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Non-alcoholic fatty liver disease (NAFLD) is a growing epidemic, in parallel with the

obesity crisis, rapidly becoming one of the commonest causes of chronic liver disease

worldwide. Diet and physical activity are important determinants of liver fat accumulation

related to insulin resistance, dysfunctional adipose tissue, and secondary impaired

lipid storage and/or increased lipolysis. While it is evident that a hypercaloric diet

(an overconsumption of calories) promotes liver fat accumulation, it is also clear that

the macronutrient composition can modulate this risk. A number of other baseline

factors modify the overfeeding response, which may be genetic or environmental.

Although it is difficult to disentangle the effects of excess calories vs. specifically the

individual effects of excessive carbohydrates and/or fats, isocaloric, and hypercaloric

dietary intervention studies have been implemented to provide insight into the effects

of different macronutrients, sub-types and their relative balance, on the regulation of

liver fat. What has emerged is that different types of fat and carbohydrates differentially

influence liver fat accumulation, even when diets are isocaloric. Furthermore, distinct

molecular and metabolic pathways mediate the effects of carbohydrates and fat intake

on hepatic steatosis. Fat accumulation appears to act through impairments in lipid

storage and/or increased lipolysis, whereas carbohydrate consumption has been shown

to promote liver fat accumulation through de novo lipogenesis. Effects differ dependent

upon carbohydrate and fat type. Saturated fat and fructose induce the greatest

increase in intrahepatic triglycerides (IHTG), insulin resistance, and harmful ceramides

compared with unsaturated fats, which have been found to be protective. Decreased

intake of saturated fats and avoidance of added sugars are therefore the two most

important dietary interventions that can lead to a reduction in IHTG and potentially

the associated risk of developing type 2 diabetes. A healthy and balanced diet and

regular physical activity must remain the cornerstones of effective lifestyle intervention

to prevent the development and progression of NAFLD. Considering the sub-type of

each macronutrient, in addition to the quantity, are critical determinants of liver health.

Keywords: non-alcoholic fatty liver disease, carbohydrate, saturated fat, over-feeding, de novo lipogenesis (DNL),
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INTRODUCTION

There have been many feeding/overfeeding studies performed
and published that have elegantly outlined the whole body,
multi-organ, andmolecular/cellular effects of human overfeeding
in an effort to recapitulate the chronic nutrient excess that
has characterized the current obesity epidemic, providing
mechanistic insight into the biological adaptations that occur
with weight gain and development of overweight/obesity. These
studies have been undertaken in individuals with an array
of differing baseline characteristics [age, body mass index
(BMI), insulin sensitivity, metabolic health status, obesity
prone/resistant genotype etc.] and have adopted different
study designs (parallel arm vs. cross-over), of progressively
longer duration (from hours to many months). They have
imposed different feeding regimes (caloric quantity vs. different
macronutrient compositions [fat vs. carbohydrate etc.]) with
the aim of weight maintenance, or of inducing identical
absolute or relative weight gain for a fixed time period, some
with concomitant changes in physical activity. The focus of
these studies has been hugely varied examining the effects
on energy balance, on structure and function of specific
organs/tissues (adipose tissue, skeletal muscle, liver, brain,
pancreas) and on inter-organ cross talk. Various experimental
techniques have been employed including assessment of
behavioral responses, dynamic metabolic assessment using
an array of indirect calorimetry, metabolic chambers, stable
isotopes, hyperinsulinaemic-euglycaemic clamps, and meal
tolerance tests, imaging with dual energy x-ray absorptiometry
(DEXA)/computerized tomography (CT)/magnetic resonance
imaging (MRI) to assess changes in regional and total body
composition and tissue (adipose tissue/skeletal muscle) biopsies,
often used in parallel to provide complementary data and an
integrated perspective. More than 300 such studies have been
recently comprehensively reviewed in an extensive systematic
review of human overfeeding studies (1).

The purpose of this narrative review is to examine the
impact of different dietary regimes, frequently with contrasting
macronutrient composition, seeking evidence from recent
overfeeding studies that have provided valuable mechanistic
insight, to examine factors that drive liver fat accumulation and
damage, in an attempt to better understand the pathophysiology
of non-alcoholic fatty liver disease (NAFLD). It is not intended to
provide exhaustive epidemiological data nor review evidence for
specific dietary manipulations or physical activity interventions,
despite a clear acknowledgment that cardiorespiratory fitness,
regular physical activity, and 5–10%weight reduction remain key
cornerstones of ideal management (2, 3).

EPIDEMIOLOGY OF NAFLD

NAFLD is a major public health problem ranging from hepatic
steatosis, an excessive accumulation of intrahepatic triglycerides
(IHTG) affecting approximately a quarter of adults, to non-
alcoholic steatohepatitis (NASH), in which hepatic inflammation
and cellular injury occurs leading eventually to fibrosis, the key
driver of cirrhosis (4, 5). Hepatocellular carcinoma (HCC) has an

annual incidence of around 10 per 1,000 person years in NAFLD
cirrhosis, although NASH has been found to be associated with
an elevated risk of HCC even in the absence of cirrhosis (6).

Hepatic fat content is an important driver of the metabolic
syndrome, partly related to increased hepatic insulin resistance
(7), and therefore is associated with obesity and related metabolic
disorders, namely insulin resistance, prediabetes, type 2 diabetes
(T2D), and cardiovascular disease (8, 9). NAFLD is also
associated with a number of other systemic complications
including chronic kidney disease, and a variety of malignancies,
hepatic, and extra-hepatic (10).

NAFLD was not recognized as a clinical entity until 1980
(11), but has been exponentially increasing in prevalence in all
populations across all ages (including pediatric and adolescent
populations), socioeconomic groups (disproportionately
afflicting the more socioeconomically deprived), and in
developing countries where Western diets have become more
common place (4).

Both over nutrition and sedentary lifestyle has been
demonstrated to be associated with the NAFLD spectrum in
both animals and humans (12–14), and thus improved nutrition
and increased physical activity serves as a major therapeutic
route to prevention and treatment. Dietary composition has an
important impact on the pathogenesis of NAFLD and different
dietary macronutrient composition influences the pathways,
mediators, and magnitude of weight gain-induced changes in
IHTG content. Excessive consumption of fat and sugars are
the root causes of human metabolic disease with saturated fat
and fructose being the main dietary components that stimulate
hepatic lipid accumulation and progression to NASH, whereas
unsaturated fat, choline, antioxidants, and high protein diets
appear to play a protective role. The European Association for
the Study of the Liver support “exclusion of processed food,
and food and beverages high in added fructose,” as well as a
macronutrient composition in line with a Mediterranean diet
however, these recommendations are only supported by evidence
graded “moderate” in quality (2), and other organizations
including the American Association for the Study of Liver
Disease make no dietary recommendations for individuals with
NAFLD (15). The evidence around these dietary components will
be discussed in more detail.

