite large and complex and are beyond the scope of this review,
however we will briefly mention the main data to contextualize
the reader.

Cerebral blood flow (CBF) is the main marker of
cerebrovascular function and its decrease, mainly due to
detriment of energy depletion or brain ischemia [reviewed
by (75)], seems to be related to the generation of cognitive
impairment and dementia (72). Disruption of neuronal
environmental homeostasis through impaired CBF can be highly
related to the decline of the cerebrovascular system during aging
(73, 74). In patients with Alzheimer’s disease, in addition to
decreased brain volume, there is also a decrease in CBF, and it is
a potential marker of the severity of the disease (76).

In humans, physical exercise can prevent cognitive
impairment by enhancing cerebral vasomotor reactivity,
increasing CBF, and consequently increasing cerebrovascular
function in older adults (77, 78). Such an increase seems to
be dependent on exercise intensity (79). In sedentary older
men, aerobic physical exercise was able to increase CBF in the
region responsible for regulating cognitive functions, part of
this mediated by improvements in glucose metabolism (78).
Moreover, another study involving sedentary older men verified
the increase in brain function mediated by the regional CBF,
increased cognition assessed by memory and executive functions,
and the increase in cardiovascular fitness measured by VO2 max,
after a protocol of 12-week exercise (80). Otherwise, a study with
master athletes ranged in age between 50 and 80 demonstrated
that the exercise cessation for a short period of time reduced CBF
levels in hippocampus and gray matter regions (81).

In animals, physical exercise through treadmills or
running wheels was able to improve endothelium-dependent
vasorelaxation as well as increase CBF, reducing functional
deficits and protecting the brain from cerebral ischemia and
reperfusion (82).

Regarding the gut-brain axis, it is known that gut microbiota
plays important roles on metabolic and immunological activities
in humans (83). Infrequent bowel movements can decrease gut
microbiota, which increases the risk of individuals developing
colorectal cancer (84, 85). A combination of moderate physical
exercise [≥ 7000 steps/day or 15min/day at>3METS (metabolic
equivalents)] and lactobacillus ingestion has been shown to
decrease infrequent bowel movements in elderly people aged
65–92 (86). In elderly humans, it was shown that 5-week
endurance physical exercise was not able to significantly change
gut microbiota diversity and composition (87). In the animal
model, it has been shown that 11-month-old mice submitted to
treadmill physical exercise for 7 months had their gut microbiota
diversity augmented, suggesting that physical exercise is able
to increase microbiota diversity during the aging process (88).
However, Fielding et al. found that mice presented no changes
either in their entire lean body mass or in treadmill endurance
capacity when treated with human feces coming from elderly
people who exercised. Therefore, data regarding physical exercise

influence on gut microbiota along aging seems contradictory
both in animals and humans, likely depending on duration,
intensity and type of physical exercise (89).

It is well-established that growth hormone (GH) secretion
decreases during aging process (90–93), which seems to be
associated with changes in the organism such as loss of lean
mass, gain of fat tissue, diminution in muscle strength, decline
in cognitive function, among others [reviewed in (94)]. Physical
exercise in the elderly has been described to influence GH
level/activity; studies in humans, independently of gender, have
demonstrated that regular physical exercise can increase GH
levels in plasma (95, 96) or serum (97–103).

However, other studies have not shown an increase of GH
levels in elderly marathon runners and sedentary controls (104),
inmiddle-agemen (40–50 years old) (105), in oldmen (47), in old
women (106) and in old men and women. The comparison was
conducted after subjects had been submitted to heavy resistance
training (107), low volume resistance exercise (108), and low
intensity physical exercise (109).

Furthermore, experiments done in 21-month-old rats showed
that mild physical exercise in treadmill (8 m/min, 1 h/day) in
combination with GH administration for 73 days, increased
both muscle mass and strength compared with GH by itself
(110). However, Marzetti et al. showed that short-term treadmill
training attenuates age-related skeletal muscle apoptosis and the
same effect was not observed with short-term administration of
GH in older rats (111). Studies performed in old rats showed
that exercise and GH reduced age-related decay in myocardial
relaxation, avoiding diastolic dysfunction (112) and increasing
bone strength (113, 114). It is known that GH can augment
muscle mass in humans (92). In humans, administration of GH
and testosterone together in elderly males produced a gain in lean
mass and increased muscle strength, and consequently aerobic
endurance (115). Another study about GH supplementation in
elderly men did not observe increased muscle strength, and
consequently no changes in resistance exercise (116).