NUTRIENT-INDUCED DRIVERS OF LIVER
FAT ACCUMULATION

Distribution of Excess Energy Amongst
Tissues
Although excessive energy intake is a key driver of NAFLD,
relatively few human studies have investigated the influence
of (isocaloric) dietary composition on biological processes
occurring in the liver and ectopic fat accumulation to understand
the metabolic consequences of contrasting dietary fats and
carbohydrates. Important inter-organ crosstalk occurs between
the gut (small intestine), liver, and other peripheral organs
including adipose tissue and skeletal muscle (Figure 1).
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FIGURE 1 | The “adipose tissue expandability” hypothesis leading to deposition of ectopic fat into the liver and other organs.

Biological Mechanisms to Explain
Metabolic Phenotypes
Results from transgenic animal studies, in which subcutaneous
adipose tissue (SAT) may undergo massive expansion,
demonstrate SAT to be metabolically inert, providing a safe
haven for toxic lipids, with consequently reduced ectopic fat
(e.g., liver/pancreas/visceral fat) and preservation of insulin
sensitivity (16). In contrast, a lesser capacity for SAT expansion
is associated with greater ectopic fat deposition, development
of systemic insulin resistance, metabolic syndrome, and
atherosclerosis (17).

The Adipose Tissue Expandability
Hypothesis
The adipose tissue expandability hypothesis has been proposed
suggesting that SAT expansion occurs during positive energy
balance, but that once the SAT capacity to store energy has
been exceeded and maximal SAT expansion has occurred, there
is widespread organ-specific ectopic fat deposition (steatosis)
in visceral adipose tissue (VAT), liver, pancreas, cardiac, and
skeletal muscle (Figure 1) (18). The functional consequences on
the organs is lipotoxicity causing hepatic insulin resistance and
impaired beta cell function (a sequence of events explained by the
twin cycle hypothesis) in addition to myocardial dysfunction (19).
The absolute storage capacity of SAT has a huge inter-individual
variation, unique to the individual as proposed by the personal fat
threshold (18).

Regulation of Liver Fat Content
The quantity of IHTG is dependent upon the relative balance
of lipid inflow and lipid removal (Figure 2). Lipid influx maybe
derived from a variety of metabolic sources including dietary
intake/intestinal (15%), adipose tissue lipolysis (increased flux
of non-esterified fatty acids, NEFAs) (60–80%) and hepatic
de novo lipogenesis (DNL) (endogenous synthesis of saturated
fatty acids (SFAs) including palmitate from glucose, fructose, or
both) (5%). All contribute to liver fat accumulation in distinct
proportions. Lipid removal is mediated by both mitochondrial
fatty acid β-oxidation and re-esterification to triglyceride (TG)
which is either stored or exported into the systemic circulation
as very low-density lipoprotein (VLDL). Liver fat accumulates
differentially according to the fatty acid composition and/or
carbohydrate content/type but significantly appears to do so
through different molecular/cellular pathways. Increasing levels
of IHTG can drive insulin resistance which in turn may increase
the rate of DNL (20). Insulin-resistant adipose tissue also leads to
enhanced lipolysis.

Molecular Pathways in the Liver
Different dietary patterns or certain nutrients may directly
promote NAFLD by promoting hepatic TG accumulation and
inhibiting antioxidant activity, and indirectly by affecting insulin
sensitivity and post-prandial TG metabolism. In general, these
include simple sugars (fructose), SFAs, trans-fatty acids and
animal protein. Nutrients may do so by acting on a variety of
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FIGURE 2 | The mechanistic pathways leading to the accumulation of intrahepatic triglycerides and influence of fat or carbohydrate overfeeding on these pathways.

hepatic nuclear receptors to regulate these processes including

the liver X receptor (hepatic fatty acid synthesis), the farnesoid

X receptor (VLDL assembly), and the peroxisome proliferator-
activated receptors (PPARs: PPAR-α, fatty acidv oxidation;

PPAR-γ, anti-inflammatory function; PPAR-δ suppresses hepatic

lipogenesis, and reduces the hepatic expression of pro-

inflammatory genes), as well as cytoplasmic transcription factors

such as sterol regulatory element-binding protein (SREBP)-1.

Contribution of Glucose-Dependent
Insulinotropic Polypeptide (GIP) Release
and the Gut Microbiome to NAFLD
The gut may modulate fat accretion through different patterns
of secretion of intestinal GIP (being most potently stimulated
by saturated fat) (21). Additionally, the gut plays a role in
NAFLD progression with alterations in gut permeability, the
microbiome, and associated endotoxemia contributing to the risk
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of NAFLD and NASH. While the overall community structure
of the gut microbiota appears to remain resilient to short-
term overfeeding with both fats and simple sugars, carriage
of the anaerobe Bilophila has been identified as a potential
risk factor for diet-induced liver steatosis (22). There is also
evidence that certain patterns of microbiota (e.g., in T2D) may
produce metabolites, specifically histidine-derived imidazole
propionate, that can induce insulin resistance by impairing signal
transduction through the insulin signaling pathway. These data
provide an important mechanistic link between altered patterns
of gut microbiota and whole-body metabolism (23).

Timing and Pattern of Ingestion
Although beyond the scope of this review, the timing of
macronutrient intake relative to sleep/wake cycle and the pattern
of ingestion is also relevant (24, 25).

MACRONUTRIENT COMPOSITION

Before discussing the effects of overconsumption, it is useful to
summarize the different types and subtypes of macronutrients
(Figure 3).

Carbohydrates
Carbohydrates are the sugars, starches and fibers found in fruits,
grains, vegetables, and dairy products. They can be divided into
whole vs. refined carbohydrates. Whole carbohydrates include
fruits, leafy greens, starchy vegetables, beans, peas, lentils, and
whole grains. These carbohydrates are high in fiber, vitamins,
minerals, antioxidants, and water and are minimally processed.
Refined carbohydrates are processed to remove the protein
and fat-rich germ and fiber-rich bran, leaving only the starchy
endosperm. They are therefore low in fiber and micronutrients.
Examples include white rice, white bread, pastries, sugary cereals,
sugary drinks, and sweets.

Fructose
Fructose is a monosaccharide commonly found in fruits,
vegetables and honey (5–10% fructose), but due to its sweetness
is also a major component in the two most commonly used
sweeteners, sucrose, and high fructose corn syrup (HFCS, a
mixture of fructose and glucose monosaccharides). HFCS is
found in soft drinks and pre-packaged foods.

Glucose
Glucose is present in all major carbohydrates, such as starch and
table sugar. Glucose is metabolized primarily by glucokinase or
hexokinase. It is found in its free state in fruits and plants and is a
component of fruit juices, sugar-sweetened beverages (SSB), and
processed foods.

Sucrose
Sucrose is a disaccharide composed of glucose and fructose. It
occurs naturally in sugarcane, sugar beets, dates, and honey. It is
often the sole component of table sugar and is also found in high
quantities in maple syrup and chocolate.

Lactose
Lactose is composed of glucose and galactose and is found
predominantly in milk and other dairy products.

Fats
Fats can be divided into three groups: trans-fatty acids, saturated
fat and unsaturated fat.

Trans-Fatty Acids (TFAs)
Trans-fatty acids (TFAs) are found in fast and fried foods,
partially hydrogenated vegetable oil, cakes and pastries, and can
increase serum cholesterol. The availability of industrial TFA
from partially hydrogenated vegetable oils is being increasingly
limited and is forbidden in some countries. Small amounts of
TFAs are also found in fats from ruminant animals.

Saturated Fatty Acids
Saturated fatty acids generally originate from animal sources
including fatty meat, butter, full fat dairy products, and tropical
oils, including palm oil and coconut oil. Excessive consumption
of SFAs, common in western diets, can cause insulin resistance
and raise serum low-density lipoprotein (LDL) cholesterol levels.

Unsaturated Fatty Acids
Unsaturated fatty acids are either poly or monounsaturated.
Sources of monounsaturated fats (MUFAs) include olive oil,
rapeseed oil, soy, avocados, and certain nuts. Monounsaturated
fats reduce levels of LDL cholesterol while maintaining high
concentrations of high-density lipoprotein (HDL) cholesterol.
Polyunsaturated fats (PUFAs) can be divided into the omega-
3 (n-3) and omega-6 (n-6) families. Omega-6 fats are found in
vegetable oils (corn, sunflower oil), seeds (rapeseed, flaxseed oil),
soybean oil, and nuts. Omega-3 fats are sourced from fish oils and
algae, as well as rapeseed oil, soy, walnuts and flaxseed oil. PUFAs
have been shown to improve LDL cholesterol levels to an even
greater extent than MUFAs, and importantly may also improve
insulin sensitivity (26).

OBSERVATIONAL DATA OF DIETARY
PATTERNS

Epidemiological data on dietary risk factors for NAFLD from
population-based studies are scarce. Most human studies are
observational and retrospective, allowing limited inference about
causal associations. From those studies that are available we have
seen clear positive associations of NAFLD with intake of red
and processed red meat, poultry and cholesterol and negative
associations with dietary fiber intake (27, 28). Lower hepatic
PUFA levels were also associated withNAFLD in a cross-sectional
study (29).

EFFECT OF EXCESS ENERGY INTAKE AND
SPECIFIC MACRONUTRIENTS ON LIVER
FAT

Experimental overfeeding can be implemented using excess
energy from any form of hypercaloric diet. The diet may be
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FIGURE 3 | Subtypes of macronutrients (A) carbohydrates, (B) fat.

balanced or unbalanced according to the relative amounts of
fat, carbohydrate or protein, or may involve consumption of
a particular type of fat or carbohydrate. The mechanisms by
which specific macronutrients in excess cause a change in liver
fat (and indeed other ectopic fat depots) are of interest. The
methodologies range frommore simple study designs to complex
multi-modality assessments concomitantly examining changes in
functional adipose tissue characteristics, body composition (with

DEXA and/orMRI/1H-magnestic resonance spectroscopy,MRS)
and the metabolic consequences (using oral glucose tolerance
test or euglycaemic clamps) (30). Key overfeeding studies that
have provided an insight into the impact of short- and longer-
term excess carbohydrate or fat ingestion on liver fat content are
shown inTables 1–3; and their effect on adipose tissue expansion,
insulin sensitivity, and other metabolic profiles are shown in
Supplementary Tables 1–3.
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Some key findings of these studies have recently been borne
out in a systematic review and meta-analysis of 26 randomized
controlled trials assessing the effects of dietary macronutrient
composition on liver fat content (51). In order to do this only
isocaloric diets were considered; a quarter were over-feeding
studies, i.e., the dietary intervention was provided as an energy
surplus, and the rest involved isoenergetic diets or restricted
energy intake compared to baseline. As expected, unsaturated
fats were found to reduce liver fat content compared to SFAs
(standardized mean difference (SMD) −0.80 [95% CI −1.09 to
−0.51). Replacement of carbohydrate with protein also led to
a moderate reduction in liver fat overall although only three
studies were included (SMD −0.33 [95% CI −0.54 to −0.12]).
Finally, a comparison of high-carbohydrate/low-fat vs. low-
carbohydrate/high-fat diets revealed significant heterogeneity
between studies; three studies concluded the high fat diet resulted
in lower levels of steatosis, two studies concluded the opposite
and seven studies found no difference (overall pooled effect 0.01
[95% CI−0.37 to 0.36]).

The Impact of Carbohydrate Ingestion and
Excess Carbohydrate Consumption on the
Liver
A number of studies have examined the relative roles of
glucose and fructose in the adverse metabolic alterations
associated with excessive sugar consumption. Results from
clinical studies indicate that reductions in sugary beverages
and total fructose intake, especially from added sugars, have
a significant benefit in reducing hepatic fat accumulation (52).
This is borne out by the findings from a number of meta-
analyses suggesting the consumption of SSBs is related to the
risk of metabolic syndrome; increased TG levels, stimulated DNL
and increased visceral fat (53, 54). Fructose may drive NAFLD
through multiple mechanisms: (i) hepatic: fructose increases the
transcription factor carbohydrate-responsive element-binding
protein (ChREBP-1), a master regulator of DNL, while it also
impairs hepatic β-fatty acid oxidation, (ii) gut-mediated: fructose
is principally metabolized by fructokinase which is highly
expressed in the small intestine. Metabolism of fructose in the
intestine results in disruption of the tight junctions responsible
for increased gut permeability, leading to bacterial and bacterial
endotoxin translocation (55).

Overfeeding with carbohydrates (simple sugars) has been
shown to lead to significant increases in liver fat content in a
majority of studies as determined by 1H-MRS (Table 1) (25, 31–
35, 38, 47, 48, 50). Significant changes in liver fat deposition
can occur within a week of overfeeding (31–33, 47, 48) and in
some studies this has been shown to be independent of total body
weight gain (33, 38, 47, 48, 50). Sevastianova et al. assigned 16
subjects with a mean BMI of 30.6 to a 3 week high carbohydrate
diet and reported a 10-fold greater relative change in liver fat
(27%) compared to body weight (2%) (35). A randomized study
comparing 6 months of overfeeding with sucrose-sweetened
cola or milk revealed that individuals consuming the cola
had significantly greater liver fat content at the end of the

intervention despite energy consumption between the groups
being comparable (38).

Various methodologies have demonstrated an increase in
hepatic production of the saturated fat palmitate following
carbohydrate overfeeding, indicating a link between excess
dietary sugar and the accumulation of liver fat through DNL
as opposed to lipolysis (Figure 2, Table 1) (31, 33, 35, 50).
Furthermore, increases in liver fat following a high carbohydrate
diet positively correlate with DNL (35). This suggests that
the liver accumulates fat during carbohydrate overfeeding and
supports a role for DNL in the pathogenesis of NAFLD.

While the evidence of the relationship between excess intake
of mono- and disaccharides with hepatic steatosis is now well-
established, studies vary in their findings of whether hepatic
transaminases increase following dietary intervention, suggesting
there may be an interplay with other risk factors required to bring
about liver inflammation (Table 1).

In terms of other metabolic parameters, carbohydrate
overfeeding consistently results in raised levels of TG and VLDL-
TG, likely a reflection of an increase in DNL, whereas its impact
on the rest of the lipid profile is minimal in the majority of studies
(Supplementary Table 1). While SAT volumes are generally
increased (25, 35, 38), the influence of carbohydrate overfeeding
on VAT is particularly pronounced (38). Glycaemic parameters,
including fasting plasma glucose and insulin levels, in addition
to markers of insulin sensitivity vary excessively between studies
with approximately half demonstrating no change following
dietary intervention (31–38).