Sleep disturbances are common features in older adults, such
as sleepiness at daytime, fractionated sleep at night (117–119),
among others. It has been shown in the elderly, both men and
women, that low to moderate physical activity improved sleep
quality (120–133). In animals, sleep derangement related to the
aging process also happens (134, 135). It seems that regular
moderate physical exercise ameliorates sleep architecture in old
rats (136).

A great number of signaling pathways seem to be involved
in physical exercise benefits, and one of them is brain-derived
neurotrophic factor (BDNF) which is positively induced by
physical exercise (137). BDNF is a protein that participates
in neuronal proliferation and differentiation, synaptogenesis,
synaptic function, plasticity, and neuroendocrine actions [see
Review (138)]. In 1995, Neeper et al. measured BDNF mRNA
in different brain regions of adult rats with different levels
of physical activity, and found a positive correlation between
the distance run per night and the BDNF produced in the
hippocampus and caudal neocortex of these animals (139).
Moreover, BDNF acts as a regulator of the ubiquitin-proteasome
system (UPS) as it increases ubiquitin conjugation in synaptic
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proteins during synaptic remodeling. In addition, the use
of a proteasome pharmacological inhibitor prevented BDNF-
mediated action and had the same profile as the BDNF signaling
block (140).

In summary, the benefits of physical exercise can be observed
throughout different stages of life. Especially during aging,
neuroprotection is promoted according to type and intensity of
physical exercise. In general, it improves cerebrovascular health
and gut microbiota diversity, which seems to be related to
healthy aging. Furthermore, physical exercise improves quality
of sleep and increases BDNF production, and can decrease
neuronal death and improve cognitive performance, due to
better functioning of the proteostasis system, among many other

effects. Besides, data regarding physical exercise influence on gut
microbiota, GH, CBF during aging seems contradictory both in
animals and humans, likely depending on duration, intensity and
type of physical exercise.

PROTEOSTASIS AND AGING

The mammalian protein pool is subject to a constant quality
control system that integrates the pathways related to
protein synthesis, folding, unfolding, secretion, trafficking
and degradation (Figure 1). This quality control system is
known as proteostasis and its failures rely on increased levels
of protein aggregates, which contribute to the development of

FIGURE 1 | Cellular proteostasis and apoptotic cell death. Proteostasis network is the protein pool quality control system that integrates the pathways related to

protein synthesis since translation, protein folding, protein unfolding, secretion, trafficking and degradation or elimination. To succeed in protein folding, unfolding,

refolding and trafficking, chaperone proteins (heat shock proteins—Hsp) are of fundamental importance. In the elimination phase that usually happens when misfolded

proteins turn into toxic aggregates, degradation of damaged proteins occurs through proteolytic systems: autophagy and ubiquitin-proteasome. The activity of both

systems avoids cell death. However, when the proteostatic network cannot avoid protein aggregates accumulation, the cell undergoes apoptosis. Thus, degradation

system and apoptosis are both important mechanisms for organism homeostasis due to the elimination of damaged proteins and damaged cells, respectively.
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FIGURE 2 | Summary of the review. During aging (red box) an increase in proteostasis impairment is observed in the Central Nervous System, which may lead to

increased levels of misfolded proteins, in part due to decreased autophagic process. The balance between apoptosis and autophagy is lost and an increase in

programmed cell death is observed. Otherwise, physical exercise in aging (green box) can partially revert the disbalance observed in aging, decreasing proteostasis

impairment and improving autophagic process, as well as decreasing levels of misfolded proteins and toxic protein aggregates, which lead to less apoptosis activation.

proteinopathies and thus neurodegenerative diseases including
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral
sclerosis (141, 142). The proteostasis decline is one of the
hallmarks of aging (1, 143) and this decline can be explained by
increased generation of oxidative damage within the cells (144).

According to a vast literature in the field, the proteostasis
network is mediated by the degradation of damaged proteins
by proteolytic systems (autophagy and ubiquitin-proteasome)
and correction or sequestration by chaperones (141, 145, 146).
Although proteostasis involves all of these processes, this review
will focus on the balance between two vital cellular processes such
as autophagy and programmed cell death, apoptosis, based on
the fact that there are several studies done with physical exercise
as a non-pharmacological strategy that rescues the lost balance
between them during aging (Figure 2).