Although some studies have suggested that fructose has
more steatogenic potential than glucose, in that it has been
demonstrated to lead to enhanced DNL, greater volumes of VAT,
altered lipid metabolism and lower levels of insulin sensitivity
(56), data from a double blind parallel randomized control trial
suggests that the effects on liver enzymes and triacylglcerol
(TAG) concentrations are similar (34). Johnston et al. assigned
32 overweight individuals to receive either a high fructose or
high glucose hypercaloric diet for 2 weeks with a 6 week washout
period (34). The two groups experienced similar increases in
weight, and concentrations of TAG in both the liver and serum,
in addition to comparable changes in alanine transaminase and
aspartate transaminase. No such changes occurred where an
isocaloric diet was followed for either group.

The glycaemic index (GI) of carbohydrates does appear to be
an important modulator as shown from a crossover trial in which
over 80 healthy volunteers consumed either a high or a low GI
diet for 7 days (57). The authors reported an increase in the liver
fat fraction (and higher hepatic glycogen concentrations) with
a high GI diet, whereas liver fat decreased following a low GI
diet (57).

Given the association between fructose and NAFLD described
above, there may be some confusion regarding fruit which
naturally contains fructose. Fruit is part of the Mediterranean
diet which is recommended for individuals with NAFLD (2).
Most fruits have a relatively low GI depending on factors
including ripeness. The quantities of fructose found in fruit are
considerably lower than those found in SSBs; for example one
pear contains about 12 g fructose, compared to 37 g in a can of
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TABLE 1 | Summary of studies examining the impact of carbohydrate over-feeding on liver fat.

References Participants Design Intervention Duration Body weight (kg) Liver fat (1H-MRS, %) ALT, AST (U/L) Markers of DNL

Shorter duration (≤1 week)

Lê et al. (31) Off-spring of

people with T2D

(OffT2D) (n = 16)

Controls (n = 8)

Randomized

Cross-over

Isocaloric diet + 3.5

g/kg/FFM fructose + 35%

EE (HFrD)

7 days

4–5 week washout

Controls +0.6

OffT2D +1.0

Diet, p < 0.05

Groups, p = ns

OffT2D +79%

Controls +76%

Groups, p = ns

ALT: Controls

16.9 ± 1.2 →

24.9 ± 4.2;

OffT2D 16.4 ± 1.0

→ 29.3 ± 4.2

Groups, p = ns

18:2n26: 16:0 in serum

VLDL TAG:

Controls 0.36 → 0.31

(p < 0.001)

OffT2D 0.35 → 0.27

(p < 0.001)

Groups, p = ns

Ngo Sock et al.

(32)

Non-diabetic men

(n = 11)

Randomized

Cross-over

1. WM+3.5 g/kg/FFM

fructose (HFrD)

2. WM+3.5 g/kg/FFM

glucose (HGlcD) HFrD/HGlcD

+ 35% EE

7 days

2–3 week washout

HFrD +0.6

HGIcD +1.0

HFrD vs. WM, p <

0.01

HGIcD vs. WM, p

< 0.05

HFrD +52 ± 13%, HGIcD +58 ± 23%

HFrD vs. WM, p < 0.05

HGIcD vs. WM, p = ns

HFrD vs. HGIcD, p = ns

ALT, AST: p = ns

vs. WM diet

Theytaz et al.

(33)

Non-diabetic men

(n = 9)

Randomized

Cross-over

1. HFrD (3 g/kg) + placebo

(+36% EE)

2. HFrD (3 g/kg) + EAA

(HFrAA) (+38% EE)

6 days

4–10

week washout

p = ns with diet WM +1.27 ± 0.31

HFrD +2.74 ± 0.55 (p < 0.05 vs. WM)

HFrD vs. HFrAA, p < 0.05

13C palmitate

production

(nmol/540min):

WM 1.0 ± 3.9

HFD 182.2 ± 52 (p <

0.05 vs. WM)

Longer duration (> 1 week)

Johnston et al.

(34)

Non-diabetic men

(n = 32)

Randomized

Cross-over

Double blind

1. Isocaloric HGlD/HFrD

2. Hypercaloric (HclD)

(+25% EE) HGlD/HFrD

2 weeks

6 week washout

Results for HclD

HFrD +1.0 ± 1.4

(p < 0.05)

HGlD +0.6 ± 1.0

(p < 0.05)

HFrD vs. HGlD, p

= ns

Results for HclD
aHFrD +1.70 ± 2.6 (p < 0.05)

HGlD ‘+2.05 ± 2.9 (p < 0.05)

HFrD vs. HGlD, p = ns

ALT, AST:

p = ns for HclD

p = ns for HFrD

vs. HGlD

Sevastianova

et al. (35)

Non-diabetics

genotyped for

PNPLA3. (n = 16).

Mean BMI 30.6

kg/m2

One group Hypercaloric diet (>1,000

kcal/day simple sugars)

3 weeks +1.8 ± 0.3 (p <

0.0001)

+27% (9.2 ± 1.9 → 11.7 ± 1.9), p < 0.05 ALT: +28%

(50 ± 11 →

64 ± 16), p < 0.05

AST: +19%

(36 ± 4 →

43 ± 6), p < 0.05

16:0: 18:2n26 in serum

VLDL TG: +52%

(2.1 ± 0.3 →

3.2 ± 0.5), p < 0.05

Positively correlated

with liver fat during

overfeeding (p < 0.05)

Lê et al. (36) Non-diabetic men

(n = 7)

One group Isoenergetic diet + 1.5

g/kg/d fruct (+18%EE)

4 weeks p = ns with diet p = ns

(Continued)

F
ro
n
tie
rs

in
N
u
tritio

n
|w

w
w
.fro

n
tie
rsin

.o
rg

8
F
e
b
ru
a
ry

2
0
2
1
|
V
o
lu
m
e
8
|A

rtic
le
6
4
0
5
5
7

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Hydes et al. NAFLD: Fat, Carbohydrate or Calories

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

R
e
fe
re
n
c
e
s

P
a
rt
ic
ip
a
n
ts

D
e
s
ig
n

In
te
rv
e
n
ti
o
n

D
u
ra
ti
o
n

B
o
d
y
w
e
ig
h
t
(k
g
)
L
iv
e
r
fa
t
(1
H
-M

R
S
,
%

)
A
LT
,
A
S
T
(U

/L
)

M
a
rk
e
rs

o
f
D
N
L

S
ilb
e
rn
a
g
e
l

e
t
a
l.
( 3
7
)

N
o
n
-d
ia
b
e
tic

o
ve
rw

e
ig
h
t

in
d
iv
id
u
a
ls
(n

=
2
0
)

R
a
n
d
o
m
iz
e
d

P
a
ra
lle
l

P
a
rt
ic
ip
a
n
ts

b
lin
d
e
d

1
.
W
M

+
1
5
0
g
/d

(6
0
0
kc

a
l)

fr
u
c
to
se

(H
F
rd
)

2
.
W
M

+
1
5
0
g
/d

(6
0
0
kc

a
l)

g
lu
c
o
se

(H
G
ld
)

4
w
e
e
ks

H
F
rD

+
0
.2

±
0
.6

(p
=

n
s)

H
G
lD

+
1
.7

±
0
.4

(p
=

0
.0
0
1
)

H
F
rD

vs
.
H
G
lD
,
p

=
n
s

H
F
rd
D
/H

G
lD

vs
.
W
M
,
p
=

n
s

H
F
rD

vs
.
H
G
lD
,
p
=

n
s

M
a
e
rs
k
e
t
a
l.

(3
8
)

N
o
n
-d
ia
b
e
tic

in
d
iv
id
u
a
ls
(n

=
4
7
)

R
a
n
d
o
m
iz
e
d

P
a
ra
lle
l

S
ta
n
d
a
rd

d
ie
t
+

1
L
/d
a
y:

1
.
S
u
c
ro
se

-s
w
e
e
te
n
e
d
c
o
la

(5
0
%
E
g
lu
/5
0
%
E
fr
u
c
t)

(4
3
0
kc

a
l/
d
)

2
.
A
sp

a
rt
a
m
e
-s
w
e
e
te
n
e
d

d
ie
t
c
o
la
(4

kc
a
l/
d
)

3
.
M
ilk

(4
5
4
kc

a
l/
d
)

4
.
W
a
te
r
(0

kc
a
l/
d
)

6
m
o
n
th
s

N
o
c
o
m
p
a
ris
o
n

w
ith

b
a
se

lin
e
p
=

n
s
b
e
tw

e
e
n

g
ro
u
p
s

C
o
la
vs
.
m
ilk

1
4
3
%
,
p

<
0
.0
5

C
o
la
vs
.
d
ie
t
c
o
la
1
3
9
%
,
p

<
0
.0
5

C
o
la
vs
.
w
a
te
r
1
3
2
%
,
p

<
0
.0
5

A
N
O
V
A
p
=

0
.0
1

A
ll
re
s
u
lt
s
s
h
o
w
m
e
a
n
±
S
E
M
u
n
le
s
s
s
ta
te
d
o
th
e
rw
is
e
.

a
M
e
a
n
±
S
D
.

b
M
e
d
ia
n
(in
te
rq
u
a
rt
ile

ra
n
g
e
).

1
H
-M

R
S
,
m
a
g
n
e
ti
c
re
s
o
n
a
n
c
e
s
p
e
c
tr
o
s
c
o
p
y;
A
LT
,
a
la
n
in
e
tr
a
n
s
a
m
in
a
s
e
;
A
S
T,
a
s
p
a
rt
a
te

a
m
in
o
tr
a
n
s
fe
ra
s
e
;
D
N
L
,
d
e
n
o
vo

lip
o
g
e
n
e
s
is
;
T
2
D
,
ty
p
e
2
d
ia
b
e
te
s
;
F
F
M
,
fa
t
fr
e
e
m
a
s
s
;
E
E
,
e
xc
e
s
s
e
n
e
rg
y;
H
F
rD
,
h
ig
h
fr
u
c
to
s
e
d
ie
t;
1
8
:2
n
2
6
,

L
in
o
le
a
te
;
1
6
:0
,
p
a
lm
it
a
te
;
V
L
D
L
,
ve
ry
lo
w
d
e
n
s
it
y
lip
o
p
ro
te
in
;
T
A
G
,
tr
ia
c
yl
g
ly
c
e
ro
l;
W
M
,
w
e
ig
h
t
m
a
in
te
n
a
n
c
e
d
ie
t;
H
G
lc
D
,
h
ig
h
g
lu
c
o
s
e
d
ie
t;
E
A
A
,
e
s
s
e
n
ti
a
l
a
m
in
o
a
c
id
s
;
P
N
P
L
A
3
,
P
a
ta
ti
n
-l
ik
e
p
h
o
s
p
h
o
lip
a
s
e
d
o
m
a
in
-c
o
n
ta
in
in
g
p
ro
te
in
3
;

B
M
I,
b
o
d
y
m
a
s
s
in
d
e
x;
T
G
,
tr
ig
ly
c
e
ri
d
e
s
;
A
N
O
V
A
,
a
n
a
ly
s
is
o
f
va
ri
a
n
c
e
;
H
c
lD
,
h
yp
e
rc
a
lo
ri
c
d
ie
t.

cola and ∼30 g in a 450ml bottle of fruit juice (58). A Swedish
study recently addressed this issue by randomizing 30 healthy
individuals to receive a diet supplemented in either nuts or fruit
for 2 months each at +7 kcal/kg body weight per day (59). No
change in hepatic fat content was demonstrated in individuals
consuming excess fruit despite an almost 3-fold increase in
fructose intake.

To summarize there is a clear consensus between studies
that overfeeding with simple sugars leads to increased levels of
hepatic fat and serum TG levels. While there is some evidence
that this effect is independent of total calorie intake and weight
gain, additional high quality studies are needed to confirm this.
Randomized control trial data suggests that fructose and glucose
are equally steatogenic. Multiple mechanisms are at play as
described in Figure 2, however DNL appears to be the dominant
pathway in the case of carbohydrate overfeeding.

The Impact of Fat Ingestion and Excess Fat
Consumption on the Liver
An increase in dietary fat increases hepatic fat in normal
weight and overweight/obese individuals as shown in a number
of studies involving either an isocaloric or hypercaloric diet.
However, the magnitude and distribution of fat depot expansion
varies significantly according to the type of dietary fat consumed
(Supplementary Table 2).

Isocaloric Diet
In 10 obese women, liver, intra-abdominal, and subcutaneous fat
were measured at baseline and after a 2 week isocaloric period
consisting of a diet with low vs. high fat, containing either 16%E
or 56%E of total energy intake as fat (60). Liver fat decreased by
20 ± 9% and increased by 35 ± 21% with the low- and high fat
diet, respectively. Fasting serum insulin showed similar trends
decreasing with the low fat diet and increasing with the high fat
diet. Intra-abdominal and subcutaneous fat were unchanged (60).
Similar findings were found in 20 overweight men allocated to a 3
week low or high fat diet containing either 20%E or 55%E fat with
liver fat, decreasing by 13% and increasing by 17% in the low and
high fat groups, respectively (61).

The type of dietary fat consumed is relevant. A total of 67
abdominally obese subjects (15% with T2D) were randomly
assigned to a 10 week isocaloric diet high in vegetable n-6
PUFAs (PUFA diet) vs. SFA mainly from butter (SFA diet)
without modifying the macronutrient intake (62). Body weight
slightly increased with no between-group differences however
liver fat, measured by 1H-MRS, reduced in the PUFA group
and increased in the SFA group. No differences were observed
for subcutaneous or visceral adipose tissue. Change in liver fat
was positively associated with change in serum SFAs. Metabolic
profiles including plasma lipid levels were lower during the PUFA
diet than during the SFA diet (62).

Hypercaloric Diet
LIPOGAIN was a double-blind, parallel group randomized trial
examining 39 young, normal weight individuals investigating the
importance of dietary fat composition for ectopic fat storage
(44). Participants were overfed muffins that were identical in
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TABLE 2 | Summary of studies examining the impact of fat over-feeding on liver fat.