The ubiquitin-proteasome system (UPS) is extremely
important for the maintenance of protein homeostasis in the
cytosolic and nuclear compartments. Ubiquitination occurs
through catalytic enzymes, E ligases, which activate ubiquitin
and covalently bind this polypeptide to the substrate, a tag
for proteasome degradation. The proteasome, or 26S, is a
multicatalytic complex with a proteolytic core, 20S, flanked by
regulatory units that recognize the ubiquitinated substrates,
misfolded and damaged proteins or healthy proteins, and
lead them to degradation (147, 148). During aging, this
system may be compromised due to defective proteasome
activity, proteasome damage, proteasome assembly changes
and ubiquitination defects (141). Studies with Drosophila
melanogaster demonstrated a change from the 26S “activated”
proteasome (1–32 days old) to the weakly active 20S form
(43–47 days old) during aging, together with decline in ATP

levels, highly necessary for the 26S proteasome activity (149).
Therefore, UPS is one of the proteolytic systems that degrades
damaged proteins regulating the proteostasis network (150, 151).

AUTOPHAGY IN AGED BRAIN

During the aging process, organelles and proteins are prone to
damage affecting their normal functionality, besides that these
dysfunctional proteins, and organelles accumulate in the body
progressively, thereby increasing the rate of cell death (1, 3).
Studies indicate that the loss of autophagic activity in cell aging
contributes to a progressive reduction in cell function and may
precipitate cell death by restricting the ability of cells to support a
healthy population of proteome and organelles (152, 153). Aging
is associated with reduced autophagy potential and it has been
shown in the literature that autophagic inhibition may result in
premature aging (153).

Autophagy (divided into macroautophagy, microautophagy,
and chaperone-mediated autophagy) is an important process
of cell renewal in maintaining homeostasis and perfect
cellular functionality, characterized by the elimination of
non-functional proteins, damaged/defective organelles, and
intracellular pathogens. Autophagy is an important cell survival
mechanism with an important role in cell maintenance and
homeostasis and with a positive influence on useful life and
longevity (153–159).

The macroautophagy, here referred to as autophagy, has
been the most studied. In summary, when damaged proteins
and/or organelles are free in the cytoplasm, a nascent membrane
originated from Golgi Complex, endoplasmic reticulum (ER),

Frontiers in Nutrition | www.frontiersin.org 5 July 2020 | Volume 7 | Article 94

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Andreotti et al. Physical Exercise and Aging

FIGURE 3 | Autophageal mechanism and stages. (A) Pro-autophagic signaling induces ULK1 activation and Beclin-1 complex, activating the ATG machinery, thereby

initiating the autophagy stages consisting of initiation, elongation, closure and autophagosome formation, autophagosome fusion with lysosome and degradation. (B)

Physical exercise causes a decrease in the ATP/AMP ratio by activating AMPK. AMPK inhibits the mTOR pathway, so ULK Ser757 phosphorylation will be decreased

and it may interact with AMPK and be activated by phosphorylation on Ser317. AMPK phosphorylated ULK1 becomes active and may initiate autophagy. PI3K

activation occurs culminating in increased expression of autophagy-related proteins (Atg12, Atg5, Atg16). AMPK also promotes signaling of autophagy-related

transcription factors (FOXOs), thereby increasing the expression of autophagy-related proteins (Atg12, Atg5, Atg16, LC3-II). Atg, autophagy-related protein; ATP/AMP,

adenosine triphosphate/adenosine monophosphate; AMPK, AMP-activated protein kinase; Beclin-1, autophagy-related protein; FOXO, Forkhead box O; LC3II,

microtubule-associated protein 1 light chain 3–form II; mTOR, mammalian target of rapamycin; PI3K, Phosphatidylinositol 3-kinase; UKL1, Unc-51-like kinase 1.

mitochondria, plasma membrane or endosomes is formed to
engulf and sequester these damaged elements. This primordial
membrane is called phagophore, which will, in a second step,
fuse at its edges forming a double-membrane vesicle called
autophagosome. The autophagosomes will undergo a maturation
step in which they fuse with acidified lysosomal or endosomal
vesicles to finally degrade a damaged element and recycle it
(Figure 3A) (160, 161).