References Participants Design Intervention Duration Body weight (kg) Liver fat (1H-MRS/MRI %) ALT, AST (U/L)

Shorter duration (≤ 1 week)

van der Meer

et al. (39)

Non-diabetic men

(n = 15)

One group Habitual diet + 800ml cream/day—high fat

high energy (HFHE) diet [added 2,632 kcl/day

(94% fat)]

3 days p = ns for BMI (no

data on body

weight)

a+112% (2.01 ± 1.79 → 4.26 ± 2.78), p =

0.001

ALT, AST: p = ns

Wulan et al.

(40)

Non-diabetic men

1. South Asian

(n = 10)

2. White (n = 10)

One group High fat diet (+50% EE: 60%E fat, 25%E CHO,

15%E protein)

4 days South Asian +33% (p < 0.05)

White +34% (p < 0.05)

Ethnicities, p = ns

Wulan et al.

(41)

Non-diabetic men

1. South Asian

(n = 10)

2. White (n = 10)

One group High fat diet (+50% EE: 60%E fat, 25%E CHO,

15%E protein)

Subjects stayed in respiration chamber

mimicking a sedentary lifestyle.

3 days South Asian 1.7 ± 1.4 → 2.7 ± 1.9 (p < 0.05)

White 2.6 ± 3.5 → 3.1 ± 4.9 (p < 0.05)

Ethnicities, p = ns

Longer duration (> 1 week)

Kechagias

et al. (42)

Non-diabetic

individuals (n = 18)

One group 2x fast-food based meals/day (aim 5–15%

weight gain)

Baseline (mean): Kcal/day 2,273, CHO 48%E,

fat 36%E (38% sat fat)

Study (mean): Kcal/day 5,753, CHO 45%E, fat

43%E (43% sat fat)

4 weeks a+6.4 (p < 0.001) a1.1 ± 1.9 → 2.8 ± 4.8 (p = 0.003) ALT: 22.1 ± 11 →

69.3 ± 76 (p =

0.01)

AST: 28.1 ± 12

→ 39.6 ± 23 (p

= 0.07)

Rietman et al.

(43)

Non-diabetic lean

individuals (n = 29)

Randomized

Cross-over

1. High fat diet + normal protein (NP)

2. High fat diet + high protein (HP)

2 weeks p = ns vs. WM

p = ns NP vs. HP

p = ns vs. WM

p = ns NP vs. HP

Rosqvist et al.

(44)

Non-diabetic

normal weight

individuals (n = 39)

Randomized

Parallel

double-blind,

(LIPOGAIN)

Standard diet +

1. Muffins high in SFAs (palm oil)

2. Muffins high in n-6 PUFAs (sunflower oil)

Quantity adjusted for 3% weight gain

Muffins matched for energy, fat, protein,

CHO, cholesterol.

7 weeks aSFA +1.6 ± 0.96

PUFA +1.6 ± 0.85

SFA vs. PUFA, p

= ns

SFA +0.56 ± 1.0

PUFA +0.04 ± 0.24

SFA vs. PUFA, p = 0.033

Johannsen

et al. (45)

Non-diabetic

individuals (n = 29)

One group +40% EE: 41%E CHO, 44%E fat (40% SFAs),

15%E protein

8 weeks +7.6 ± 2.1 1.5 ± 0.6 → 2.19 ± 1.0 (p < 0.01) ALT: 27.4 ± 12.4

→ 38.3 ± 18.9 (p

< 0.001)

Rosqvist et al.

(46)

Non-diabetic

overweight

individuals (n = 60)

Randomized

Parallel

double-blind,

(LIPOGAIN-2)

Standard diet +

1. Muffins high in SFAs (palm oil)

2. Muffins high in n-6 PUFAs

(sunflower oil)

Quantity adjusted for 3% weight gain

Muffins matched for energy, fat, protein,

CHO, cholesterol

8 weeks aSFA

+2.31 ± 1.38

PUFA

+2.01 ± 1.90

SFA vs. PUFA, p

= ns

aSFA +53% (+1.54 ± 2.0)

PUFA−2% (−0.09 ± 1.55)

SFA vs. PUFA, p = 0.001

ALT (mkat/L):

SFA+0.08± 0.18,

PUFA−0.01± 0.14,

p = 0.035

All results show mean ± SEM unless stated otherwise.
aMean ± SD.
bMedian (interquartile range).
1H-MRS, magnetic resonance spectroscopy; MRI, magnetic resonance imaging; ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, body mass index; EE, excess energy; W, weight maintenance diet; CHO, carbohydrate;

SFA, saturated fatty acids; n-6 PUFA, omega 6 polyunsaturated fatty acids.
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TABLE 3 | Summary of studies of both fat and carbohydrate over-feeding on liver fat.

References Participants Design Intervention Duration Body weight (kg) Liver fat (1H-MRS/MRI %) ALT, AST (U/L)

Shorter duration (≤ 1 week)

Sobrecases

et al. (47)

Non-diabetic men

(n = 37)

Randomized

Parallel

1. HFrD (+3.5 g fructose/kg/FFM, +35%

energy)

2. High fat diet (Fat) (+30%E as fat)

3. High-fructose high-fat diet (FruFat) (3.5 g

fructose/kg/FFM +30%E as fat)

7 days p = ns HFrD +16%

Fat +86%

Frufat +133%

FruFat vs. HFrD p < 0.05

FruFat vs. Fat p < 0.05

ALT: Only the

FruFat diet led to

ALT increase

Lecoultre

et al. (48)

Non-diabetic men

(n = 55)

Randomized

Parallel

WM diet + either:

1.5/3/4 g fructose/kg/FFM (F1.5, F3, F4)

3 g/kg/day glucose (G3.0)

30%E as SFAs (Fat 30%)

6–7 days p = ns all group

vs. controls

a IHCL (mmol/kg):

F3 9.0 ± 8.0 → 18.5 ± 2.5 (p < 0.01)

F4 13.1 ± 7.9 → 23.7 ± 15.2 (p < 0.01)

Fat 30% 11.6 ± 8.0 → 21.9 ± 17.2 (p < 0.05)

F1.5 6.0 ± 3.0 → 5.7 ± 2.5 (p = ns)

G3.0 12.9 ± 15.0 → 16.1 ± 15.1 (p = ns)

F3 vs. F1/F4 vs. F1/Glu3.0 vs. F3 all p < 0.05

Surowska

et al. (49)

Non-diabetic

individuals (n = 12)

Randomized

Cross-over

Hypercaloric diet (+45% EE) + high in sucrose

1. Low protein, high fat hypercaloric diet

(LP-HF): 5%E protein, 25%E fat

2. High protein, low fat hypercaloric diet

(HP-LF): 20%E protein, 10%E fat

6 days

4–8 week

washout period

LP-HF +0.7 ± 0.1

(p = ns)

HP-LF +1.4 ± 0.2

(p < 0.01)

IHCL (1H-MRS) (mmol/kg ww):

LP-HF: 25.0 ± 3.6 → 147.1 ± 26.9

HP-LF: 30.3 ± 7.7 → 57.8 ± 14.8

Two-way ANOVA with interaction p < 0.001

overfeeding x protein/fat content

Longer duration (> 1 week)

Luukkonen

et al. (50)

Non-diabetic

individuals (n = 38)

Randomized

Parallel

Hypercaloric diet (1,000 excess kcal/day)

1. SAT: Mainly SFAs (76%E SFAs, 21%E

MUFAs, 3%E PUFAs)

2. UNSAT: Mainly USFAs (57%E MUFAs,

22%E PUFAs, 21%E SFAs)

3. CARB: 100%E simple sugars

3 weeks p = ns SAT +55% (4.9 ± 6.6 → 7.6 ± 8.8), p <

0.001

UNSAT +15% (4.8 ± 4.9 → 5.5 ± 4.8), p <

0.02

CARB +33% (4.3 ± 4.7 → 5.7 ± 5.4), p <

0.02

SAT vs. UNSAT, p < 0.01
bNewly synthesized palmitate in VLDL TG

(µmol/L):

CARB +33% (96 [47–116] → 190 [61–303]), p

< 0.05

UNSAT & CARB, p = ns

ALT: SAT +25%

(28 ± 15 →

35 ± 18), p < 0.05

UNSAT & CARB, p

= ns

AST: SAT +12%

(26 ± 5 →

29 ± 6), p < 0.05

UNSAT & CARB, p

= ns

Koopman

et al. (25)

Non-diabetic lean

men (n = 36)

Randomized

Parallel

Hypercaloric diet (+40% EE)

1. High fat high sugar + ↑ meal size (HFHS-S)

2. High fat high sugar + ↑ meal frequency

(HFHS-F)

3. High sugar + ↑ meal size (HS-S)

4. High sugar + ↑ meal frequency (HS-F)

Controls: ad libitum diet

6 weeks aBMI (kg/m2):

HFHS-S +0.6 (p <

0.05)

HFHS-F +0.9 (p <

0.01)

HS-S +0.8 (p <

0.001)

HS-F + 0.5 (p =

ns) (no data on

body weight)

aHFHS-F +45% (0.98 ± 0.91 → 1.38 ± 1.26,

p < 0.05)

HS-F +110% (1.49 ± 0.95 → 3.10 ± 2.16, p

< 0.05)

HFHS-F vs. HS-F p = ns

HFHS-S +19% (0.85 ± 0.32 → 1.05 ± 1.26,

p = ns)

HS-S +14% (0.80 ± 0.45 → 0.93 ± 1.04, p

= ns)

All results show mean ± SEM unless stated otherwise.
aMean ± SD.
bMedian (interquartile range).
1H-MRS, magnetic resonance spectroscopy; MRI, magnetic resonance imaging; ALT, alanine transaminase; AST, aspartate aminotransferase; HFrD, high fructose diet; FFM, fat free mass; WM, weight maintenance diet; SFA, saturated

fatty acids; IHCL, intrahepatocellular lipids; EE, excess energy; BMI, body mass index; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; VLDL, very low density lipoprotein; TG, triglycerides; ANOVA, analysis of

variance.
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composition except for the type of fat: containing either high
levels of SFA (palm oil) or n-6 PUFA (sunflower oil). Participants
were provided an additional 750 kcal/day for 7 weeks to their
habitual diet to induce identical weight gain (∼2.2% increase,
1.6 kg). SFAs markedly increased liver fat and caused a 2-fold
larger increase in VAT compared with PUFAs. The increase in
liver fat was positive correlated with increases in SFA asmeasured
by plasma palmitic acid. Conversely, PUFAs caused a nearly 3-
fold larger increase in lean tissue than SFAs (lean tissue: fat
added: 1:1 with PUFAs, 1:4 with SFAs) (44). Although PUFAs,
in contrast to SFAs, were noted to be associated with reductions
in atherogenic lipoproteins, the weight gain observed with both
types of fat overfeeding was associated with hyperinsulinaemia
and increased biomarkers of endothelial dysfunction (63).

Recently, Rosqvist et al., conducted a further double-blind
randomized trial (LIPOGAIN-2), with a similarly designed
intervention comparing overfeeding with SFA from palm oil
vs. PUFA from sunflower oil (46). Overfeeding was for an 8
week period, followed by 4 weeks of caloric restriction but in an
overweight, middle-aged group (mean age 42 years and BMI 28
kg/m2) compared with a lean, young population in the earlier
study (mean age 27 years and BMI 20, kg/m2). The differential
effects on liver fat and blood lipid levels were even more
distinct. The weight gain observed was 2–2.3 kg and although no
differential effect was seen on VAT, pancreatic fat or total body
fat, a differential effect was seen on liver enzymes and liver fat,
increasing by 50% with SFA but unchanged with PUFA.

GIP
The intestinal incretin, GIP seems to play an important role
in mediating the impact of saturated fat on the liver. NASH
patients exhibit a prolonged elevation of GIP after saturated fat
ingestion and this increased GIP response to saturated fat intake
is associated with the severity of liver disease (21).

In summary both iso- and hyper-caloric diets have
consistently shown that a high fat diet leads to increased
levels of hepatic steatosis. Furthermore, randomized control trial
data has shown that SFAs lead to significant increases in liver
fat, whereas PUFAs are protective in a setting of identical weight
gain. This was found to be true for both normal weight and
overweight individuals.

Studies Comparing Carbohydrate and Fat
Overfeeding
A small number of randomized studies have compared the
impact of fat or carbohydrate overfeeding on liver fat (Table 3).
Studies are heterogenous in design, but there is a general trend
that overfeeding with SFAs is associated with the greatest risk
of hepatic steatosis and increase in transaminases, independent
of changes in body weight (47, 50). Luukkonen et al. assigned
38 individuals to receive a hypercaloric diet containing either
100% simple sugars, mainly saturated fat, or mainly unsaturated
fat for 3 weeks (50). Lipolysis and DNL were measured under
basal conditions and during a euglycaemic hyperinsulinaemic
clamp to measure insulin sensitivity. Overfeeding saturated fat
increased IHTG more (+55%) than unsaturated fat (+15%, p <

0.05), while carbohydrates increased IHTG +33%. Importantly,

carbohydrates increased liver fat by stimulating DNL (+98%)
while saturated fat did so by significantly increasing the rate
of lipolysis (unsaturated fat did not). Additionally, saturated fat
induced insulin resistance and endotoxemia and significantly
increased multiple plasma ceramides. The diets had also had
distinct effects on adipose tissue gene expression (64). Clearly,
the metabolic pathways through which different macronutrients
increase liver fat are different (50). Finally it is important to note
that where overfeeding studies were followed by a hypocaloric
diet, changes in weight gain, adverse lipid profiles and liver fat
content were all reversed (35, 46).

Influence of Protein Intake on Risk of
NAFLD
The vast majority of epidemiological or mechanistic studies
relating to NAFLD have examined carbohydrate and fat intake
and/or metabolism but there is emerging evidence that dietary
protein intake and specific amino acid patterns is relevant in the
pathogenesis of NAFLD (65).

Several overfeeding studies have examined the influence
of a hypercaloric diet, with a high protein content, on liver
fat accumulation. Bortolotti et al. demonstrated supplementing
a high fat diet with protein led to a statistically significant
attenuation (∼22%) in liver fat accumulation induced by the high
fat diet despite the additional energy (66). A further study of a
high fat, hypercaloric diet, with a normal vs. high protein intake
demonstrated that the higher protein intake tended to lower liver
fat, circulating TG concentration and fat mass while increasing
fat-free mass (43). A similar finding was observed supplementing
a high fructose diet with essential amino acids. This led to a
statistically significant attenuation (∼16% reduction) in liver fat
accumulation when compared with a high fructose diet alone
(33). The mechanisms through which protein or amino acid
supplementation may attenuate liver fat accumulation are not yet
fully understood.