Among the main proteins that control the autophagic
process, we can mention: autophagy-related (Atg) protein,
which is associated with cytosolic component sequestration and
autophagosome formation and is crucial for normal autophagic
function (162, 163), for example Atg5, Atg12, Atg16; LC3, which
participates in the phagophore and autophagosome expansions
(164, 165); and Beclin-1, protein which participates in the
initiation of the autophagic process by interacting directly with
the phosphatidylinositol 3-kinase (PI3K) complex (166, 167).
Autophagy is a very tightly controlled process that can adapt
cellular metabolism to a stressful situation, such as starvation
and growing factors deprivation, and can also be involved in
turnover of organelles and long-lived proteins. Thus, autophagy
and apoptosis are both important mechanisms for organism
homeostasis due to the elimination of damaged or superfluous
cellular components and damaged cells, respectively (160).

Autophagy dysfunctions may contribute to neurotoxicity
associated with neurodegeneration and aging (168). Decreased
age-related autophagy disrupts neuronal homeostasis and may
thus promote the process of neurodegenerative disorders (169–
171). However, data in the literature indicates that exercise can
activate autophagy, thus preventing age-related diseases as well

as retarding neurodegenerative processes [see reviews for more
information (161, 172)].

Atgs knockout experiments have shown defects associated
with aging, such as high accumulation of non-functional
organelles (173–175), endoplasmic stress (173) and
mitochondrial disorder (174–176). However, it remains unclear
whether these Atgs reductions are, in fact, the main reason for
age-related autophagic malfunction. Literature data suggests that
basal autophagy decay may be mediated by excessive activity of
rapamycin complex 1 (TORC1), a protein kinase that negatively
regulates autophagy. The literature has shown that inhibition of
TORC1 may increase longevity (177–179).

INFLUENCE OF PHYSICAL EXERCISE IN
THE AUTOPHAGY PROCESS IN AGED
BRAIN

It has been postulated that regular physical exercise can
promote a beneficial effect on the health of individuals
and is considered an important autophagic inducer (180–
183). It was observed that treadmill exercise (8 weeks) in
mice modulated the levels of autophagy-associated proteins,
including Beclin1, and improved autophagy (184). Based on
literature data, it is suggested that physical exercise can induce
autophagy through the following mechanism: exercise induces
decreased adenosine triphosphate/adenosine monophosphate
(ATP/AMP) in the cell, and this induces AMP-activated
protein kinase (AMPK) activation; AMPK activation promotes
inhibition of mammalian target of rapamycin (mTOR), leading
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to Unc-51 kinase 1 (ULK1) disinhibition, which is also
phosphorylated and activated by AMPK; the ULK1 complex
induces activation of the Phosphatidylinositol 3-kinase (PI3K)
complex culminating in increased expression of autophagy-
related proteins (Atgs); AMPK also promotes activation of
autophagy-related transcription factors such as forkhead box O
(FOXO), thereby increasing the expression of LC3-II and Atgs
[for more detailed information on these signaling pathways, see
(172, 185, 186) (Figure 3B)].

Based on data published in the literature, it is possible to
suggest that the induction of autophagy by stimulating physical
exercise is regulated according to exercise type, duration and/or
intensity-dependent manner (182).

Kou et al. noted that swimming can delay the aging process,
rescuing the impaired functional state of autophagy and
abnormal mitochondrial dynamics. In addition, Luo et al.
observed that 10-week swimming exercise in rats promoted
adjustments in lysosomal degradation, activation of autophagy
and mitochondrial quality control in the hippocampus,
preventing age-associated cognitive decline. These findings
indicate that the conservation of cognitive function in older rats
by exercise is associated with mitochondrial improvement in
the hippocampus, and lysosomal degradation is required in this
process, suggesting that exercise and lysosomal degradation may
be effective in decreasing age-related cognitive decline (187).

Huang et al. show that 8-week running exercise in mice
can activate the autophagy pathway and improve lysosomal
biogenesis, suggesting improvement in brain function of mice;
besides that, they also observed that prolonged physical exercise
promoted nuclear translocation of transcription factor EB
(TFEB–main regulator of autophagic and lysosomal biogenesis)
in the cortex, positively regulating the transcription of genes
associated with autophagy and lysosome (lysosomal degradation
is a fundamental step to completing the autophagy process)
(188). It has also been observed that moderate exercise
contributes to the prevention of early neurodegeneration in the
substantia nigra region in aged rats by improving autophagy and
mitophagy (189).

Given the data mentioned here, we can conclude that
during aging there are dysfunctions in autophagy leading to
CNS damage. Physical exercise could attenuate or prevent
such autophagic dysfunctions. However, further studies are still
necessary to indicate which modality, duration and intensity
of physical exercise induce the greatest positive effects on
CNS autophagy.

APOPTOSIS IN AGED BRAIN

Apoptosis is a process of programmed cell death modulated
by the B cell leukemia/lymphoma 2 (Bcl-2)/Bcl2 associated X
protein (Bax) family and upregulated during the aging process
(190, 191), which is important for tissue homeostasis (192).
Apoptosis basically occurs in two different pathways: extrinsic
and intrinsic. The extrinsic pathway is induced by death receptors
and their ligands (Fas/ FasL complex) or via pro-inflammatory
marker (tumor necrosis factor (TNF)α), and the intrinsic

pathway is regulated by mitochondrial stress which activates
caspase 9 and cleaves caspase 3 (Figure 4) (193, 194).

The Bcl-2 family is related to apoptotic intrinsic pathway
and has a range of 20 different proteins. Each protein of this
family has homology domains: BH1 to BH4. Pro-apoptotic
proteins are related to BH3 domains called BCL2 antagonist
killer 1 (BAK) and BAX. The other domains are related to anti-
apoptotic proteins, known as BCL2, BCLXL, BCL2L2, myeloid
cell leukemia 1 (MCL1) and BCL2A1 (194–196). In the intrinsic
pathway an increased expression of anti-apoptotic Bcl-2 proteins
modulates the expression of cell cycle inhibitors and induces
cellular senescence, while the expression of pro-apoptotic
factors such as Bax and Bak proteins results in macropores
formation in the mitochondrial surface, called mitochondrial
outer membrane permeabilization (MOMP). This pore allows
the exit of cytochrome c from mitochondria, which culminates
in activation of caspase cascade causing cell death. Bcl-2 acts as
an anti-apoptotic factor that can inhibit the activation of Bax or
Bak and inhibits autophagy by beclin-1, which modulates cellular
senescence (194–197). Caspase-3 is one of the key proteins of
apoptosis and could be responsible for the proteolytic cleavage
of many proteins such as poly (ADP-ribose) polymerase (PARP)
responsible for DNA repair observed by Cechella et al. in aged rat
brains (27).

In the aged brain, there is a reduction in the availability
of neurotrophic factors such as nerve growth factor (NGF)
and brain-derived neurotrophic factor (BDNF), especially in the
hippocampus; therefore, these changes may be linked with the
large reduction in cell proliferation and increase in apoptosis in
the dentate gyrus (8, 198). Besides, TNF-α, a pro-inflammatory
protein, could increase the process of apoptosis via intrinsic and
extrinsic pathways, which is more significantly visible in aged
brain and could be implicated in neurodegenerative diseases,
such as Alzheimer’s disease (AD) and Parkinson’s disease (PD)
(Figure 4) (199–201).

INFLUENCE OF PHYSICAL EXERCISE IN
THE APOPTOSIS PROCESS IN AGED
BRAIN

Sedentary lifestyle could be a risk factor for cognitive dysfunction
and neurodegenerative process, and regular exercise has anti-
aging effects, more specifically in the CNS, whose benefits include
an increase in hippocampus neurogenesis, which improves
learning and memory in aged rodents. Exercise can upregulate
BDNF in hippocampal and cortical neurons promoting synaptic
remodeling and improving cell survival (202, 203). Physical
exercise inhibits the production of the pro-inflammatory
cytokine TNF-α, which in low concentration decreases the
process of apoptosis via the extrinsic pathway (200).