MEDIATORS OF THE OVERFEEDING
RESPONSE

There are many factors that may influence the response to
overfeeding, and thus NAFLD risk, which include the genetic
background of the individual (genetic risk of either obesity
and/or NAFLD) as well as baseline characteristics including age,
sex, BMI, insulin sensitivity, metabolic health status, small for
gestational age etc.

Genetic and Epigenetic Factors May
Modulate the Response to Overfeeding
There is evidence that the genetic background of an individual
influences the variability of the weight gain and fat storage with
caloric excess. This is also likely to apply for liver fat deposition
with energy excess. Epidemiological, familial, and twin studies
have demonstrated NAFLD has a strong genetic predisposition.
Genome-wide association studies led to the identification of
the major inherited determinants of hepatic fat accumulation:
patatin-like phospholipase domain-containing (PNPLA3) I148M
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gene and transmembrane 6 superfamily member 2 (TM6SF2)
E167K gene variants (regulating mobilization of TGs from
lipid droplets and VLDL secretion, respectively) (67, 68). More
recentlymembrane bound O-acyltransferase domain-containing 7
(MBOAT7), has also been identified (69). These are undoubtedly
major determinants of inter-individual differences in liver
steatosis, and susceptibility to progressive NASH, yet likely only
account for<10% of inherited variability. Their relevance has not
yet been assessed in overfeeding studies.

Perhaps more commonly implicated are epigenetic
mechanisms, whereby there is interaction between nutrients
and the genome by modifications such as DNA methylation,
histone modifications, and miRNAs targeting mRNA, that affect
gene expression without altering the DNA sequence. These
fields of nutrigenomic and nutriepigenomics are increasingly
emerging (70).

Ethnic-Specific Differences in Response to
Overfeeding
Differences in body composition and liver fat deposition are
apparent between white Europeans, South Asian and black
Africans matched for age, sex, and BMI. South Asian populations
are typically characterized by disproportionately more visceral
fat accumulation and higher intrahepatic and intramyocellular
lipid content than BMI-matched white Europeans), contributing
to insulin resistance and higher T2D risk (71–73). In contrast,
black African-Caribbean populations consistently have lower
levels of liver fat and VAT and higher levels of subcutaneous fat,
even after adjustment for BMI or waist circumference (74, 75),
although paradoxically despite lower ectopic fat, marked insulin
resistance is reported (76). In this population insulin resistance
is more strongly associated with abdominal subcutaneous rather
than visceral fat (77, 78) and African-Caribbean populations
appear more sensitive to the negative effects of ectopic fat,
particularly intrapancreatic lipid accumulation (79). Considering
South Asians have this lower capacity to store fat in SAT, they
may be more susceptible to the negative effects of overfeeding
with greater ectopic fat deposition including the liver. When
subjected to 4 days of overfeeding (50% excess energy need)
with a high fat diet (60%E energy from fat), South Asian
and Caucasian men with the same body fat percentage, and
similar liver fat content at baseline, showed similar increases
in liver fat (33 and 34% respectively) as described in Table 2,
Supplementary Table 2 (40). However, the high fat diet had
more adverse effects on the lipid profile in the South Asians
compared with the Caucasians (41). Longer duration studies
in South Asians may reveal different insights while differential
effects between overfeeding in Caucasian and African-Caribbean
populations are unknown.

Counteracting the Effects of Overfeeding
With Exercise
There is a wealth of epidemiological, cross-sectional and
interventional evidence linking physical activity and/or physical
inactivity, aerobic capacity, and exercise to liver fat and
susceptibility to/protection from NAFLD development and
progression. Significantly, exercise can modulate liver fat

independent of changes in fat mass (80). Habitual physical
activity, cardiorespiratory fitness, and exercise have convincingly
been shown to be important in regulating liver fat as shown
in a series of cross-sectional and interventional studies (12–
14, 81, 82). In a randomized controlled trial of 50 participants,
we demonstrated that supervised moderate-intensity exercise,
improving cardiorespiratory fitness with small reductions in
body weight, led to significantly lower liver fat and improvements
in peripheral (but not hepatic) insulin sensitivity (81). These
improvements were not sustained following cessation of the
exercise supervision (82). Conversely, we demonstrated that 2
weeks of physical inactivity (reducing daily step count from
>10,000 to<1,500/day) induced liver fat accumulation and other
features of metabolic syndrome (12). Furthermore, we showed
that habitual inactivity influences liver fat, with every additional
hour of daily sedentary time associated with a 1.15% (95%
confidence interval, 1.14-1.50%) higher liver fat content (normal
liver fat < 5.56%; NAFLD > 5.56%). (13) Thus, increases or
reductions in physical activity are likely to influence the liver’s
response to nutrient excess/overfeeding. Considering the above
evidence, unsurprisingly overfeeding studies have incorporated
daily vigorous-intensity exercise into study designs to offset
the positive energy balance and counteract the simultaneous
imposition of overfeeding with physical inactivity, designed to
be representative of modern Western lifestyles (83, 84). Exercise
provides this counterbalance at a whole-body and adipose
tissue level by preventing the hyperinsulinaemic response and
modifying the expression of key adipose tissue metabolic
and insulin signaling genes and proteins (83). How exercise
may attenuate liver fat accumulation with overfeeding (+/−
inactivity) has yet to be examined.

CONCLUSIONS

Dietary intervention studies including overfeeding studies are
diverse in their time frames, intervention (different types,
subtypes, quantities of macronutrients, isocaloric/hypercaloric),
design (parallel/non-parallel studies), control groups, baseline
population demographics, and primary outcomes. Some induced
weight gain, whilst others did not. Background genetic, ethnicity-
dependent, and other baseline factors particularly baseline health
and fitness/activity levels will modulate the liver’s response to
overfeeding. The studies considered here were consistent only
in that they all used MRI or MRS to determine changes in liver
fat, which is now the gold standard. While this is a narrative
review only and no formal evaluation of the quality of evidence
was made, we identified consistency among studies reporting
an association between increased saturated fat and simple sugar
intake and hepatic steatosis. Meta-analysis data suggests that
saturated fat can lead to increased liver fat content even in the
context of an isocaloric diet. PUFAs have also been consistently
shown to have a favorable effect on liver steatosis. It is still unclear
whether there is a difference in the ability of fat or carbohydrate
to lead to greater levels of IHTGs compared to one another.
There is some evidence to support a low GI diet which requires
further validation.
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There are currently no pharmacological approved agents
for NAFLD despite significant investment in this field,
and weight loss remains the only proven management for
this incredibly prevalent condition. Prevention and disease
modification through dietary recommendations, which consider
macronutrient intake, have huge potential to be benefit patients.
High quality, randomized control studies with adequate baseline
controls and longitudinal follow up are essential and urgently
needed to provide evidence-based guidance which may to help
prevent morbidity and mortality from NAFLD and its associated
metabolic conditions.
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