Aerobic Physical Exercise (APE) is the most common type
of training for rodents, such as running and swimming, and
theymust be conducted repeatedly with an established frequency;
however, few studies have compared the effects of many different
modes of exercise on cognition (7). APE is able to positively affect
the dynamic adaptations of the neuronal terminal zones in aging.
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FIGURE 4 | Physical exercise actions against aging brain and the apoptotic process. In the central boxes: Apoptosis can be divided into extrinsic and intrinsic

signaling pathways. The extrinsic pathway illustrated in the upper central box is induced by death receptors such as FASL, and their ligands, FAS. On the other hand,

the intrinsic pathway illustrated in the central inferior box is induced by signs that cause changes in the mitochondrial membrane, called mitochondrial outer

membrane permeabilization (MOMP). This process generates macropores on the mitochondrial surface and a release of Cytochrome C, which once released by

mitochondria binds to and induces APAF-1 and pro-caspase 9, forming the Apoptosome complex, which activates caspase 9 causing cell death. This pathway is

mediated by anti-apoptotic proteins such as BCL-2 and BCL-XL, and pro-apoptotic proteins such as BAX and BAK. In the left box, brain aging is illustrated, and a

decrease of neurotrophic factors such as nerve growth factor (NGF) is observed, and brain-derived neurotrophic factor (BDNF), especially in dentate gyrus located on

hippocampus, may be related to decreased cell proliferation and increased apoptosis. In addition, TNF-alpha, a pro-inflammatory cytokine, can increase the apoptosis

process by intrinsic and extrinsic pathways and lead to the emergence of neurodegenerative diseases. Physical exercise effects, illustrated in the right box, act in

reverse, increasing the amount of NGF and BDNF, increasing cell survival and culminating in decreased apoptosis. In addition, physical exercise inhibits the production

of pro-inflammatory cytokine TNF-alpha which, in low quantities, decreases the extrinsic apoptosis process.

Fattoretti et al. observed effects of APE in the hippocampus of
old mice (27 months) submitted to a 4-week aerobic training
in a treadmill apparatus, five times per week, and found that
hippocampal regions are not uniformly influenced by physical
training: they show an increase in the number of synapses and
synaptic area per µm3 of tissue in CA1 caused by physical
exercise protocol in aged animals, while in DG they could only
see an increased number in the synaptic area (204).

Moderate intensity APE protocol for 28 days in 18-month-
old mice induced an upregulation of hippocalcin, α-spectrin and
ovarian tumor domain-containing ubiquitin aldehyde-binding
protein 1 (OTUB1) in the hippocampus (6). Hippocalcin, which
is a calcium ligand, has been shown to protect neurons against
apoptosis by regulating inhibitory proteins (205). Xie et al.
using an intracerebral hemorrhage method in rats, verified

that OUTB1 colocalized with active caspase 3 and attenuated
neuronal apoptosis (206). Besides, hippocalcin and spectrin-α in
the hippocampus of old mice could be related to an increase in
neurogenesis (7).

Fang et al. tested a 12-week protocol of treadmill aerobic
exercise in aged rats, and observed by TUNEL staining and
immunohistochemistry that the number of TUNEL positive cells
(dead cells) had diminished in cortex and hippocampus after the
exercise protocol. Moreover, anti-apoptotic protein Bcl-2 levels
were augmented. On the other hand, pro-apoptotic proteins, Bax
and cleaved caspase-3 levels were decreased in hippocampus and
cortex of these rodents submitted to the APE protocol. Another
important evidence for the benefits of APE is the decrease of the
cytoskeletal protein tau hyperphosphorylation in the brain of old
rodents (197, 207–209).
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APE is not restricted only to the treadmill apparatus.
Cechella et al. submitted rats to a forced swimming protocol
for 4 weeks and one experimental group of rodents were
supplemented with diphenyl diselenide ((PhSe)2), a potential
antioxidant compound. Both groups, exercise and exercise plus
(PhSe)2, could decrease the level of pro-apoptotic proteins
in 27-month-old rats. They observed an increase in BDNF
levels that has led to a downregulation of pJNK/JNK ratio
which induced caspase 3 cleavage. The cleaved caspase
3/caspase 3 ratio was also decreased, while Bcl2 expression
was increased in animals submitted to both protocols (27).
Conversely, Liu et al. affirmed that, after 10 weeks of treadmill
exercise, apoptotic striatum cells in old-aged rats increased
by 68.24% in comparison to sedentary animals, showing
that intense physical activity might not be beneficial for the
organism (210).

Do et al. tested voluntary running in triple transgenic AD
mice for 4 and 8 weeks. At the end of this period, they
showed a reduction of apoptotic cells in the hypothalamus (211).
In addition, 4-week voluntary exercise training reduced pro-
inflammatory cytokines TNF-α and IL-6 to the levels compared
to the control, which supports previous studies in the literature
(212, 213).

There is a great amount of research related to aerobic exercise
and apoptosis, but little is known about the effects of resistance
training (RT) on the brain. Aerobic exercise may induce events
such as cell proliferation, survival and death through distinct
mechanisms from those of resistance exercise (214, 215). The
RT consisted of bodybuilding exercises like adductor, abductor,
leg presses, triceps and biceps exercises, or in a simpler way for
rodents, it could be climbing a ladder repeatedly, for example
(200, 216, 217). de Smolarek et al. (217) showed that RT could
be very suitable for the elderly population because they were able
to see an improvement in cognition in elderly women (between
65 and 69 years old) submitted to resistance training for 12 weeks.
Another study that used RT protocol in elderly women (between
65 and 75 years old) for 52 weeks showed, after this period,
an increase in these women’s cognition, mainly in learning,
measured by Mini-Mental State Examination and another verbal
quiz (26).

There are few studies in the literature showing that RT
could be used for hospitalized elderly people who spend
most of the time lying on a bed relying exclusively on
physiotherapy exercises (218–221). Martínez-Velilla et al. used
an RT protocol that includes physical exercises such as line
walking, stepping practice, proprioceptive exercises, among
others (219). The results showed that RT protocol was efficient
in preventing functional decline caused by hospitalization (218).
Other clinical trials with RT protocol applied in 65-year-old
healthy men and women, consisting of a 3-month body-mass-
based exercise program, revealed that only working memory was
improved (222).

Frailty is a syndrome characterized by dysregulation of several
physiological systems (223, 224). Few studies with physical
exercise (not only RT exercise, but also APE) were conducted
to evaluate its efficiency in ameliorating frailty phenotype (218,
225). Yoon et al. tested an RT high speed program in elderly

people (74 years old) with frailty syndrome for 16 weeks and
they observed that RT improved cognitive and physical functions
(218). Based on clinical trials data, we can conclude there is a
good outcome in using RT protocol in the elderly to improve
their cognition (218, 219, 222).

In another perspective, regarding animal studies, Henrique
et al. (200) compared two protocols, APE and RT. APE protocol
used treadmill running, and RT protocol consisted of a series of
eight climbs with a progressively heavier load, both for 7 weeks
in 21-month-old rats. They observed that the RT group had a
reduction in hippocampal levels of macrophage inflammatory
peptide (MIP)-2 protein, a pro-inflammatory mediator which
seems to be related to inducing apoptosis (226), so the effects of
RT on MIP-2 levels deserve to be more explored.

Vilela et al. (215) also compared APE and RT in 24-
month-old rats and observed, in both protocols, an increase
of the hippocampal neurotrophin receptor P75 (P75NTR), a
transmembrane receptor involved in many cellular functions
including apoptosis, cell survival, neurite outgrowth, migration,
and cell cycle arrest (227, 228). In this case, the researchers
believed that P75NTR was involved in neuroprotection through
activation of the apoptosis pathway to induce death process on
damaged neurons and to provide a conducive environment for
insertion of new cells (215, 229).

In summary, both APE and RT could improve spatial memory
or activate different mechanisms that lead to cell survival and
induce a decrease of apoptotic cells. RT can be a strategy to
protect the brain and maintain healthy cognition during the
aging process, while APE could alter intracellular pathways, even
though the related mechanisms that explain these effects still
remain unknown.

CONCLUSION AND PERSPECTIVES

Based on what we cited in this review, we can conclude that
during the aging process dysfunctions can occur in several
cellular events, such as autophagy and apoptosis, which can
culminate in CNS damage. Physical exercise could attenuate
or prevent such autophagic or apoptotic dysfunctions. At
the same there is controversial data from the literature both
in human and animal studies. Therefore, further studies
are still necessary to clarify the effects of physical exercise
during the aging process and also to demystify underlying
mechanisms of physical exercise effects and indicate which
modality, duration and intensity of exercise is able to induce
the greatest positive effects in the CNS, thus preventing
neuronal death.
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